
S1 Appendix. Detailed description of RegrExLAD and comparison with the 

original RegrExOLS 

The RegrExLAD method 

In this appendix we justify the usage of RegrExLAD in this study, instead of the original RegrEx 

version presented in [1]. As commented in the main text, the original RegrEx method minimizes the 

squared ℓ2 norm of 𝜖 = 𝑑 − 𝑣, the difference vector between the experimental data vector, 𝑑, and a 

feasible flux distribution, 𝑣. This is indeed the only difference with respect to the RegrExLAD method, 

which minimizes the ℓ1 norm (i.e., the sum of absolute error values) of 𝜖.  To this end, RegrEx solves 

the mixed integer quadratic program:                               
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(OP1), 

as opposed to the mixed integer linear program solved by RegrExLAD (presented in the main text): 
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 (OP2) 

During the course of this study, we first tried to investigate the alternative optima space of RegrEx 

through a sampling procedure, in a way akin to the Variability Flux Sampling procedure  

implemented in [2]. The Variability Flux Sampling procedure was developed to investigate the 

alternative optima space of the InGenMinimizer method (presented in the same publication), by 



generating a random sample of alternative optimal flux distributions. The InGenMinimizer method 

follows the quadratic program, 
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 (OP3). 

Therefore RegrEx (OP1) can be seen as an extension of the InGenMinimizer method (OP3), in which 

(i) ℓ1-regularization is included in the objective function, and (ii) reversible reactions with associated 

data are also taken into account in the minimization, which requires introducing a vector of binary 

variables, x (as explained in the main text).  

The Variability Flux Sampling procedure was formulated as the quadratic program, 

                                                

21
22

, ,

min max

21
22

 

min || ||

. .

1. 0

2.

3.
,

4. || ||

5

 

 

 

 .

v

i i i

D

opt

rand

s t

Sv

v v v

v d
i R

Z

v v

 










 

  
 

 

 

(OP4), 

which minimizes the distance, 𝛿, between an alternative optimal flux distribution, 𝑣, and a randomly 

generated flux distribution, 𝑣𝑟𝑎𝑛𝑑 (OP4 is solved n times to obtain a sample of n alternative optimal 

flux distributions). The key in OP4 is constraint number 4, i.e.,  
1

2
‖𝜖‖2

2 = 𝑍𝑜𝑝𝑡 , which guarantees  that 

any sampled feasible 𝑣, is also optimal, since it renders the same squared ℓ2 norm of 𝜖 previously 

obtained by OP3. This is a quadratic equality constraint, which makes OP4 non-convex and thus 

intractable by convex optimization tools. Note that this constrain would also be required in the case of 

RegrEx, since it also minimizes the squared ℓ2 norm of 𝜖.  

In the Variability Flux Sampling procedure, authors used a non-convex solver, MINOS [3], to tackle 

this problem. However, several aspects make the case of RegrEx more complex: firstly, in the 

Variability Flux Sampling procedure authors only dealt with seven reactions with associated data, in 

contrast, RegrEx must evaluate all reactions with associated data in a GEM. Secondly, integer 

variables were not required in the Variability Flux Sampling procedure, since all seven reactions were 

irreversible, as oppose to RegrEx, where reversible reactions with associated data are also taken into 

account. Lastly, a flux distribution that is alternatively optimal to RegrEx must also render the same ℓ1 

norm as the original optimum, thus a second constraint like ‖𝑣𝑠‖1 = ‖𝑣𝑜𝑝𝑡‖
1
 has to be added. 

Altogether, these particularities make the optimization problem associated to any RegrEx alternative 

optima sampling procedure hardy tractable by any existing solver. However, it is computationally 

tractable to sample alternative optimal solutions of RegrExLAD. This is because the objective function 

of RegrExLAD is linear, and hence only two linear constraints are required to guarantee that a sampled 



flux distribution is optimal to RegrExLAD.  Thus the sampling procedure (RegrExAOS, see main text) 

can be casted as a convex optimization problem and solved with existing solvers. 

Although computational tractability was our main motivation to develop RegrExLAD, we noted that 

this alternative version may have another advantage over the original (renamed RegrExOLS in the 

following). RegrExOLS and RegrExLAD parallel two classical approaches followed in linear regression, 

namely, the ordinary least squares (OLS) and the least absolute deviations (LAD, also known as least 

absolute value, LAV) method [4]. OLS and LAD regression behave differently upon the presence of 

outliers in the distribution of errors (i.e., the vector 𝜖), that is, elements that are very far away from the 

mean of the distribution. Concretely, the OLS method tends to get biased results in such cases, since 

the squared ℓ2 norm of 𝜖 gives excessive importance to these elements. On the other hand, the LAD 

method is more robust under the presence of such outliers, and thus less prone to give biased results 

(in fact, the LAD method is the simplest among the so-called Robust Regression techniques, see for 

instance [5]). In the context of RegrEx, this means that RegrExLAD could be a better choice in cases 

where outliers are present in the error distribution, for instance, if a given mapped gene expression 

value is particularly high with respect to the mean value of the gene expression data set. In fact, this 

idea has been implemented in the case of the least absolute shrinkage and selection (LASSO) operator 

[6] (which inspired the development of RegrExOLS), which applies a ℓ1-regularization to an OLS 

regression. Concretely, the LASSO has been adapted to a LAD regression, showing advantages in 

cases where the distribution of errors is not appropriate for OLS estimation [7]. 

