Supplementary information

Nuclear TRADD prevents DNA damage-mediated death by facilitating non-homologous end-joining repair

Gi-Bang Koo^{1, 2, #}, Jae-Hoon Ji^{3, #}, Hyeseong Cho^{1, 2, 3}, Michael J. Morgan⁴ and You-Sun Kim^{1, 2, *}

- ¹Department of Biochemistry, Ajou University School of Medicine, Suwon, Gyeonggi, 16499, Republic of Korea
- ² Department of Biomedical Sciences, graduate School, Ajou University, Suwon, Gyeonggi, 16499, Republic of Korea
- ³ Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Gyeonggi, 16499, Republic of Korea
- ⁴ Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA

[#]These authors contributed equally to this work.

* To whom correspondence should be addressed. Tel:82-31-219-4509; Fax: 82-31-219-4530;Email:<u>yousunkim@ajou.ac.kr</u>

Supplementary figure S1. TRADD regulates DNA repair following treatment of DNA damage agents. (A) Western blotting analysis shows γ H2AX and Actin in TRADD^{+/+} and TRADD^{-/-} MEF cells treated with MNNG (0.25 mM) or doxorubicin (2.5 μ M), respectively. (B) Impaired DDR (DNA damage response) in TRADD^{-/-} MEFs is a common phenotype. Deficiency of TRADD induces unrepaired DNA damage compared with wild type cells in response to various DNA damaging agents (Doxo 2.5 μ M, Etoposide 25 μ M, Cpt 2.5 μ g/mL, CDDP 25 μ M, Hu 2.5 mM) for 2hrs. (C) TRADD^{+/+} and TRADD^{-/-} MEF cells treated with Hu 2.5mM for indicated times. (D) Cell cycle analysis of TRADD knockdown into U2OS cells. The cells were transfected with siCTRL, siTRADD #1, and siTRADD #2 for 48 hrs. Cell cycle analysis was performed by PI staining. Western blotting shows TRADD knockdown efficiency in U2OS cells. (E) Cell cycle analysis by PI staining of TRADD^{+/+} and TRADD^{-/-} MEF cells.

Supplementary figure S2. Cytoplasmic TRADD is translocated into nucleus upon DNA damage.

(A) HeLa cells were transfected with GFP-TRADD and treated with H_2O_2 (0.5 mM) for indicated times (minutes). Live cell images were analyzed by JuLI stage (live cell imaging system). (B) Localization of TRADD constructs into HeLa cells. Cells were transfected with wild type-TRADD (TRADD), (nuclear export sequence) mutant-TRADD (NES mut), cytoplasmic-TRADD (Cyto), and Src-myristoylated-TRADD (Src). (C) HeLa cells were treated with H_2O_2 (0.5 mM, 2 hrs). Cells were fractionated into cytoplasmic and nuclear fractions using an NE-PER fractionation kit, and then analyzed by western blotting. (D) Western blotting shows that expression of TRADD constructs in TRADD^{-/-} MEFs.

Supplementary figure S3. TRADD is translocated at DSB site and downregulates 53BP1 foci formation, but not RPA32 foci formation upon DNA damage.

(A) Colocalization of Myc-TRADD and mCherry-FokI at single DNA double-strand break site. Constructs of Myc-TRADD and mCherry-FokI were cotransfected into U2OS 2-6-3 cell lines. After 48 hrs, cells were fixed and stained with anti-53BP1 and anti-Myc antibodies. DAPI was used for nuclear staining. Images were analyzed confocal microscope (Nikon A1). 2D, two-dimensional analysis for images; 3D, three-dimensional analysis for images. Scale bar, 10 μ m. (B,C) After 48 hrs transfection with TRADD targeting siRNAs into U2OS cell lines, cells treated with phleomycin (50 μ g/mL, 1 hr). After wash out with fresh medium, endogenous 53BP1 (B) and RPA32 (C) were stained with each antibody at DNA break sites, 3 hrs later. γ H2AX was used as a DNA damage marker at DNA break sites.

Supplementary figure S4. Deficiency of TRADD sensitizes DNA damage-induced cell death.

(A) Phase contrast images of TRADD^{+/+} (WT) and TRADD^{-/-} (KO) MEFs treated with H_2O_2 (24 hrs). (B) Phase contrast images (left panel) and MTT viability assay (right panel, Error bars: +/- S.E.M.) of TRADD^{+/+} and TRADD^{-/-} MEFs treated with CHX (2.5 µg/mL) plus TNF (30 ng/mL, 24 hrs). **P < 0.01 (Student's t-test). (C) HeLa cells were transfected with siRNA TRADD or siRNA control (NC), respectively. After 48 hrs, the cells were treated with H_2O_2 for 24 hrs. Cell viability was analyzed by LDH assay. *P < 0.05 (Student's t-test). (D) MTT assay of TRADD^{+/+} (WT), TRADD^{-/-} (KO), TRADD^{-/-} (KO (WT)), TRADD^{-/-} (KO (NES mutant TRADD : NES)), TRADD^{-/-} (KO (Cytoplasmic mutant TRADD : Cyto)) and TRADD^{-/-} (KO (Src-TRADD:SRC)) MEFs treated with H_2O_2 for 24 hrs. ***P < 0.001 (Student's t-test).

Supplementary figure S5. Proposed model.

(**A**,**B**) DNA damage promotes translocation of TRADD from cytoplasm to the nucleus. Nuclear TRADD facilitates DNA repair through promoting of non-homologous end-joining (NHEJ) repair. (**C**) If broken DNA is impaired by deficiency of TRADD, cells are more sensitive to DNA damage-induced cell death.

