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SUMMARY

Pluripotent stem cells have been proposed as an unlimited source of pancreatic f cells for studying and treating diabetes. However, the
long, multi-step differentiation protocols used to generate functional B cells inevitably exhibit considerable variability, particularly when
applied to pluripotent cells from diverse genetic backgrounds. We have developed culture conditions that support long-term self-renewal
of human multipotent pancreatic progenitors, which are developmentally more proximal to the specialized cells of the adult pancreas.
These cultured pancreatic progenitor (cPP) cells express key pancreatic transcription factors, including PDX1 and SOX9, and exhibit tran-
scriptomes closely related to their in vivo counterparts. Upon exposure to differentiation cues, cPP cells give rise to pancreatic endocrine,
acinar, and ductal lineages, indicating multilineage potency. Furthermore, cPP cells generate insulin+ B-like cells in vitro and in vivo, sug-
gesting that they offer a convenient alternative to pluripotent cells as a source of adult cell types for modeling pancreatic development

and diabetes.

INTRODUCTION

The adult pancreas comprises three major lineages: endo-
crine, acinar, and ductal (Pan and Wright, 2011). The endo-
crine compartment resides in the islets of Langerhans and
consists of cells that secrete hormones required for the
maintenance of euglycemia, including « cells that secrete
glucagon and B cells that secrete insulin and whose failure
leads to diabetes. Acinar cells produce digestive enzymes
and, together with duct cells, form the exocrine pancreas.
Development of the human pancreas begins with the
emergence of the dorsal and ventral pancreatic buds from
the posterior foregut at Carnegie stage (CS) 12 (Jennings
etal., 2015; Shih etal., 2013). These rudimentary structures
consist of multipotent pancreatic progenitors that prolifer-
ate extensively and undergo branching morphogenesis
before fusing to form the pancreatic anlage. Each of the
three major pancreatic lineages is derived from these pro-
genitor cells following a series of cell-fate decisions and
morphological changes.

In the developing foregut, transcription factor expres-
sion patterns demarcate regions that give rise to specific
organs, such as the pancreas and liver. In the mouse, the
transcription factor PDX1 is expressed in the emerging
pancreatic buds and the neighboring antral stomach and
rostral intestine (McCracken et al., 2014), and is absolutely
required for pancreatic development (Jonsson et al., 1994;
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Offield et al., 1996). Expression of SOX9, which marks pro-
liferative cells in a variety of tissues, distinguishes PDX1+
cells that will form the pancreas from those that give
rise to other tissues (Shih et al.,, 2015). Expression of
NKX6-1 follows that of PDX1 and SOX9 and, in humans,
is required prior to transient activation of NGN3 for the
generation of mature, functional B cells (Nostro et al.,
2015; Russ et al., 2015). Finally, RFEX6, FOXA2, and mem-
bers of the GATA and HNF transcription factor families
are expressed dynamically following specification of the
definitive endoderm and throughout development of the
pancreas (Conrad et al., 2014). Immunohistochemistry of
human embryos at sequential stages during early pancre-
atic development suggests that the tissue specificity of
these transcription factors is similar between mice and hu-
mans, although there appear to be differences in when they
are expressed (Jennings et al., 2013, 2015).

A series of genetic studies in mice led to the identification
of numerous signaling pathways that regulate pancreatic
development (Shih et al., 2013), thereby inspiring the
development of protocols for the generation of pancreatic
progenitors (Kroon et al., 2008) and subsequently [-like
cells from human pluripotent stem cells (Pagliuca et al.,
2014; Rezania et al., 2014; Russ et al., 2015). The ultimate
goal of these studies is to generate functional B cells cap-
able of maintaining euglycemia and alleviating diabetes.
However, these protocols are technically challenging and
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expensive to conduct, often resulting in low differentiation
efficiencies, partly due to the variability inherent in long,
multi-step differentiation protocols that seek to recapitu-
late the entire developmental history of a B cell. These
issues are exacerbated when such protocols are applied to
genetically diverse human embryonic stem cells (hESCs)
and induced pluripotent stem cells (hiPSCs). A potential so-
lution is to initiate differentiation from an alternative cell
type that is developmentally more proximal to the B cell.
The obvious candidate is the PDX1+SOX9+ progenitor
cell population of the emerging pancreatic bud that is
capable of extensive proliferation and gives rise to all of
the mature functional cells of the pancreas.

We describe a cell culture platform that enables hESC-
and hiPSC-derived pancreatic progenitors to be captured
and expanded in vitro. These cultured pancreatic progeni-
tor (cPP) cells express key pancreatic transcription factors,
including PDX1 and SOX9, and are stable for >25 passages.
Crucially, cPP cells are closely related to their in vivo
counterparts at the transcriptome level and can be differen-
tiated into cells of the endocrine, acinar, and ductal line-
ages. Therefore, cPP cultures represent a convenient alter-
native system for studying pancreatic development that
circumvents the need to repeatedly generate progenitors
from pluripotent cells by directed differentiation. Finally,
replacing heterochronic differentiation cultures with
comparatively stable and homogeneous cPP cultures will
facilitate the development of more robust protocols for
the generation of pancreatic cell types from genetically
diverse patient-specific hiPSC lines.

RESULTS

Maintenance and Expansion of cPP Cells Derived from
hESCs and hiPSCs

Directed differentiation guided by growth factors and small
molecules facilitates the generation of diverse cell types
from pluripotent stem cells. We chose to produce pancreatic
progenitors from hESCs and hiPSCs (Figure S1) using re-
agents based on the early stages of a protocol designed to

generate mature B cells (Figure S2A; Rezania et al., 2014).
This differentiation strategy induced the sequential expres-
sion of PDX1 followed by NKX6-1 and yielded a median of
80% PDX1+NKX6-1+ cells after 15 days (PPd15 cells; Fig-
ures 1B and S2C). However, as is often observed during
directed differentiation from pluripotent cells, the kinetics
of PDX1 and NKX6-1 expression varied between cell lines
(Figure S2B) (Cahan and Daley, 2013). Therefore, we sought
to capture, synchronize, and expand PPd15 cells in culture.

The 3T3-J2 mouse embryonic fibroblast cell line has been
used to culture progenitor cells derived from a variety of
human tissues, including endoderm-derived intestinal
stem cells (Rheinwald and Green, 1975a, 1975b; Wang
et al., 2015). We therefore determined whether pancreatic
progenitor cells could be similarly expanded, if provided
with appropriate stimuli. We tested a series of signaling ag-
onists and inhibitors previously shown to regulate pancre-
atic development, including EGFL7, BMP4, nicotinamide,
LIF, WNT3A, R-Spondin-1, Forskolin (cAMP agonist),
GSK3p inhibition (CHIR99021), and inhibitors of BMP
(LDN-193189) and SHH (KAAD-cyclopamine) signaling.
Ultimately, a combination of EGF, retinoic acid, and inhib-
itors of transforming growth factor B (TGF-B, SB431542)
and Notch signaling (DAPT) was found to support long-
term self-renewal of pancreatic progenitors (Figure 1A).
To establish stable cPP cell lines, PPd15 cells were replated
on a layer of 3T3-J2 feeder cells in the presence of these fac-
tors. Thereafter, cPP cells were routinely passaged once
weekly as aggregates at an average split ratio of 1:6,
although they were also capable of forming colonies at
clonal density (Figure 1C). This suggests a doubling time
of ~65 hr in culture, similar to the 61 hr we routinely
observe for hESCs when cultured on a layer of mouse em-
bryonic fibroblasts.

