Supplemental Materials Molecular Biology of the Cell

Matsunaga et al.

Supplemental Fig. 1

Figure S1. Thermal denaturation of TwcKR wt (black) and TwcKR KtoA (orange) was measured by DSF. Error bars show standard deviation of triplicate measurements collected for each temperature interval.

vild-type (N2) d-type (N2) -22 (sf21)

Supplemental Fig. 2

Figure S2. Generation of *unc-22(sf21)* nematodes by CRISPR/Cas9.

On the right is an agarose gel showing PCR fragments digested with PstI that permits discrimination of wild-type from the unc-22(sf21) sequence. On the left are portions of the DNA sequence chromatograms of these fragments together with conceptual translation; the underline denotes the PstI recognition site.

Supplemental Fig. 3

Figure S3. Response of wild-type, *unc-22(e105)* and *unc-22(sf21)* nematodes to nicotine.

A WMicrotracker (DesignPlus) was used to monitor the locomotion of multiple worms per well in a microtiter dish over time during exposure to a solution of 0.00%, 0.05% or 0.1% nicotine.

Supplemental Fig. 4

Figure S4. By western blot, the *unc-22(sf21)* mutant expresses normal levels of twitchin isoforms of the appropriate size.

Extracts from wild-type (WT) or *unc-22(sf21)* mutant animals were separated on a 5% SDS-PAGE and transferred to a membrane. On the right is shown the blot after Ponceau-

S staining; the positions of molecular weight markers are indicated. On the left is shown the result of reaction to anti-twitchin antibodies.

Supplemental Fig.5

unc-22

Figure S5. Comparison of sarcomeric structure of wild-type and *unc-22* mutant nematodes assessed by immunofluorescent staining.

Wild-type (WT) and the indicated *unc-22* mutant nematodes were fixed and immunostained with antibodies to the indicated sarcomeric proteins: twitchin, MYO-3 (myosin heavy chain A) and UNC-15 (paramyosin) of the A-bands; UNC-89 (obscurin) of the M-lines; ATN-1 (α -actinin) of dense bodies (Z-disk analogs); and PAT-6 (α parvin) of M-lines and dense bodies. As indicated, *unc-22(sf21)* shows normal localization of every sarcomeric protein tested, including twitchin. For comparison, *unc-22(e105)* shows the same normal localization pattern as *unc-22(sf21)*, but the loss of function allele *unc-22(e66)* and the null allele *unc-22(ct37)* show disorganization of each of these marker proteins. Scale bar, 10 µm. 1

twitchin kinase domain

Gly-rich loop

50

C.elegans C.remanei C.briggsae C.tropicalis C.sinica C.japonica H.bacteriophora S.vulgaris A.duodenale O.dentatum H.polygyrus A.ceylanicum A.caninum T.circumcincta T.canis H.contortus H.placei A.cantonensis S.feltiae S.glaseri S.scapterisci S.monticolum S.muris A.simplex S.carpocapsae A.suum A.lumbricoides D.viviparus P.redivivus T.callipaeda A.viteae 0.ochengi 0.volvulus P.trichosuri L.sigmodontis 0.flexuosa W.bancrofti B.malayi S.ratti S.venezuelensis S.stercoralis B.pahangi L.loa D.immitis S.papillosus D.medinensis

Rhabditophanes(sp.)