To test the previous idea, we evaluated the RegrExOLS and RegrExLAD performance under the 

inclusion of outliers in the leaf data set used in the main study. To this end, we first generated a 

sample of randomly perturbed leaf data vectors, 𝑑𝐿𝑒𝑎𝑓(𝑗)
∗ = 𝑑𝐿𝑒𝑎𝑓 + 𝜇(𝑗), 𝑗 = {1, … , 104}, obtained 

by adding a uniform noise ,𝜇(𝑗), (±1% of the mean value of 𝑑𝐿𝑒𝑎𝑓) to the original leaf data set, 𝑑𝐿𝑒𝑎𝑓. 

We next obtained a “contaminated” leaf data set, which contained an outlying expression value for 

one of the reactions. Concretely, we substituted the data associated to the reaction that had the 

minimum value in 𝑑𝐿𝑒𝑎𝑓 by a large amount, in this case 5 times the maximum value in 𝑑𝐿𝑒𝑎𝑓. We 

then applied RegrExOLS and RegrExLAD using the AraCOREred model and the contaminated leaf data 

set, and calculated the total sum of the absolute errors,  

𝑇𝜖(𝑗)
=

1

𝑅𝐷
∑ 𝑣(𝑖,𝑗) − 𝑑𝐿𝑒𝑎𝑓(𝑖,𝑗)

∗

𝑗

, 

with 𝑖 = {1, … , 𝑅𝐷}, where 𝑅𝐷 corresponds to the number of reactions with associated data, between 

the optimum RegrExOLS and RegrExLAD flux distributions and each of the perturbed leaf datasets, 

𝑑𝐿𝑒𝑎𝑓(𝑗)
∗ , in the sample (the code used in this evaluation is included in SFile1). In this evaluation, 

RegrExLAD rendered smaller total sums of absolute errors across the perturbed data sample (mean 

𝑇𝜖 = 0.718 in RegrExLAD versus a mean 𝑇𝜖 = 0.722 in RegrExOLS) as determined by a two-sided 

Mann-Whitney test (p-value = 0). In addition, RegrExLAD did not render smaller total sums when the 

original (“uncontaminated”) leaf data set was used under the same setting (mean 𝑇𝜖 = 0.709 in 

RegrExLAD versus a mean 𝑇𝜖 = 0.706 in RegrExOLS, p-value = 1) . Although the reported differences 

between total sums of absolute errors are small, they serve to illustrate the more robust behavior of 

RegrExLAD under the presence of outliers. 

References 

1.  Robaina Estévez S, Nikoloski Z. Context-Specific Metabolic Model Extraction Based on 

Regularized Least Squares Optimization. PLoS One. Public Library of Science; 2015;10: 



e0131875. doi:10.1371/journal.pone.0131875 

2.  Recht L, Töpfer N, Batushansky A, Sikron N, Gibon Y, Fait A, et al. Metabolite Profiling and 

Integrative Modeling Reveal Metabolic Constraints for Carbon Partitioning under Nitrogen-

Starvation in the Green Alga Haematococcus pluvialis. J Biol Chem. 2014;289: 30387–30403. 

doi:10.1074/jbc.M114.555144 

3.  Bruce A. Murtagh MAS. Minos User’s Manual. Syst Optim Lab Dep Oper Res Stanford Univ.  

4.  Lawrence KD, Shier DR. A comparison of least squares and least absolute deviation 

regression models for estimating Weibull parameters. Commun Stat - Simul Comput. Taylor & 

Francis Group; 2010; Available: 

http://www.tandfonline.com/doi/abs/10.1080/03610919808813515a 

5.  Dielman TE. Least absolute value regression: recent contributions. J Stat Comput Simul. 

Taylor & Francis; 2005;75: 263–286. doi:10.1080/0094965042000223680 

6.  Tibshirani R. Regression Selection and Shrinkage via the Lasso. J R Stat Soc B. 1994;58: 267–

288. doi:10.2307/2346178 

7.  Wang H, Li G, Jiang G. Robust Regression Shrinkage and Consistent Variable Selection 

Through the LAD-Lasso. Journal of Business & Economic Statistics. 2007. pp. 347–355. 

doi:10.1198/073500106000000251 

 

 

 

 

 

 

 

 