We were able to generate self-renewing cPP cell lines from
four different genetic backgrounds using two hESC (H9 and
HES3) and three hiPSC cell lines (AK5-11, AK6-8, and AK6-
13 derived in house); these diverse cPP cells expressed com-
parable levels of genes encoding key pancreatic trans-
cription factors, including PDX1 and SOX9 (Figure S2D).
Two cPP cell lines selected for further analysis (H9#1 and

Figure 1. Derivation of cPP Cell Lines from hESC and hiPSC

(A) Pancreatic progenitors generated after 15 days of differentiation using the STEMdiff directed differentiation kit (PPd15 cells) were
plated and expanded on a layer of 3T3-J2 feeder cells in medium supplemented with the indicated growth factors and signaling inhibitors.
(B) Intracellular flow cytometric analysis for PDX1 and NKX6-1 at days 8, 10, and 15 of differentiation using H9 hESCs.

(C) Phase-contrast images of cPP cells passaged as aggregates (left) and as single cells (right). Scale bar, 100 pum.

(D) Gene expression measured by qRT-PCR using samples harvested from PPd15 cells and cPP cells at early (6-8), middle (11-13), and late
(14-18) passages. Cells were derived from both AK6-13 hiPSC and H9 hESC. Gene expression in definitive endoderm (H9 hESCs after 4 days
STEMdiff differentiation) is shown for comparison. Values are plotted on a log, scale and error bars represent the SE of three technical

replicates. ND, not detected.

(E) Immunofluorescence staining of cPP cells for key pancreatic transcription factors. Scale bar, 100 um.
(F) Intracellular flow cytometric analysis of cPP cells for PDX1. Gray dots represent control cells stained with isotype control antibodies.
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Figure 2. Chromosome Counting and M-FISH Analysis Reveals cPP Cells Are Genetically Stable

(A) Chromosome counting of cPP cells from diverse genetic backgrounds at different passage numbers. Values shown are the percentage of
spreads with a given number of chromosomes, with the modal chromosome count for each cPP line highlighted. A modal (shared by >80%
of cells) chromosome number of 46 is indicative of a normal karyotype and of karyotypic stability. Five out of six cPP cell lines analyzed
exhibited a modal chromosome count of 46 after >6 passages, without evidence of fragments or dicentric chromosomes, and are considered
karyotypically stable. In H9 pedigree #1, cells gradually acquired an additional isochromosome upon passaging. Traditional G-band
karyotyping (data not shown) subsequently found this to be i(12) (p10)[20], an isochromosome commonly observed in hESC cultures.
(B) Multicolor fluorescence in situ hybridization (M-FISH) enables the detection of chromosomal structural abnormalities at significantly
higher resolution than chromosome counting alone. M-FISH of passage 20 AK6-13 cPP cells failed to detect aneuploidy, translocations or
deletions in 19/20 spreads analyzed. A representative image of a single chromosome spread is shown.

AK6-13) have been maintained in culture for >20 passages
to date enabling >10'®-fold expansion over 20 weeks.
Crucially, cPP cells can be frozen and thawed with no
apparent loss of proliferation or viability, suggesting cPP
cells could replace pluripotent cells as a starting point for
further differentiation to mature pancreatic cell types
such as insulin-secreting p cells.

To determine whether cPP cultures consist of a stable and
homogeneous population of cells, we measured the expres-
sion of key pancreatic transcription factors at the mRNA
and protein levels. Gene expression of numerous markers
of pancreatic bud cells, including PDX1 and SOX9, re-
mained constant over extended periods in culture, indi-
cating that our culture conditions maintain a stable popu-
lation of pancreatic progenitors (Figure 1D). To determine
whether cPP cultures represent a homogeneous popula-
tion, we carried out immunostaining for a selection of
pancreatic markers and found these to be expressed near
ubiquitously at the protein level (Figure 1E). Furthermore,
flow cytometric analysis showed that approximately 85%
of cPP cells were PDX1+ (Figure 1F).

However, NKX6-1 expression was rapidly downregulated
in culture, and NKX6-1 protein was not detected by immu-
nostaining. Furthermore, we were able to establish cPP cell
lines from day 7, 10, and 15 differentiation cultures (data
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not shown), the earliest time point being prior to expression
of NKX6-1 and suggesting that cPP culture conditions stabi-
lize pancreatic progenitors in a developmental state that
precedes NKX6-1 activation. Very few cells were NGN3+,
which marks early endocrine progenitors, indicating that
differentiation was blocked at the progenitor stage under
our culture conditions. Finally, chromosome counting
showed that five out of six cPP cells carried 46 chromosomes
without signs of structural changes, such as presence of frag-
ments or dicentric chromosomes (Figure 2A). Multiplex
fluorescence in situ hydridization (M-FISH) analysis on the
AK6-13 line at passage 20 confirmed the absence of karyo-
typic abnormalities (Figure 2B). Collectively, these data
demonstrate that our cPP culture conditions capture pancre-
atic progenitors as a near homogeneous population that is
maintained stably over extended periods of time and is
capable of extensive expansion.

Transcriptome Analysis Demonstrates cPP Cells Are
Closely Related to Their In Vivo Counterparts

We next determined the transcriptome-wide gene counts
by RNA-seq for cPP lines from three different genetic back-
grounds and the PPd15 differentiation cultures from which
they were established. Samples for RNA-seq were also taken
from cPP cells at early, mid, and late passages. Gene



expression levels correlated strongly between different cPP
samples, indicating that neither genetic background nor
time in culture significantly affect the cPP transcriptome
(Figure S3A). However, to completely eliminate donor-spe-
cific effects on gene expression, the following analysis used
mean gene counts for cPP (early passage) and PPd15 cells
derived from H9 and HES3 hESCs and AK6-13 hiPSCs.

To determine how similar cPP cells are to their in vitro
and in vivo counterparts, we compared the cPP transcrip-
tome with the published transcriptomes of pancreatic pro-
genitors differentiated in vitro (Cebola PP) and from CS16-
18 human embryos (CS16-18 PP), as previously described
(Cebola et al., 2015), and a diverse collection of adult and
embryonic tissues (Bernstein et al., 2010; Petryszak et al.,
2013). Relative to non-pancreatic tissues, cPP cells ex-
hibited similar patterns of gene expression to both PPd15
and Cebola PP cells (Figure 3A). Furthermore, cPP, PPd15,
and Cebola PP cells closely resembled in vivo pancreatic
progenitors at CS16-18, and all four cell populations ex-
pressed similar levels of genes associated with endodermal
and pancreatic development (Figure 3B). However, as ex-
pected, cPP cells do not express the late-stage pancreatic
progenitor markers NKX6-1, PTF1A, and CPAl. When
taken together, these data demonstrate that the culture
conditions described here maintain cPP cells in a develop-
mental state closely related to both the embryonic human
pancreas and pancreatic progenitors generated by directed
differentiation.

To further characterize the transcriptional identity of cPP
cells, we sought to identify genes that distinguish them
from other lineages. Specifically expressed genes were
defined as those that are variably expressed across the
aforementioned panel of 25 tissues (coefficient of vari-
ance >1) and whose expression is upregulated in cPP cells
(Z score >1), as previously described (Cebola et al., 2015).
In total 1,366 genes were identified, including numerous
well-characterized markers of pancreatic progenitor cells,
such as PDX1, SOX9, MNX1, and RFX6 (Figure 3C). To
confirm the validity of this method, we demonstrated
that these genes are not expressed by other endodermal de-
rivatives, including liver, colon, and lung (Figure S3B).
Encouragingly, around 80% of genes specifically expressed
by cPP cells were shared with CS16-18 pancreatic progeni-
tors and/or PPd15 cells. Furthermore, gene Z scores were
highly correlated between these three pancreatic cell types
but not with liver (Figure S3C), further demonstrating the
transcriptional similarities between cPP cells and other
pancreatic progenitors.