EIKHDHVLDHYDIHEELGTGAFGVVHRVTERATGNNFAAKFVMTPHESDK EIKHDHVLDHYDIHEELGTGAFGVVHRVTERATGNNFAAKFVMTPHEADK EIKHDHVLDHYDIHEELGTGAFGVVHRVTERATGNNFAAKFVMTPHEADK EIKHDHVLDHYDIHEELGTGAFGVVHRVTERATGNNFAAKFVMTPHEADK EIKHDHVLDHYDIHEELGTGAFGVVHRVTERATGNNFAAKFVMTPHEADK EIKHDHVLDHYDIHEEIGTGAFGVVHRVTERATGNNFAAKFVMTPHEADK EIKHDSVLDHYDIHEEIGTGAFGVVHRCTERATGNTFAAKFVNTPHEADK EIKHDSVLDHYDIHEEIGTGAFGVVHRCTERATGNNFAAKFVNTPHEADK EIKHDSVLDYYDIHEEIGTGAFGVVHRCTERATGNTFAAKFVNTPHEADK EIKHDSVLDHYDIHEEIGTGAFGVVHRCTERATGNTFAAKFINTPHEADK EIKHSPVLDFYDIHEEIGTGAFGVVHRCTERATGNTFAAKFVNTPHEADK EIKHDSVLDYYDIHEEIGTGAFGVVHRCTERATGNTFAAKFVNTPHEADK EIKHDSVLDYYDIHEEIGTGAFGVVHRCTERATGNTFAAKFVNTPHEADK EIKHTPVLDQYDIHEEIGTGAFGVVHRCTERATGNTFAAKFVNTQNEADK EPKRDSVYDYYDILEEIGQGAFGVVHRCVERATGNTFAAKFVNTPHEADK EIKHTPVLDQYDIHEEIGTGAFGVVHRCTERATGNTFAAKFVNTQNEADK EIKHTPVLDQYDIHEEIGTGAFGVVHRCTERATGNTFAAKFVNTQNEADK EIRHNSVLDNYDIHEEIGTGAFGVVHRCTERATGNTFAAKFVNTPHEADK ETKRESVYDYYDILEEIGSGAFGVVHRCVERATGNTFAAKFVNTPHEADK ETKRESVYDYYDILEEIGSGAFGVVHRCVERATGNTFAAKFVNTPHEADK ETKRESVYDYYDVLEEIGSGAFGVVHRCVERATGNTFAAKFVNTPHEADK ETKRESVYDYYDVMEEIGSGAFGVVHRCVERATGNTFAAKFVNTPHEADK EPKKASVYDLYDVYEEIGVGAFGVVHRCVERATGNTFAAKFVNTPHEADK EPKRDSVYDYYDILEEIGEGAFGVVHRCVERATGNTFAAKFVNTPHSADK DTKRESVYDYYDVLEEIGSGAFGVVHRCVERATGNTFAAKFVNTPHEADK EPKRDSVYDYYDILEEIGQGAFGVVHRCVERATGNTFAAKFVNTPHDADK EPKRDSVYDYYDILEEIGOGAFGVVHRCVERATGNTFAAKFVNTPHDADK EIKHNSVLDNYDIHEEIGSGAFGVVHRCTERATGNTFAAKFVNTPHQADK EIKHESAYDYYDILEEIGTGAFGVVHRCVERATGNTFAAKFVTTPSTAEK EPKRESVYDYYDILEEIGSGAFGVVHRCVERATGNTFAAKFVNTPHNVDK EPKRESVYNHYDILEEIGSGAFGSVHRCVERATGNTFAAKFVNTPHDADK EPKRESVYNHYDILEEIGSGAFGSVHRCVERATGNTFAAKFVNTPHDMDK EPKRESVYNHYDILEEIGSGAFGSVHRCVERATGNTFAAKFVNTPHDMDK EIKHDSIYDYYDILEEIGTGAFGVVHRCVERATGNTFAAKFVNTVSNSEK EPKREPVYDHYDILEEIGSGAFGSVHRCVEKATGNTFAAKFVNTPHHADK EPKRESVYNHYDI LEE IGSGAFGSVHRCVERATGNTFAAKFVNTPHDLDK EPKRESVYDYYDILEEIGSGAFGSVHRCVERATGNTFAAKFVNTPHDADK EPKRESVYDYYDILEEIGSGAFGSVHRCVERATGNTFAAKFVNTPHDADK EIKHDSIYDYYDVLEEIGTGAFGVVHRCVEKATGNTFAAKFVNTVSDNEK EIKHDSIYDYYDVLEEIGTGAFGVVHRCVEKGTGNTFAAKFVNTISENEK EIKHDSIYDYYDVLEEIGTGAFGVVHRCVERATGNTFAAKFVNTVSDNEK EPKRESVYDYYDILEEIGSGAFGSVHRCVERATGNTFAAKFVNTPHDADK EPKRESVYDYYDILEEIGSGAFGSVHRCVERATGNTFAAKFVNTPHDADK ELKRESVYNYYDILEEIGSGAFGSVHRCIEKATGNTFAAKFVNTPHDADK EIKHDSIYDYYDVLEEIGNGAFGVVHRCVEKGTGNTFAAKFVNTISENEK ETKRESIYDYYDILEEIGTGAFGVVHRCVERSTGRTFAAKFVNTPNDSDK DIKHESVYEKYDILEEIGVGAFGVVHRCVEKATGNTFAAKFVNTISPNEK

αHC (E)

C.elegans C.remanei C.briggsae C.tropicalis C.sinica C.japonica H.bacteriophora S.vulgaris A.duodenale O.dentatum H.polygyrus A.ceylanicum A.caninum T.circumcincta T.canis H.contortus H.placei A.cantonensis S.feltiae S.glaseri S.scapterisci S.monticolum S.muris A.simplex S.carpocapsae A.suum A.lumbricoides D.viviparus P.redivivus T.callipaeda A.viteae 0.ochengi 0.volvulus P.trichosuri L.sigmodontis 0.flexuosa W.bancrofti B.malayi S.ratti S.venezuelensis S.stercoralis B.pahangi L.loa D.immitis

S.papillosus

D.medinensis

Rhabditophanes(sp.)