To determine the functional roles of cPP-specific genes,
we analyzed associated Gene Ontology (GO) terms. The
most enriched terms were those associated with endocrine
pancreas development (Figure 3D, above). In order to deter-
mine how our culture conditions affect the behavior of cPP

cells, we analyzed GO terms associated with genes ex-
pressed by cPP cells but not PPd15 or CS16-18 pancreatic
progenitor cells (Figure 3D, below). Interestingly, the
most enriched terms were those associated with aspects
of cell division and telomere maintenance. Indeed, genes
associated with these enriched terms, such as those encod-
ing telomerase reverse transcriptase (TERT) and prolifer-
ating cell nuclear antigen (PCNA), were consistently upre-
gulated in cPP cells from different genetic backgrounds,
compared with the PPd15 populations from which they
were derived (Figures 3E and 3F). We conclude that our
feeder-based culture system maintains pancreatic progeni-
tors as a stable population while upregulating genes
required for long-term self-renewal.

A Feeder Layer of 3T3-J2 Cells Prevents cPP
Differentiation while Exogenous Signals Promote
Proliferation

We next investigated the roles played by the individual
components of our culture system, specifically the layer
of irradiated 3T3-J2 feeder cells, stimulation with EGF,
FGF10, and retinoic acid (RA), and inhibition of the TGFp
and Notch signaling pathways. To assess the importance
of the feeder layer, cPP cells were subcultured onto a layer
of 3T3-J2 cells plated at decreasing densities and main-
tained in complete cPP culture media for 7 days. At reduced
feeder densities, cPP cells continued to proliferate rapidly
but quickly altered their morphology and could not be seri-
ally passaged (Figure 4A). The levels of PDX1 and SOX9 re-
mained stable, indicating cPP cells are committed to the
pancreatic lineage, while markers of duct (KRTI19 and
CA2) and acinar (CPA1 and AMY2B) differentiation were
upregulated (Figure 4B). However, we did not observe upre-
gulation of endocrine markers (NGN3 and NKX2-2), sug-
gesting that 3T3-J2 feeder cells are required to block further
differentiation toward the ductal and acinar linages.

To establish the roles played by the growth factors and
small molecules in our culture media, we removed each
individually and assessed the effect on differentiation and
proliferation. Exclusion of EGF or RA prevented cPP expan-
sion, while removal of the TGF-B inhibitor SB431542
caused colonies to detach from the feeder layer (Figure 4C).
Removal of either FGF10 or the y-secretase inhibitor DAPT
did not significantly affect colony size or morphology in
the short term but, when removed from the culture media
over multiple passages, led to a noticeable loss of viability.
Interestingly, none of the growth factors or signaling inhib-
itors was individually required for maintenance of PDX1 or
SOX9 expression (Figure 4D). Indeed, removal of RA actu-
ally increased PDX1 expression. These results suggest that
the growth factors and inhibitors present in our culture me-
dia are primarily required to drive proliferation of cPP cells
rather than maintain their developmental state.
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To quantify the effect of exogenous signaling molecules
on the maintenance and expansion of cPP cells, we used
a microbioreactor array (MBA) screening platform to mea-
sure differentiation and proliferation (Titmarsh et al.,
2012). Single cPP cells were seeded in Matrigel-coated cul-
ture chambers in the absence of feeders and exposed for
3 days to complete cPP culture media in which the levels
of EGF, RA, and DAPT were varied (Figure S4). We then
used an image-segmentation algorithm to identify individ-
ual nuclei and quantify immunofluorescence staining for
PDX1 and SOX9, thereby enabling us to determine the per-
centage of double-positive cells following exposure to
different growth factor regimes. Reducing the levels of
any of the three factors led to a reduction in both the total
number of cells and the number of PDX1+SOX9+ cells (Fig-
ure 4E). However, neither the mean levels of PDX1/SOX9
nor the percentage of PDX1+SOX9+ cells were dependent
on the levels of these factors, suggesting they act primarily
as mitogens. Interestingly, we noticed an increase in the
number and percentage of PDX1+SOX9+ cells, but no
change in the overall proliferation rate, when cells were
exposed to higher concentrations of autocrine signals,
particularly when provided with maximal levels of EGE,
RA, and DAPT (Figure S4D). Exposure to endogenous solu-
ble signaling molecules is therefore required to maintain
PDX1 and SOX9 independently of proliferation.

When taken together, these observations demonstrate
that self-renewal of cPP cells is dependent on activation
of the EGF, FGF10, and RA pathways and inhibition of
Notch signaling. Indeed, cPP cells and their in vitro
(PPd135) and in vivo (CS16-18 pancreatic progenitor) equiv-
alents expressed high levels of multiple receptors of EGF,
FGF, RA, and Notch signaling, as well as the TGF receptors
ALK4 and ALKS (encoded by ACVRIB and TGFBR1, respec-

tively) that are inhibited by SB431542 (Figure 4F). Consis-
tent with our observations, production of FGF10 and RA
by the surrounding mesenchyme is essential for expansion
of the murine pancreatic bud (Bhushan et al., 2001; Martin
et al.,, 2005; Ye et al.,, 2005), while EGFR is expressed
throughout the pancreas and regulates islet development
(Miettinen et al., 2000). Intracellular Notch signaling pro-
motes expansion of pancreatic progenitors and prevents
their further differentiation into endocrine cells (Hald
etal., 2003; Murtaugh et al., 2003). Therefore, our observa-
tion that the y-secretase inhibitor DAPT promotes prolifer-
ation of cPP cells is somewhat surprising. However, FGF10
has been shown to promote Notch activity in the devel-
oping pancreatic epithelium (Hart et al., 2003), and cPP
cells express intermediate levels of the Notch effector
HES] relative to the 23 tissues described in Figure 3A
(data not shown). Therefore, the relatively low concentra-
tion of DAPT added to cPP cultures most likely serves to
temper Notch activity, and exceptionally high levels of
Notch activity might actually suppress proliferation.

Differentiation of cPP Cells into Pancreatic Cell Types
In Vitro and In Vivo

The canonical property of pancreatic progenitors is
their ability to differentiate into each of the three lineages
that constitute the pancreas as well as their functional
derivatives. Initially, we sought to determine whether cPP
cells are capable of commitment to the endocrine, duct,
and acinar lineages in vitro. Since robust protocols for
the directed differentiation of pancreatic duct and acinar
cells have yet to be developed, cPP cells were replated
in the absence of feeders and exposed to a minimal
signaling regime that promotes multilineage differentia-
tion (Figure 5A). Over the course of 12 days, we observed

Figure 3. Transcriptome Analysis of cPP Cells by RNA-Seq

(A) Hierarchical clustering of Euclidean distances between transcriptomes of diverse adult and embryonic tissues shows that in vitro and
in vivo pancreatic progenitors exhibit similar patterns of gene expression. Log,-transformed gene count values were used to calculate
Euclidian distances. For detailed information on the sources of data used here, see Table S1.

(B) Heatmaps showing log,-transformed gene expression levels of key endodermal and pancreatic markers by in vitro and in vivo
pancreatic progenitors. Levels in brain are shown for comparison.

(C) Genes specifically expressed by cPP, PPd15, and CS16-18 pancreatic progenitors. The coefficient of variance (CV) for each protein-
coding gene across the 25 tissues shown in (A) was plotted against the corresponding Z score (see Supplemental Experimental Procedures).
Specifically expressed genes are located in the upper right-hand quadrant (CV >1 and Zscore >1) and include genes with well-characterized
roles in early pancreatic development (labeled). The color scale denotes the number of genes. The Venn diagram shows overlap between
genes specifically expressed by cPP, PPd15, and CS16-18 pancreatic progenitors.

(D) Biological process Gene Ontology (GO) terms associated with all genes specifically expressed by cPP cells (above) or genes specifically
expressed by cPP cells but not PPd15 or CS16-18 pancreatic progenitors (below). Only GO terms associated with >5 genes and/or an
adjusted p value <0.01 are shown.

(E) Heatmap of expression levels of genes associated with the enriched GO terms mitotic recombination, DNA strand elongation, telomere
maintenance, and DNA packaging. Levels are shown for individual cPP and PPd15 populations derived from three different genetic
backgrounds (H9, AK6-13, and HES3) relative to the maximum detected value across the 25 different tissues shown in (A).

(F) Expression of selected telomerase pathway genes as measured by gRT-PCR in cPP and PPd15 cells. Error bars represent the SE of three
technical replicates.
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upregulation of endocrine (NKX6-1, INS, and GCG), acinar
(CPA1, AMY2B, and TRYP3), and duct (SOX9, KRT19, and
CA2) markers, demonstrating that cPP cells retain multili-
neage potency in vitro (Figure 5B).

Of particular interest is the ability to generate B-like cells
capable of secreting insulin in response to elevated glucose
levels. Several groups recently published protocols that
describe the differentiation of particular hESC and hiPSC
cell lines into B-like cells. Activation of NKX6-1 prior to
expression of NGN3 is thought to be essential for the forma-
tion of mature, functional B cells (Nostro et al., 2015; Russ
etal., 2015). Therefore, we selected the four most promising
protocols and assessed their ability to induce NKX6-1
expression while maintaining low levels of NGN3 (Pagliuca
et al., 2014; Rezania et al., 2014; Russ et al., 2015; Zhang
et al., 2009). Specifically, cPP cells were cultured as mono-
layers or aggregates, then exposed to the section of each dif-
ferentiation protocol shown to induce NKX6-1 expression
(Figure S5A). The protocol described by Russ et al. (2015)
produced the highest levels of NKX6-1 expression and min-
imal activation of NGN3, with monolayer and suspension
cultures yielding a very similar response (Figure S5B). Since
the original protocol demonstrated the generation of insu-
lin-secreting B-like cells when cells were differentiated as
aggregates, we chose to use the 3D suspension platform
for subsequent experiments.

Using the Russ et al. (2015) protocol, we found that
around 40% of cPP cells reactivate NKX6-1. However,
doubling the length of each of the first two treatments
enabled the generation of nearly 70% double-positive cells,
similar to the number originally reported (Figures SE, S5C,
and S5D). Interestingly, these PDX1+NKX6-1+ cells gener-
ated convoluted structures reminiscent of the branching
morphogenesis of the embryonic pancreas (Figures 5D
and SF). Further differentiation induced expression of the
endocrine markers NKX2-2 and NGN3, the latter in a

smaller subset of cells, reflecting its transient expression
during endocrine commitment (Schwitzgebel et al., 2000;
Figure 5G). Finally, after 16 days, 20% of cells contained
C-peptide, a proxy for insulin production, similar to the
25% reported by Russ et al. (2015). Crucially, C-peptide+
cells did not co-express the « cell hormone glucagon, sug-
gesting that these cells are unlike the polyhormonal cells
produced by earlier generations of protocols, which are un-
able to secrete insulin in response to elevated glucose
levels. However, NGN3 levels remained high at the end of
the protocol and INS mRNA levels were significantly lower
than in isolated human islets, suggesting that further opti-
mization of the protocol is required (Figure 5K).

The most stringent test of developmental potency is
whether a progenitor can differentiate into a particular line-
age in vivo. To assess the potency of cPP cells, we injected
these cells under the renal capsules of immunodeficient
mice and immunostained for markers of the three major
pancreatic lineages after >23 weeks. We were able to identify
large areas of cells expressing the B-cell marker C-peptide as
well as the duct marker keratin 19 (KRT19), but we were un-
able to find trypsin+ acinar cells or glucagon+ endocrine
cells (Figure 5L). However, trypsin+ cells were also observed
rarely by Rezania et al. (2014) following transplantation
of pancreatic progenitors, possibly because acinar cells
cannot survive in the absence of ducts to carry away the
digestive enzymes they secrete. The absence of cells express-
ing glucagon was surprising, but likely reflects generation of
C-peptide+ cells by default in the absence of inductive
signals required to form glucagon+ o cells.

The C-peptide+ cells did not form classical islet-like struc-
tures, but instead formed a series of interconnected cystic
structures, as others have observed previously (Rostovskaya
etal., 2015). Furthermore, we did not observe expansion of
the progenitor population once transplanted, suggesting
cPP cells differentiate rapidly into less proliferative cells

Figure 4. A Layer of 3T3-Feeder Cells and Exogenous Signaling Molecules Are Required for the Maintenance and Expansion of cPP
Cells

(A) Phase-contrast images of H9 and AK6-13 cPP cells after 7 days culture in complete medium on 3T3-feeder cells plated at densities of
5 x 10% 2.5 x 10%, and 1.25 x 10* cells/cm?. Scale bar, 100 pm.

(B) Gene expression measured by gRT-PCR for samples harvested from cultures in (A) for endocrine (NGN3 and NKX2-2), ductal (KRT19 and
CA2), and acinar (CPA1 and AMY2B) marker genes. Error bars represent the SE of three technical replicates.

(C) Phase-contrast images of cPP cells cultured for 6 days in complete medium with individual components omitted. Scale bar, 100 pum.
(D) PDX1 and SOX9 expression measured by gRT-PCR for samples harvested in (C). Error bars represent the SE of three technical replicates.
(E) Microbioreactor array (MBA) screening of factors required to propagate PDX1+S0X9+ cPP cells. Effects of reducing or removing selected
factors (EGF, RA, DAPT) from complete medium containing all factors at the following levels: EGF (50 ng/mL), RA (3 uM), DAPT (1 uM),
SB431542 (10 uM), and FGF10 (50 ng/mL). Top panels: effects on total nuclei per chamber, and PDX1 and SOX9 mean nuclear intensity.
Lower panels: effects on the total number of PDX1+S0X9+ cells per chamber and percentage of PDX1+S0X9+ cells. Data represent the mean
of ten chambers within a column treated with the given condition + the SE.

(F) Heatmap showing RNA-seq expression levels of components of signaling pathways that requlate cPP proliferation: EGF (EGFR), FGF10
(FGFR1-4, 6 and FGFRL2), RA (RARA, RARB, RARG, RXRA, RXRB, and RXRG), SB431542 (ACVR1B [ALK4], TGFBR1 [ALK5], and ACVR1C [ALKT7]),
and DAPT (NOTCH1-4 and its ligands DLL1,3,4 and JAGI,2). Levels are shown relative to those observed across all 25 tissues shown in
Figure 3A.
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in vivo. Accordingly, none of the 12 mice we assessed ex-
hibited teratoma formation, despite transplanting >3
million cells into each mouse. These observations demon-
strate that cPP cells retain the ability to differentiate into
endocrine and duct cells in vivo, although it remains to
be seen whether they are capable of forming acinar cells.
Furthermore, the absence of teratoma formation suggests
cPP cells may represent a safer alternative for transplanta-
tions than cells differentiated directly from pluripotent
stem cells.