51 100 **ETVRKEIQTMSVLRHPTLVNLHDAFEDDNEMVMIYEFMSGGELFEKVADE** ETVRKEIQTMSVLRHPKLVNLHDAFEDDNEMVMIYEFMSGGELFEKVADE **ETVRKEIQTMSVLRHPTLVNLHDAFEDDNEMVMIYEFMSGGELFEKVADE ETVRKEIHTMSALRHPKLVNLHDAFEDDNEMVMIYEFMSGGELFEKVADE ETVRKEIOTMSALRHOKLVNLHDAFEDDNEMVMIYEFMSGGELFEKVADE** DTVRKEINTMSVLRHPKLVNLHDAFEDDNEMVMVYEFMSGGELFEKVADE DTVRKEINTMSILRHPTLINLHDAFEDDKEMVMIYEFMSGGELFEKVADD **ATVRKEINTMSVLRHPTLINLHDAFEDDKEMVMIYEFMSGGELFEKVADD ATVRKEINTMSVLRHPTLINLHDAFEDDKEMVMIYEFMSGGELFEKVADD OTVRKEINTMSVLRHPTLINLHDAFEEDKEMVMIYEFMSGGELFEKVADD ETVRKEINTMSVLRHPTLINLHDAFEDDKEMVMIYEFMSGGELFEKVADD ATVRKEINTMSVLRHPTLINLHDAFEDDKEMVMIYEFMSGGELFEKVADD** ATVRKEINTMSVLRHPTLINLHDAFEDDKEMVMIYEFMSGGELFEKVADD **ATVRKEINTMSVLRHPTLINLHDAFEGDKEMVMIYEFMSGGELFEKVADD** DTVRKEIQTMSNLRHPKLINLHDAFEDDNEMVMIYEFMSGGELFEKVADE ATVRKEINTMSVLRHPKLINLHDAFEGDKEMVMIYEFMSGGELFEKVADD **ATVRKEINTMSVLRHPKLINLHDAFEGDKEMVMIYEFMSGGELFEKVADD ETVRKEISTMSTLRHPTLINLHDAYEDDKEMVMIYEFMSGGELLEKIADD** DTVRKEIQTMSELRHPSLINLHDAFEDEDEMVMIYEFMSGGELFEKVSDE **ETVRKEINTMSELRHPSLINLHDAFEDEDEMVMIYEFMSGGELFEKVSDE ETVRKEIHTMSELRHPSLINLHDAFEDEDEMVMIYEFMSGGELFEKVSDE ETVRKEINTMSELRHPSLINLHDAFEDEDEMVMIYEFMSGGELFEKVSDE** ETVRKEINTMSSLRHPRLINLHDAFEDDQEMVLIYEFMSGGELFEKIAND ETVRKEIQTMSNVRHPKLINLHDAFEDDNEMVMIYEFMSGGELFEKVADE **ETVRKEIHTMSELRHPSLINLHDAFEDDDEMVMIYEFMSGGELFEKVSDE** NTVRKEIOTMSNLRHPKLINLHDAFEDDNEIVMIYEFMSGGELFEKVADE NTVRKEIQTMSNLRHPKLINLHDAFEDDNEIVMIYEFMSGGELFEKVADE **ETVRKEINTMSVLRHPTLINLHDAFEDDKEMVMIYEFMSGGELFEKVADD ETVRKEINTMSELRHPALINLHDAFEDEHEMVMIYEFMSGGELFEKVSDE** DTVRKEISTMSILRHPSLINLHDAFEDDQEMVMIYEFMSGGELFEKVSDE DTVRKEINTMSVLRHPKLINLHDAFEDDKEMVMIYEFMSGGELFEKVSDE DTVRKEINTMSVLRHPKLINLHDAFEDDKEMVMIYEFMSGGELFEKISDE DTVRKEINTMSVLRHPKLINLHDAFEDDKEMVMIYEFMSGGELFEKISDE DTVRKEIHTMSELRHPSLINLHDAFEDENOMAMIYEFMSGGELFEKVADD DTVRKEINTMSVLRNPKLINLHDAFEDDKEMVMIYEFMSGGELFEKVSDE DTVRKEINTMSVLRHPKLINLHDAFEDDKEMIMIYEFMSGGELFEKISDE DTVRKEINTMSVLRHPKLINLHDAFEDDKEIVMVYEFMSGGELFEKISDE DTVRKEINTMSVLRHPKLINLHDAFEDDKEMVMVYEFMSGGELFEKISDE DTVRKEIQVMSELRHPSLINLHDAFEDENQMAMIYEFMSGGELFEKVADD DTVRKEIHVMSELRHPSLINLHDAFEDENQMAMIYEFMSGGELFEKVADD DTVTKEIQVMSELRHPSLINLHDAFEDENQMAMIYEFMSGGELFEKVADD DTVRKEINTMSVLRHPKLINLHDAFEDDKEMIMVHEFMSGGELFEKISDE DTVCKEINTMSVLRHPKLINLHDAFEDDKEMVMIYEFMSGGELFEKISDE DTVRKEISNMSVLRHPKLINLHDAFEDDKEMVMVYEFMSGGELFEKISDE DTVRKEIHVMSELRHPSLINLHDAFEDENOMAMIYEFMSGGELFEKVADD STVRKEINTMSALRNPRLINLHDAFEEDQAMIMVYEFMSGGELFEKVSDI