DISCUSSION

Pluripotent stem cells have been proposed as an unlimited
source of B cells for modeling and treating diabetes. How-
ever, the routine generation of functional B cells from
diverse patient-derived hiPSC remains a challenge, partly
because of the variability inherent in long, multi-step-
directed differentiation protocols. Here, we describe a plat-
form for long-term culture of self-renewing pancreatic pro-
genitor cells derived from human pluripotent stem cells.
These cPP cells are capable of rapid and prolonged expan-
sion, thereby offering a convenient alternative source of B
cells. Furthermore, cPP cells can be stored and transported
as frozen stocks, and to date we have cultured cPP cells for
up to 25 passages with no loss of proliferation. We observed
that cPP cells express markers of pancreatic endocrine,
duct, and acinar cells when differentiated in vitro, thereby
demonstrating their multipotency, and we were able to
generate up to ~20% C-peptide+ cells using a modified
version of the B cell differentiation protocol described by
Russ et al. (2015). The definitive test of developmental po-
tency is whether a cell can differentiate into a particular
lineage in vivo, and cPP cells indeed generate significant

numbers of keratin-19+ duct cells and C-peptide+ B-like
cells when transplanted under the renal capsule of an
immunodeficient mouse, although it is unclear whether
they retain the ability to form acinar cells in vivo.

Cells differentiating in vitro typically do so in an unsyn-
chronized manner, causing cultures to become progres-
sively more heterochronic with time and reducing the
efficiency with which cells can be directed toward partic-
ular lineages. Therefore, the ability to capture and synchro-
nize differentiating progenitors is essential for developing
robust protocols for generating functional B cells from
diverse genetic backgrounds. Extensive molecular charac-
terization revealed that cPP cultures generated from both
hESC and hiPSC represent stable populations of cells that
express early pancreatic transcription factors consistently
over time. The cPP transcriptome is closely related to that
of the progenitor cells of the CS16-18 pancreas. However,
comparison with human embryos at different stages of
development suggests that cPP cells most closely resemble
cells of the pancreatic bud between CS12 and CS13, based
on robust expression of PDX1, SOX9, FOXA2, and GATA4/
6 and the absence of NKX6-1 and SOX17 (Jennings et al.,
2013, 2015).

In recent years, several groups reported methods for
culturing human endodermal derivatives. Two separate re-
ports demonstrated that hESC-derived definitive endo-
derm can be serially passaged and expanded if cultured
on a feeder layer in the presence of appropriate mitogenic
signals (Cheng et al., 2012; Sneddon et al., 2012). Subse-
quently, another group showed that foregut progenitor
cells can be cultured in feeder-free conditions (Hannan
et al.,, 2013). However, slow growth and variable gene
expression between different lines have limited their
utility. More recently, it was shown that pancreatic progen-
itors derived from reprogrammed endodermal cells could

Figure 5. Testing cPP Potency In Vitro and In Vivo

(A) Feeder-depleted passage 15 H9 cPP cells were replated on Matrigel and exposed to the indicated factors that promote multilineage

differentiation toward the endocrine, duct, and acinar lineages.

(B) Endocrine, exocrine, and ductal gene expression analysis in (A) after 3, 6, and 12 days. Values are shown relative to levels in un-
differentiated cPP cells (day 0). Error bars represent the SE of three technical replicates.

(C) Directed differentiation of passage 10 AK6-13 cPP cells to insulin+ B-like cells using a modified version of Russ et al. (2015).

(D) Phase-contrast image of differentiating spheres undergoing branching morphogenesis after 4 days. Scale bar, 100 um.

(E) Intracellular flow cytometric analysis of day 4 cells shows approximately 70% reactivate NKX6-1 and maintain PDX1.

(F) PDX1 and NKX6-1 immunostaining on day 4. Scale bar, 100 pum.

(G) On day 9, the majority of cells are NKX2-2+ with a proportion of these transiently NGN3+. Scale bar, 100 pum.

(H) Phase contrast image of day 16 spheres. Scale bar, 100 um.
(I) Approximately 20% of cells are C-peptide+ on day 16.

(J) Day 16 C-peptide+ cells do not coexpress glucagon. Scale bar, 100 um.
(K) Gene expression measured by qRT-PCR of cPP cells on days 4, 9, and 16 harvested from the differentiation protocol in (C). Levels are
shown relative to those in undifferentiated cPP cells and human islets for comparison. Error bars represent the SE of three technical

replicates.

(L) Immunostaining of transplanted cPP cells for markers of endocrine (C-peptide and glucagon), duct (keratin-19), and acinar (trypsin)

lineages. Scale bar, 100 pum.
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be expanded and passaged (Zhu et al., 2015). However,
these cultures are highly heterogeneous, and it is not clear
whether the minimal combination of signaling molecules
and inhibitors used is sufficient to culture cells from
different genetic backgrounds. Therefore, the culture sys-
tem described here is the first to enable long-term self-
renewal of multipotent pancreatic progenitors derived
from genetically diverse hESC and hiPSC.

Intriguingly, 3T3-J2 feeders have been used to culture
diverse cells types, including epidermal keratinocytes
(Rheinwald and Green, 1975a, 1975b), corneal epithelium
(Osei-Bempong et al., 2009; Rama et al., 2010), and intesti-
nal stem cells (Wang et al., 2015), among others. Nonethe-
less, the mechanism(s) by which 3T3-J2 feeders stabilize
cultured progenitors are unknown. An obvious candidate
is signaling through the WNT/LGRS pathway, which is
required for the maintenance of organoid cultures gener-
ated from a variety of endoderm-derived adult tissues,
including the pancreas (Barker et al.,, 2007, 2010; Boj
et al., 2015; Huch et al., 2013). However, cPP cells do not
express LGRS and are unaffected by inhibition of endoge-
nous WNT secretion (data not shown). Therefore, identifi-
cation of the factor(s) produced by 3T3-J2 cells could lead
to the discovery of a common signaling axis required to
support self-renewal of progenitors from a wide variety of
tissues. Finally, it will be interesting to investigate whether
adapted versions of the culture system described here are
capable of capturing progenitors from other endoderm-
derived tissues, such as the liver, stomach, and lung, or pro-
genitors resident in the adult pancreas.

EXPERIMENTAL PROCEDURES

Human Pluripotent Stem Cell Culture and
Differentiation

Human pluripotent cell lines were obtained as described in the
Supplemental Experimental Procedures. Pluripotent stem cells
were maintained on tissue culture plastic coated with Matrigel in
mTeSR1 medium as described previously (Ludwig et al., 2006),
and differentiated into pancreatic progenitors using the STEMdiff
Pancreatic Progenitor kit (STEMCELL Technologies, 05120) accord-
ing to the manufacturer’s instructions with the following modifi-
cations: (1) cells were initially seeded into 12-well plates (Corning,
353043) at a density of 10° cells/well, and (2) stage 1 was extended
to 3 days by repeating the final day’s treatment. All tissue culture
was carried out in 5% CO, at 37°C.

Passaging and Maintenance of cPP Cells

Gentle cell dissociation reagent (STEMCELL Technologies, 07174)
was used to passage cPP cells as aggregates that were then seeded at
a 1:6 split ratio onto a layer of 3T3-J2 feeders (0.5 x 10° to 1 x
10° cells/cmz) in medium composed of advanced DMEM/F12
(Thermo Fisher Scientific, 21634010), 2 mM L-glutamine (Thermo
Fisher Scientific, 25030), 100 U/mL penicillin/streptomycin
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(Thermo Fisher Scientific, 15140122), 1x N2 supplement (Thermo
Fisher Scientific, 17502-048), 1x B27 supplement (Thermo Fisher
Scientific, 17504-044), 30 nM dexamethasone (STEMCELL Tech-
nologies, 72092), 50 ng/mL EGF (R&D Systems, 236-EG-200),
50 ng/mL FGF10 (Source Bioscience, ABC144), 3 uM RA (Sigma,
R2625), 10 uM SB431542 (Calbiochem, 616464), and 1 uM DAPT
(Sigma, D5942). If plating single cPP cells, complete medium was
supplemented with 10 uM Y27632 for the first 48 hr (Sigma,
Y0503). Medium was completely replenished every 2-3 days. See
Supplemental Experimental Procedures for details of 3T3-J2 cell
culture.

RNA-Seq Analysis of Gene Expression

RNA was isolated from samples harvested from cPP and PPd15
cultures using an RNeasy mini kit (QIAGEN, cat. no. 74104). Feeder
removal microbeads (Miltenyi Biotec, 130-095-531) were used to
deplete cPP cells of 3T3 feeders prior to RNA extraction. All RNA
samples had an RNA integrity number >9. RNA-seq libraries were
generated using the NEBNext Ultra RNA Library Prep Kit (NEB,
E7530L) and sequenced on an Illumina HiSeq 2500 system gener-
ating single-end reads of 100 bp. Table S1 contains metadata for
these and public datasets used for the RNA-seq gene expression
analysis. Full details of how RNA-seq reads were aligned and
analyzed can be found in the Supplemental Experimental
Procedures.

Multilineage Differentiation

Monolayer differentiation cultures were established as described in
Supplemental Experimental Procedures. Basal differentiation me-
dium consists of advanced DMEM/F12 (Thermo Fisher Scientific,
21634010), 2.5 g/30 mL BSA (Sigma, A9418), 2 mM L-glutamine
(Thermo Fisher Scientific, 25030), 100 U/mL penicillin/strepto-
mycin (Thermo Fisher Scientific, 15140122), and 1x B27 supple-
ment (Thermo Fisher Scientific, 17504-044). Supplements were
added as follows: days 1-3 (3 uM RA [Sigma, R2625], 1 uM DAPT
[Sigma, D5942], 100 pM BNZ [Sigma, B4560]) and days 4, 7, and
10 (3 uM RA, 167 ng/mL KAAD-cyclopamine [Calbiochem,
239807]).

B Cell Differentiation

Differentiation sphere cultures were established as described in
Supplemental Experimental Procedures. Basal differentiation me-
dium consists of DMEM high glucose, 2 mM L-glutamine, and
100 U/mL penicillin/streptomycin. Supplements were added as
follows: days 1-4 (1x B27 supplement, 50 ng/mL EGE 1 pM
RA [days 1-2 only], 50 ng/mL FGF7 [days 3—-4 only]); days 5-10
(1x B27 supplement, 500 nM LDN-193189 [STEMCELL Technolo-
gies, 72142], 30 nM TPB [EMD Millipore, 565740], 1 pM RepSox
[STEMCELL Technologies, 72392], 25 ng/mL FGF7); and days 11-
17 (DMEM low glucose [Thermo Fisher Scientific, 12320-032],
2 mM L-glutamine, 1x MEM non-essential amino acids [Thermo
Fisher Scientific, 11140-050]).

Transplantation Assays

cPP cells were grown to confluency to displace and eliminate feeder
cells, then treated with gentle cell dissociation reagent to generate
single cells. Approximately 3 x 10° to 5 x 10° cells were



resuspended in 50 pL of undiluted Matrigel and injected under the
kidney capsule of 8- to 12-week-old immunocompromised (NOD/
SCID) mice. After 23-27 weeks, transplanted mice were euthanized
and their kidneys cryopreserved prior to sectioning and immuno-
staining. The study protocol was approved by the National Univer-
sity of Singapore Institutional Review Board (NUS IRB 12-181) and
Biomedical Research Council IACUC committee (151040).
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Figure S1: Generation of hiPSC lines from diabetic and healthy sibling fibroblasts.

A) Pedigree of a consanguineous Jordanian family with several diabetic siblings. All diabetic siblings
developed the disease before 5 years of age. Skin biopsies taken from individuals AKS and AK6 were

used to generate fibroblasts from which hiPSC were derived.

B) Intracellular flow cytometric analysis of OCT4 expression and C) Immunostaining for established
markers of pluripotency for hiPSC clones AKS5-11, AK6-13 and AK6-8 (not shown). Scale bar, 100

um.
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Figure S2: Directed differentiation of pancreatic progenitor cells and generation of cPP cells

from diverse human pluripotent stem cell lines

A) Time-course of pancreatic progenitor differentiation protocol. In our experiments, stage 1 was
extended to last 3 days, rather than 2 as per the manufacturer’s instructions, by repeating the final day’s

treatment.

B) Intracellular flow cytometric analysis of PDX1 and NKX6-1 at days 8, 10 and 15 of differentiation
using hES3 INS-GFP reporter hESC (Micallef et al., 2011; Titmarsh et al., 2016) and the in-house
hiPSC lines AKS5-11 and AK6-8. PDXI1 is detected before NKX6-1 in all cases, although individual
lines exhibit variable differentiation kinetics. Gates are based on cells stained with isotype control

antibodies.

C) Percentage PDX1+ and/or NKX6-1+ at day 15 of differentiation. Each circle represents one of 31
independent experiments encompassing 2 hESC lines and 6 hiPSC lines. The vertical black bar shows

the median percentage of cells that are PDX1+ (95%), NKX6-1+ (80%) or PDX1+NKX6-1+ (80%).

D) Gene expression measured by qRT-PCR using samples harvested from cPP cell lines at passage 6.
We analyzed cPP cells derived from the following pluripotent cell lines: H9 and HES3 hESC, and
AKS5-11, AK6-8 and AK6-13 hiPSC. Two independent pedigrees were derived from H9 and AKS5-11
cell lines. Expression levels are shown normalized to those of H9 hESC and are plotted on a log, scale.

Error bars represent the standard error of three technical replicates.
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Figure S3: Transcriptome analysis of cPP cells by RNA-seq.

A) Correlations between gene expression levels for cPP cells from three different genetic backgrounds
(H9, AK6-13 and HES3) at early (6-8), mid (11-13) and late (18) passages. Log,-transformed gene
counts measured by RNA-seq were plotted for each gene. Gene counts in cPP samples are compared to
liver for comparison. The Spearman correlation coefficient for each pair of samples is shown on the
corresponding plot. Heat colors denote the number of transcripts. Gene counts are strongly correlated

between cPP samples regardless of genetic background or passage number, but not with liver.

B) Identification of specifically expressed genes in liver, lung and colon samples. Genes associated

with early pancreatic development are not typically found to be specifically expressed by these tissues.

C) Z-score correlations for cPP, PPdl5, CS16-18 PP and liver samples. Z-scores are strongly
correlated between in vitro and in vivo pancreatic progenitor samples but not between these samples

and liver.
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Figure S4: Microbioreactor Array (MBA) Screening of Factors Required to Propagate cPP Cells

A) Phase contrast images of PDX1'SOX9" cPP cells seeded into Matrigel-coated MBAs and allowed
to attach for 20 h with periodic feeding. Each MBA device has 270 chambers arranged as shown in

S4D. Scale bar, 100 um.