ETVRKEINTMSELRHPSLINLHDAYEDETOMVMIYEFMSGGELFEKVSDD

ATP/Mg2+ Proton (N) acceptor

150

C.elegans C.remanei C.briggsae C.tropicalis C.sinica C.japonica H.bacteriophora S.vulgaris A.duodenale 0.dentatum H.polygyrus A.ceylanicum A.caninum T.circumcincta T.canis H.contortus H.placei A.cantonensis S.feltiae S.glaseri S.scapterisci S.monticolum S.muris A.simplex S.carpocapsae A.suum A.lumbricoides D.viviparus P.redivivus T.callipaeda A.viteae 0.ochengi 0.volvulus P.trichosuri L.sigmodontis 0.flexuosa W.bancrofti B.malayi S.ratti S.venezuelensis S.stercoralis B.pahangi L.loa D.immitis S.papillosus D.medinensis Rhabditophanes(sp.)

101 HNKMSEDEAVEYMROVCKGLCHMHENNYVHLDLKPENIMFTTKRSNELKL HNKMSEDEAVEYMRQVCKALCHMHENNYVHLDLKPENIMFTTKRSNELKL HNRMSEDEAVEYMROVCKALCHMHENNYVHLDLKPENIMFTTKRSNELKL HNKMSEDEAVDYMROVCKALCHMHENNYVHLDLKPENIMFTTKRSNELKL HNRMSEDEAVEYMRQICKGLCHMHENNYVHLDLKPENIMFTTKRSNELKL HNKMSEDEAVEYMRQVCKALCHMHEMNYVHLDLKPENIMFTTKRSNELKL SNKMSELEAIEYTRQVCKALCHMHEMNYVHLDLKPENIMFTTKKSKQLKL TNRMTEAEAIDYTROVCNALCHMHEMNYVHLDLKPENIMFTTKKSNOLKL SNRMTEAEAIDYVRQVCKALCHMHEMNYVHLDLKPENIMFTTKKSNQLKL SNRMTEAEAIDYTRQVCKALCHMHEMNYVHLDLKPENIMFTTKKSNQLKL SNRMTEAEAIEYTROVCKALCHMHEMNYVHLDLKPENIMFTTKKSNELKL SNRMTEAEAIDYVRQVCKALCHMHEMNYVHLDLKPENIMFTTKKSNQLKL SNRMTEAEAIDYVROVCKALCHMHEMNYVHLDLKPENIMFTTKKSNOLKL SNRMTEAEAIEYTROVCKALCHMHEMNYVHLDLKPENIMFTTKKSNELKL KNRMSEAEAVEYMRQVCEALRHMHEMNYVHLDLKPENIMFTTKKSNQLKL SNRMTEAEAIEYTRQVCKALCHMHEMNYVHLDLKPENIMFTTKKSNELKL SNRMTEAEAIEYTROVCKALCHMHEMNYVHLDLKPENIMFTTKKSNELKL SNRMTEAEAIDYIRQVCKALCHMHEMNYVHLDLKPENIMFTTKKSNQLKL KNKMSEEEAIDYMRQVCSALKHMHEMNYVHLDLKPENIMFTTKKSNQLKL KNRMSEEEAIDYMRQVCDALRHMHEMNYVHLDLKPENIMFTTKKSNQLKL KNRMSEEEAIDYMRQVCDALRHMHEMNYVHLDLKPENIMFTTKKSNQLKL KNKMSEEEAIDYMRQVCGALKHMHEMNYVHLDLKPENIMFTTKKSNQLKL DSRMSEAEAIEYMRQICDGLRHMHEMNYVHLDLKPENIMFTTKKSNQLKL KNKMSETDAVDYMRQICNALRHLHEMSYVHLDLKPENIMFTTNKSNQLKL KNRMSEEEAIDYMRQVCNALRHMHEMNYVHLDLKPENIMFTTKKSNQLKL KNRMSEAEAVDYMRQVCDALRHMHEMNYVHLDLKPENIMFTTKKSNQLKL KNRMSEAEAVDYMRQVCDALRHMHEMNYVHLDLKPENIMFTTKKSNQLKL SNRMTEAEVTDYIRQICKALCHMHEMNYVHLDLKPENIMFTTKKSNQLKL KNRMSEDEAINYMROVCEALKHMHEKNYVHLDLKPENIMFTTRRSDOLKL KNRMSEAEAVDYIRQVCEALRHMHEMNYVHLDLKPENIMFTAKKSDRLKL RNRMSETDAVGYIRQVCEALCHMHEMNYVHLDLKPENIMFITKKSDQLKL KNRMSETDAIDYIRQVCEALCHMHEMNYVHLDLKPENIMFMTKKSDQLKL KNRMSETDAIDYIRQVCEALCHMHEMNYVHLDLKPENIMFMTKKSDQLKL KNKMNEDEAMNYMKOICVALKHMHENNFVHLDLKPENIMFTTRKSSOLKL KNRMSETDAIGYIRQVCEALCHMHEMNYVHLDLKPENIMFMTKKSDQLKL KNRMSETDAIDYIRQVCEALCHMHEMNYVHLDLKPENIMFMTKKSDQLKL KNRMSEMDAVGYIRQVCEALCHMHEMSYVHLDLKPENIMFITKKSDQLKL RNRMSEMDAVGYIRQICEALCHMHEMSYVHLDLKPENIMFITKKSDQLKL KNKMTEEEAKNYMKQICIGLRHMHENNFVHLDLKPENIMFTTNKSSOLKL KNRMTEDEAKNYMKQICNALKHMHENNFVHLDLKPENIMFTTKKSSQLKL KNKMTEEEAKNYMKQICVALRHMHENNFVHLDLKPENIMFTTKKSSQLKL KNRMSEMDAVGYIRQICEALCHMHEMSYVHLDLKPENIMFITKKSDOLKL KNRMSETDTIGYIRQVCEALRHMHEMNYVHLDLKPENIMFMTKKSDQLKL KSRMSETNAVGYIROVCEALRHMHEMNYVHLDLKPENIMFITKKSDOLKL KNRMTEDEARNYMKOICNALKHMHENNFVHLDLKPENIMFTTKKSSOLKL NNHMSEKEAIEYMRQVCEGLRHMHEMNYVHLDLKPENIMFTTKTSNQLKL KNKMSEDEAKDYMKQICVGLKHMHEQNYVHLDLKPENIMFTTRKSSSLKL