B) Protocol used for MBA screening.

C) Individual chambers of MBA device (270 culture chambers) stained with anti-PDX1 (green) and
anti-SOX9 (red) antibodies. Hoechst 33342 (not shown) was used for nuclei identification. The
chambers were selected to show the range of proliferation rates and protein expression observed across

different signaling environments. Scale bar, 100 um.

D) Endpoint measurements for each chamber in the MBA. Schematic above shows compositions of
media applied to each column of the MBA (EGF, ng/mL; RA, pM; DAPT, uM). Cell culture media
flow was from top (Row 1) to bottom (Row 10) down a column, thereby concentrating autocrine
factors towards the bottom of the column. Mean measurements for each column are given below. QCF:
data flagged for quality control issue during image processing. Values were extracted from images
such as those in S4C using an image segmentation algorithm as described previously (Titmarsh et al.,

2016).
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Figure S5: Optimization of cPP Beta Cell Differentiation

A) Application of NKX6-1 induction step of published beta cell differentiation protocols to cPP cells.
We established 2D-monolayer, 3D-matrigel and 3D-suspension cultures in complete cPP media before
exposing cells to growth factor regimes based on published beta cell differentiation protocols (see
Supplementary Experimental Procedures). Phase contrast images were taken at the end of each

treatment. Scale bar, 100 pm.

B) Gene expression measured by qRT-PCR using samples harvested in (A). When cells were exposed
to the Rezania and Pagliuca differentiation regimes using the 3D matrigel platform, we were unable to
recover sufficient material to carry out qRT-PCR analysis. Error bars represent the standard error of

three technical replicates.

C) Optimization of the NKX6-1 induction step of the Russ et al. differentiation regime. Differentiations
were carried out using the 3D-suspension platform. The lengths of the two growth factor treatments
were varied to maximize the percentage of cells that reactivate NKX6-1 expression. PDX1 and NKX6-
1 were measured by intracellular flow cytometric analysis. Three independent experiments are shown

for each condition.

D) Percentage PDX1+NKX6-1+ cells generated in C.

Supplementary Table 1

Samples used for RNA-seq analysis.

Supplementary Table 2

Normalized gene counts for samples listed in supplementary table 1. The values for cPP and PPd15
cells are the mean values across the various samples listed in supplementary table 1. Genes (rows) are
ordered according to the product of the coefficient of variance (column AI) and cPP Z-score (column
AH). Raw RNA-seq read files are available for download at ArrayExpress under accession number E-

MTAB-5731.



Supplementary Experimental Procedures

Human Pluripotent Stem Cell lines

The following hESC lines were used in this study: H9 (WA09) were purchased from WiCell, HES3
(ES03) were provided by ES Cell International Pte. Ltd., and the HES-3 IN. FPw reporter line was a
gift from the Stanley lab (Micallef et al., 2011). The hiPSC lines used in this study were derived in-

house from human fibroblasts and are designated AK5-11, AK6-8 and AK6-13 (Figure S1).

Generation of hiPSC

Fibroblasts were obtained by punch skin biopsy and reprogrammed to generate hiPSC. Fibroblasts
were reprogrammed using the CytoTune™-iPS 2.0 Sendai Reprogramming Kit (Thermo Fisher
Scientific, A16517) in accordance with the manufacturer’s instructions. Cells were passaged and plated
onto irradiated mouse embryonic feeders 7 days after viral transfection. Thereafter, hiPSC colonies
were picked between days 17-28 and maintained in DMEM/F12 (Sigma, D6421) supplemented with
20% Knock Out Serum Replacement (Thermo Fisher Scientific, 10828-028), 0.1 mM 2-
mercaptoethanol (Thermo Fisher Scientific, 21985-023), 2 mM L-glutamine (Thermo Fisher Scientific,
25030), 0.2 mM NEAA (Thermo Fisher Scientific, 11140-050) and 5 ng/mL bFGF (Peprotech, 100-
18B). Staining with the following antibodies was used to confirm pluripotency (Figure S1): NANOG
(R&D Systems, AF1997, 1:200), OCT4 (Santa Cruz, 111351, 1:200), SOX2 (R&D Systems
MAB2018, 1:200), SSEA3 (Millipore, MAB4303, 1:50), SSEA4 (Millipore, MAB4304, 1:200), TRA-
1-81 (Millipore, MAB4381, 1:200), TRA-1-60 (Millipore, MAB4360, 1:200). Primary antibodies were
recognized by Alexa-fluorophore conjugated secondary antibodies raised in Donkey (Thermo Fisher
Scientific, 1:500). The study protocol was approved by the National University of Singapore
Institutional Review Board (NUS IRB 10-051). The study was conducted in accordance with the

Declaration of Helsinki and written informed consent was obtained from the participants.

Expansion of 3T3-J2 feeders

3T3-J2 feeder cells (passage 9, gift from Dr. Yann Barrandon) were expanded on tissue culture plastic
(coated with 0.1% gelatin (Sigma, G2625) for 30 min) in 3T3-J2 culture media and passaged as single

cells by treating with 0.25% Trypsin for 5 min (Thermo Fisher Scientific, 25200056). 3T3-J2 culture



media is composed of the following: DMEM high glucose (Thermo Fisher Scientific, 11960), 10%
Fetal Bovine Serum (FBS, ES cell qualified, Thermo Fisher Scientific, 16141079), 2 mM L-glutamine
(Thermo Fisher Scientific, 25030), and 100 U/mL penicillin/streptomycin (Thermo Fisher Scientific,
15140122). Feeder cells were mitotically inactivated by gamma irradiation (20 grays for 30 min) then
frozen in culture media + DMSO. Individual batches of FBS are selected to enable 3T3-J2 cells to
maintain cPP cultures, whilst 3T3-J2 cells are never cultured beyond passage 12 and should be seeded

at 3.5-5x10° cells/cm? and not allowed to exceed 1.3x10* cells/cm?.

Preparation of 3T3-J2 feeder-coated culture vessels

Thawed 3T3-J2 cells were seeded at 0.5-1x10° cells/cm” onto tissue culture plates coated with 0.1%
gelatin (Sigma, G2625) for 30 min and maintained in 3T3-J2 culture media for up to 3 days until
required. The optimal plating density must be determined empirically for each batch of feeders and is
assessed based on the ability to maintain colony morphology without significantly hindering growth,
since increasing feeder density improves colony morphology and blocks differentiation, but results in
reduced proliferation rates. Tissue culture vessels containing feeders were washed once with DMEM to

remove residual FBS prior to addition of cPP culture media.

Metaphase spread preparation, chromosome counting and M-FISH Karyotyping

Cells grown to ~75-80% confluency were treated with 100 ng/ml Colcemid solution (Gibco,
15212012) for 6 h, trypsinized and centrifuged at 1000 rpm for 10 min. Cell pellets were resuspended
in 75 mM KCI and incubated for 15 min in a 37°C waterbath. 1/10 volume of 3:1 methanol/acetic acid
was added to cells followed by centrifugation at 1000 rpm for 15 min. Cells were then fixed by
resuspension in 3:1 methanol/acetic acid solution, incubated for 30 min at room temperature,
centrifuged at 1200 rpm for 5 min and finally washed once more with fixative. Cells were resuspended
in a small volume of fixative, dropped onto clean glass slides and left to air dry. Multicolor FISH (M-
FISH) was performed according to manufacturer’s instructions (MetaSystems). Automated acquisition
of chromosome spreads was performed using Metafer imaging platform (MetaSystem). Ikaros and Fiji

software were used to determine the chromosome number per spread and analyze M-FISH images.