DFG motif

C.elegans C.remanei C.briggsae C.tropicalis C.sinica C.japonica H.bacteriophora S.vulgaris A.duodenale O.dentatum H.polygyrus A.ceylanicum A.caninum T.circumcincta T.canis H.contortus H.placei A.cantonensis S.feltiae S.glaseri S.scapterisci S.monticolum S.muris A.simplex S.carpocapsae A.suum A.lumbricoides D.viviparus P.redivivus T.callipaeda A.viteae 0.ochengi 0.volvulus P.trichosuri L.sigmodontis 0.flexuosa W.bancrofti B.malayi S.ratti S.venezuelensis S.stercoralis B.pahangi L.loa D.immitis S.papillosus D.medinensis Rhabditophanes(sp.)

151 200 IDFGLTAHLDPKOSVKVTTGTAEFAAPEVAEGKPVGYYTDMWSVGVLSYI IDFGLTAHLDPKOSVKVTTGTAEFAAPEVAEGKPVGYYTDMWSVGVLSYI IDFGLTAHLDPKQSVKVTTGTAEFAAPEVAEGKPVGYYTDMWSVGVLSYI IDFGLTAHLDSKOSVKVTTGTAEFAAPEVAEGKPVGYYTDMWSVGVLSYI IDFGLTAHLDPKQSVKVTTGTAEFAAPEVAEGKPVGYYTDMWSVGVLSYI IDFGLAAHLDPKOSVKVTTGTAEFAAPEVAEGKPVGYYTDMWSVGVLSYI IDFGLTSHLDPRNSVKVTTGTAEFAAPEVANGNPVGYFTDMWSVGVLAYI IDFGLASFLDPKESVKVTTGTAEFAAPEVANGDPVGYYTDMWSVGVLAYI IDFGLASYLDPKOSVKVTTGTAEFAAPEVANGDPVGYYTDMWSVGVLAYI IDFGLASYLDPKESVKVTTGTAEFAAPEVANGDAVGYYTDMWSVGVLAYI IDFGLASYLDPKDSVKVTTGTAEFAAPEVANGEPVGYFTDMWSVGVLAYI IDFGLASYLDPKOSVKVTTGTAEFAAPEVANGDPVGYYTDMWSVGVLAYI IDFGLASYLDPKQSVKVTTGTAEFAAPEVANGDPVGYYTDMWSVGVLAYI IDFGLASYLDPKESVKVTTGTAEFAAPEVANGEPVGYFTDMWSVGVLSYI IDFGLAAKLDPKETVKVTTGTAEFAAPEVAASKPVGFYTDMWSVGVLAYI IDFGLASYLDPKESVKVTTGTAEFAAPEVANGEPVGYYTDMWSVGVLAYI IDFGLASYLDPKESVKVTTGTAEFAAPEVANGEPVGYYTDMWSVGVLAYI IDFGLTSYLNPKESIKVTTGTAEFAAPEVAKGEPVGYYTDMWSVGVLAYI IDFGLTAKLDPROSVKVTTGTAEFAAPEIALGKPVGFYTDMWSVGVLSYI IDFGLTAKLDPROPVKVTTGTAEFAAPEVASGKPVGFYTDMWSVGVLSYI IDFGLTAKLDPRQSVKVTTGTAEFAAPEIALGKPVGFYTDMWSVGVLSYI IDFGLTAKLDPROSVKVTTGTAEFAAPEIALGKPVGFYTDMWSVGVLSYI IDFGLTAKLDPKETVKVTTGTAEFAAPEVALGKPVGFYTDMWSVGVLTYI IDFGLAAKLDPKOSVKVTTGTAEFAAPEVASNEPVGFYTDMWSVGVLAYI IDFGLTAKLDPROSVKVTTGTAEFAAPEIALGKPVGFYTDMWSVGVLSYI IDFGLAAKLDPKETVKVTTGTAEFAAPEVAASKPVGFYTDMWSVGVLAYI IDFGLAAKLDPKETVKVTTGTAEFAAPEVAASKPVGFYTDMWSVGVLAYI IDFGLTSYLNPKDSVKVTTGTAEFAAPEVVKGEPVGYYTDMWSVGVLTYV IDFGLAAKLNPHDAVKVTTGTAEFAAPEVALGNPVGYYTDMWSVGVLSYI IDFGLTAKLDPKDIVKVTTGTAEFAAPEVVNNKAVGFYTDMWSVGILAYI IDFGLAAKLDPKETVKVTTGTAEFAAPEVVASEPVGFYTDMWSVGVLTYI IDFGLAAKLDPKETVKVTTGTAEFAAPEVVANEPVGFYTDMWSVGVLAYI IDFGLAAKLDPKETVKVTTGTAEFAAPEVVANEPVGFYTDMWSVGVLAYI IDFGLTAKLDPKNPVKVTTGTAEFAAPEIASGNPVGYFTDMWSVGVLSYI IDFGLAAKLDPKQTVKVTTGTAEFAAPEVVASEPVGFYTDMWSVGVLTYI IDFGLAAKLDPKETVKVITGTAEFAAPEVVANEPVGFYTDMWSIGVLTYI IDFGLASKLDPKDTVKVTTGTAEFAAPEVVANEPVGYYTDMWSVGVLAYI IDFGLAAKLDPRDTVKVTTGTAEFAAPEVVANEPVGYYTDMWSVGVLAYI IDFGLTAKLDPKNPVKVTTGTAEFAAPEIASGNPVGYFTDMWSVGVLSYI IDFGLTAKLDPKNPVKVTTGTAEFAAPEIASGNPVGYFTDMWSVGVLSYI IDFGLTSKLDPKNPVKVTTGTAEFAAPEIASGNPVGYFTDMWSVGVLAYI IDFGLAAKLDPRDTVKVTTGTAEFAAPEVVANEPVGYYTDMWSVGVLAYI IDFGLAAKLDPKDTVKVTTGTAEFAAPEVVANEPVGFYTDMWSIGVLAYI IDFGLAAKLNPKDTVKVTTGTAEFAAPEVVTGEPVGFYTDMWSVGVLAYI IDFGLTAKLDPKNPVKVTTGTAEFAAPEIASGNPVGYFTDMWSVGVLSYI IDFGLTAKLDPRQIVKVTTGTAEFAAPEVASNQPIGFYTDMWSVGVLTYI IDFGLAAKLDPRNPAKVTTGTAEFAAPEIASGNPVGYFTDMWSVGVLSYI

	201 250
C.elegans	LLSGLSPFGGENDDETLRNVKSCDWNMDDSAFSGISEDGKDFIRKLLLAD
C.remanei	LLSGLSPFGGENDDDTLRNVK
C.briggsae	LLSGLSPFGGENDDDTLRNVK
C.tropicalis	LLSGLSPFGGENDDETLRNVKSCDWNMDDSAFSSISEDGKDFIRKLLLAD
C.sinica	LLSGLSPFGGENDDDTLRNVKSCDWNMDDSAFASISEDGKDFIRKLLLAD
C.japonica	LLSGLSPFGGENDDETLRNVKSCDWNMDDSAFSSISDDGKDFIRKLLLAD
H.bacteriophora	LLSGLSPFGGENDAETLKNVKNCDWNMDDPAFSNISEEGKDFIQKLLLSD
S.vulgaris	LLSGLSPFGGENDEETLKNVKKCDWNMDDPLFNQISENAKDFIRKLLILE
A.duodenale	LLSGLSPFGGENDEETLKNVKKCDWNMDDPLFNTVSDNAKDFIRKLLLLE
0.dentatum	LLSGLSPFGGENDEETLKNVKKCDWNMDDSAFSGVSENARDFIRKLLVLE
H.polygyrus	LVSGLSPFAGENDEETLKNVKKCDWNMDDPVFNQISDNGKDFIRKLLVAE
A.ceylanicum	LLSGLSPFGGESDEETLKNVKKCDWNMDDSLFNQVSDNAKDFIRKLLILE
A.caninum	LLSGLSPFGGENDEETLKNVKKCDWNMDDPLFNQVSDNARDFIRKLLILE
T.circumcincta	LLSGLSPFAGENDEETLKNVKKCDWNMDDPIFNQVSENAKDFIRKLLVAE
T.canis	LLSGLSPFGGETDEETLKNVKNCDWNMDDPCFSKVSDDAKDFIKKLLVLD
H.contortus	LLSGLSPFAGENDEETLKNVKKCDWNMDDPIFSQVSDNAKDFVRKLLVAE
H.placei	LLSGLSPFAGENDEETLKNVKKCDWNMDDPIFSQVSDNAKDFVRKLLVAE
A.cantonensis	LLSGLSPFGGENDDETLRNVKNCDWNMDDPMFSKVSDNAKDFIRKLLVAE
S.feltiae	LLSGLSPFGGENDEETLKNVKACDWNMDDPSFSSISDNAKDFIRKLLSAE
S.glaseri	LLSGLSPFGGENDEETLKNVKACDWNMDDPAFNSISDNAKDFIRKLLHAE
S.scapterisci	LLSGLSPFGGENDEETLKNVKNCDWNMDDPAFSSISDNAKDFIRKLLSAD
S.monticolum	LLSGLSPFGGENDEETLKNVKACDWNMDDPAFSSISDNAKDFIRKLLSGE
S.muris	LLSGLSPFGGESDEETLRNVKNCDWNMDDPCFSKISDDAKDFIKKLLLLD
A.simplex	LLSGLSPFGGETDEETLKNVKKCDWNMDDPCFSKVSDDAKDFIKKLLVLD
S.carpocapsae	LLSGLSPFGGENDEETLKNVKNCDWNMDDPSFSSISDNAKDFIRKLLSAE
A.suum	LLSGLSPFGGETDEETLRNVKNCDWSMDDPCFAKVSDEAKDFIKKLLVLD
A.lumbricoides	LLSGLSPFGGETDEETLRNVKNCDWSMDDPCFAKVSDEAKDFIKKLLVLD
D.viviparus	LLSGLSPFGGTNDEETLKNVKNCDWNMDNPIFNQISDSAKDFIQKLLISE
P.redivivus	LLSGLSPFGGENDEETLKNVKACDWNMDDSAFESISDNAKSFIKSLLNLD
T.callipaeda	LVSGLSPFGGETDEETLRNVKKCDWNMDDPCFATISQDGKDFIRKLLILE
A.viteae	LLSGLSPFGGETDEETIRNVKKCDWNMDDPSFANISQDGKDFIKKLLMLD
0.ochengi	LLSGLSPFGGETDEETLRNVKKCDWNMDDSSFANISQDGKDFITKLLMLD
0.volvulus	LLSGLSPFGGETDEETLRNVKKCDWNMDDSSFANISQDGKDFIKKLLMLD
P.trichosuri	LLSGLSPFGGETDEETLKNVRNCDWNMDDSSFDGISNEAKDFIKRLLINE
L.sigmodontis	LLSGLSPFGGETDEETIKNVKKCDWNMDDPIFANISLDGKDFVKKLLTLD
0.flexuosa	LLSGLSPFGGETDEETLRNVKKCDWNMDDPSFANISQDGKDFIKKLLMLD
W.bancrofti	LLSGLSPFGGETDDETLRNVKKCDWNMDDPSFASISQDAKDFIKKILMLD
B.malayi	LLSGLSPFGGETDDETLRNVKKCDWNMDDPSFASISQDAKDFIKKILMLD
S.ratti	LLSGLSPFGGETDEDTLKNVKNCDWNMDDSAFNGISDEGKDFIKRLLINE
S.venezuelensis	LLSGLSPFGGETDEETLKNVRNCDWNIDDSAFSGISDEAKDFIRRLLIAE
S.stercoralis	LLSGLSPFGGETDEETLKNVKNCDWNMDDSAFNGISDDGKDFIKRLLISE
B.pahangi	LLSGLSPFGGETDDETLRNVKKCDWNMDDPSFASISQDAKDFIKKILMLD
L.loa	LLSGLSPFGGETDEETLRNVKKCDWNMDDPSFANISQEGKDFIMKLLMLD
D.immitis	LLSGLSPFGGETDEETLRNVKKCDWNMDDPSFTNISQDGKDFIKKLLILD
S.papillosus	LLSGLSPFGGETDEETLKNVRNCDWNIDDSAFSGISDEAKDFIRRLLIAE
D.medinensis	LLSGLSPFGGITDDETLKNVRNCDWNMDDPCFDNISQNAKDFIQKLLILN
Rhabditophanes(sp.)	LLSGLSPFGGESDEETLKNVKNCDWSIDDAAFEGISENAKDFIKKLLVLE

	201
C.elegans	PNTRMTIHQALEHPWL
C.remanei	
C.briggsae	
C.tropicalis	PNTRMTIHQALEHPWL
C.sinica	PNTRMTIHQALEHPWL
C.japonica	PNSRMTVHQALEHPWL
H.bacteriophora	TSSRMTIHQALEHPWL
S.vulgaris	P
A.duodenale	PDKRMTIHEALAHPWL
O.dentatum	PDKRMTVHEALAHPWL
H.polygyrus	PGGRMTVHEALNHPWL
A.ceylanicum	PDKRMTVHEALAHPWL
A.caninum	PDKRMTIHEALAHPWL
T.circumcincta	PSKRMTIHEALNHPWL
T.canis	PASRMTVHEALEHPWL
H.contortus	PGGRMTIHEALNHPWL
H.placei	PGSRMTIHEALNHPWL
A.cantonensis	PEKRITIHEALAHPWL
S.feltiae	PTERMNIHDALDHPWL
S.glaseri	PSSRMNIHEALDHPWL
S.scapterisci	PTERMNIHEAMDHPWL
S.monticolum	PTERMNIHEALDHPWL
S.muris	PSSRMTVHQALEHPWL
A.simplex	PSSRMTIHEALEHPWL
S.carpocapsae	PTERINIHEALDHPWL
A.suum	PTSRMTVHEALEHPWL
A.lumbricoides	PTSRMTVHEALEHPWL
D.viviparus	PSKRMTVHETLSHPWL
P.redivivus	PKSRLTVHDALDHPWL
T.callipaeda	PKNRMSIHEALEHPWL
A.viteae	PKSRMTVHEALEHPWL
O.ochengi	PKSRMTVHEALEHPWL
0.volvulus	PKSRMTVHEALEHPWL
P.trichosuri	SDKRMTIHEALDHPW-
L.sigmodontis	PKSRMTVHEALEHPWI
0.flexuosa	PKSRMTVHEALEHPWL
W.bancrofti	PKSRMTVHEALEHPWL
B.malayi	PKSRMTVHEALEHPWL
S.ratti	PEKRMNIHEALDHPWL
S.venezuelensis	PEKRMNIYEALDHPW-
S.stercoralis	PEKRMNIHEAIDHPW-
B.pahangi	PKSRMTVHEALEHPWL
L.loa	PKSRMTVHEALEHPWL
D.immitis	PENRMTVHEALEHPWL
S.papillosus	PEKRMNIYEALDHPW-
D.medinensis	PGNRMNIHEALQHPWL
Rhabditophanes(sp.)	SGSRMGIHDALDHPW-

251
PNTRMTIHQALEHPWL
PNTRMTIHQALEHPWL
PNTRMTIHQALEHPWL
PNSRMTVHQALEHPWL
TSSRMTIHQALEHPWL
P
PDKRMTIHEALAHPWL
PDKRMTVHEALAHPWL
PGGRMTVHEALNHPWL
POKRMTVHEALAHPWL
POKRMTTHEALAHPWL
DEKEMTTHEALNUDWI
DACONTUNEALFUDUT
PASKMIVHEALEHFWL
PGGRMTIHEALNHPWL
PGSRMTIHEALNHPWL
PEKRITIHEALAHPWL
PTERMNIHDALDHPWL
PSSRMNIHEALDHPWL
PTERMNIHEAMDHPWL
PTERMNIHEALDHPWL
PSSRMTVHQALEHPWL
PSSRMTIHEALEHPWL
PTERINIHEALDHPWL
PTSRMTVHEALEHPWL
PTSRMTVHEALEHPWL
PSKRMTVHETLSHPWL
PKSRLTVHDALDHPWL
PKNRMSIHEALEHPWL
PKSRMTVHEALEHPWL
PKSRMTVHEALEHPWL
PKSRMTVHEALEHPWL
SDKRMTIHEALDHPW-
PKSRMTVHEALEHPWT
PKSRMTVHEALEHPWT.
PKSPMTVHEALEHPWT.
PKSPMTVHEALEHPWL
PEKRMNTHEAT DUDWT
DEKRMNIVEALDUBW
DEVDMNTUEATDUDM
PERRENTHEATDERW-
PRORPTVHEALEHPWL
PRSKMTVHEALEHPWL
PENRMTVHEALEHPWL
PEKRMNIYEALDHPW-

Figure S6. Sequence analysis suggests that twitchin kinase is likely to be an active protein kinase in most nematodes.

Sequence alignment of the catalytic domain of twitchin kinase orthologs from 47 nematode species indicating conservation of 6 residues or motifs known to be crucial for protein kinase activity (highlighted or boxed in color). The roles or names of these motifs are indicated in the top row.

Supplemental Fig. 7

< isoform C >

Figure S7. *unc-22* are promoters expressed in body wall muscle, pharyngeal muscle and/or vulva muscle.

As depicted on WormBase, *unc-22* has 9 isoforms that include the protein kinase domain. To investigate their expression patterns in adults, we generated transgenic worms expressing VENUS driven by each upstream sequence of *unc-22*. As shown, isoforms (A, B, F, G, H, and I) share the same initiator codon, and this promoter reporter is expressed in body wall and vulva muscles. In contrast, the isoform D promoter reporter is only expressed in pharyngeal muscles. For isoforms C and D, promoter reporters are expressed in body wall and pharyngeal muscles.