RNA-seq read alignment, gene count calculation and normlization

Raw fastq files were downloaded with the fastq-dump function of the SRA-toolkit (v 2.8.0). We
mapped reads with STAR (v2.5.1a) (Dobin et al., 2013) using an index based on the soft masked
primary assembly of reference genome GRCh38 and corresponding gene annotation gtf file
(GRCh38.83). Both were obtained from the Ensembl FTP site. Read overhang was set to 99 bp for

"

index generation. Default mapping parameters were retained with the following exceptions: "--

outFilterType BySJout" to reduce the number of spurious junctions, "--alignSJoverhangMin 10"
minimum read overhang for unannotated junctions, "--alignSJDBoverhangMin 1" minimum overhang
for annotated junctions, "--outFilterMatchNminOverLread 0.95" to allow up to 5% mismatched bases
(per pair) if no better alignment can be found, "--alignlntronMin 20" to allow short introns, "--
alignIntronMax 2000000" to set an upper limit on intron length, "--outMultimapperOrder Random" to
randomize the choice of the primary alignment from the highest scoring alignments, "--

outFilterIntronMotifs RemoveNoncanonicalUnannotated" to bias mapping towards known transcripts

and "--chimSegmentMin 0" to suppress any chimeric mapping output.

The mapped reads of all samples were then jointly processed with featureCounts (Dobin et al., 2013;
Liao et al., 2014) as implemented in the package "Rsubread" (v1.16.1) in R (v3.1.2). Default settings
were used with the following exceptions: "annot.ext=GTFfile, isGTFAnnotationFile=TRUE,

GTF featureType='exon' to use the same gtf annotation file as in STAR index,
"useMetaFeatures=TRUE, GTF.attrType='gene' " to summarize counts to the gene level,
"allowMultiOverlap=TRUE" to allow counting in overlapping genes, "isPairedEnd" was set as
appropriate for the respective samples, "strandSpecific=0" because not all libraries were strand-specific
and finally "countMultiMappingReads=TRUE". The resulting count table was normalized to account

for sequencing depth and count distribution with the TMM method (Robinson and Oshlack, 2010) as

implemented in edgeR (v3.8.6) using default settings.

Bioinformatics Analysis

RNA-seq gene expression analysis was carried out using normalized counts for each gene in each
tissue type (Supplementary Table 2). Where technical replicates are available for samples described in

other studies, we aligned these reads and determined gene counts separately, then calculated average



gene counts. Furthermore, unless otherwise stated, gene counts for cPP and PPd15 cells are the mean
of three independent samples harvested from cells derived from H9 and HES3 hESC, and AK6-13
hiPSC. For global comparisons of gene expression profiles, we compared 60,675 ENSEMBL genes or
(where stated) 19,875 ENSEMBL protein-coding genes expressed at >5 normalized counts in at least
one sample. All of the following analysis was carried out in R, using base packages unless stated

otherwise.

Hierarchical Clustering of RNA-Seq Transcriptomes (Figure 34)

Euclidian distances between pairs of log,-transformed global gene counts were calculated using the R

function dist() and the distances plotted as a Dendrogram using the Aclust() function.

Heatmaps (Figures 3B, 3E and 3F)

Heatmaps were plotted using the function heatmap.2().

Specifically Expressed Genes (Figure 3C)

Specifically expressed genes are defined as those with CV > 1 (Coefficient of Variance) and Z-score >
1. CV is defined as the mean divided by the standard deviation across all samples, in this case the
aforementioned 23 published tissue datasets plus the cPP and PPd15 gene counts described here. Z-
score is defined as the difference between expression in the sample of interest and the mean for all
samples, divided by the standard deviation across all samples. When calculating the Z-score for

pancreatic samples other pancreatic samples are excluded.

Gene Ontogeny Analysis (Figure 3D)

The web-based gene set analysis tool kit at http://www.webgestalt.org/ was used to analyze Gene

Ontogeny (GO) terms associated with genes specifically expressed by cPP cells. Protein-coding genes
were ordered according to the product of the coefficient of variance and Z-score for cPP cells (see
above) and the top 250 genes selected for enrichment analysis. The Over Representations Analysis
(ORA) tool was used to calculate fold-enrichment for biological process GO terms across these 250
genes, using all protein coding genes as the reference set, and the corresponding p-value adjusted by

the Benjamini-Hochberg multiple test adjustment. GO terms were ordered according to fold-



enrichment and those associated with < 5 genes and/or an adjusted p-value > 0.01 were eliminated

from the enriched set.

In vitro differentiation

Establishing differentiation cultures

Initially, cPP cells were cultured to confluency to eliminate feeder cells then treated with gentle cell
dissociation reagent to generate single cells. Single cells were resuspended in cPP culture media + 10
1M Y27632 and seeded according to differentiation platform. To establish 3D sphere cultures, 2 x 10°
cells were seeded into each well of an ultra low adhesion 6 well plate (Corning, 3471) in 2 mL media
and placed on a nutator overnight. Compact spheres typically form after 24 hours. To establish 3D
matrigel cultures, AggreWell 400 plates (Stemcell Technologies, 27840) were used to generate spheres
of ~200 cells according to the manufacturers instructions. After 24 hours ~1200 spheres were
resuspended in 500 pL 1:5-diluted hESC-qualified matrigel (Corning, 354277) and deposited into each
well of a 24 well plate. Plates were incubated at 37°C for 60 min to allow matrigel to solidify before
addition of media. To establish 2D monolayer cultures, cells were seeded at 6.65 x 10° cells/cm? on

tissue culture plastic coated with matrigel diluted 1:50.

NKX6-1 induction tests

Differentiation cultures were treated with the following signaling regimes, based upon several recently
published protocols, with minor alterations (Pagliuca et al., 2014; Rezania et al., 2014; Russ et al,,
2015; Zhang et al., 2009). Differentiation media 1 consists of MCDB 131 media (Thermo Fisher
Scientific, 10372-01), 2.5 g/L sodium bicarbonate (Lonza, 17-613E), 2 mM L-glutamine, 100 U/mL
penicillin/streptomycin, 10 mM glucose (VWR International, 101174Y), and 2% bovine serum
albumin (Sigma, A9418). Differentiation media 2 consists of DMEM high glucose, 2 mM L-glutamine,
and 100 U/mL penicillin/streptomycin. Media based on PP2 induction media described by Pagliuca et
al. consists of differentiation media 1 supplemented with 50 ng/mL FGF7 (R&D Systems, 251-KG),
0.25 mM ascorbic acid (Sigma, A4544), 100 nM RA, 0.25 pM SANT-1 (Sigma, S4572), and 0.5%
ITS-X (Thermo Fisher Scientific, 51500056). Media was completely replenished daily for 5 days.
Media based on stage 4 media described by Rezania et al. was additionally supplemented with 300 nM

Indolactam-V (Stemcell Technologies, 72312) and 200 nM LDN-193189 (Stemcell Technologies,



72142), and was completely replenished daily for 5 days. Media based on day 13-20 media described
by Zhang et al. consists of differentiation media 2 supplemented with 10 ng/mL bFGF, 10 mM
nicotinamide (Sigma, 24,020-6), 50 ng/mL exendin-4 (Sigma, E7144), 10 ng/mL BMP4 (R&D
Systems, 314-BP), and 1% ITS-X. Media was completely replenished daily for 5 days. Media based on
day 7-9 media described by Russ et al. consists of differentiation media 2 supplemented with 1X B27
supplement, 50 ng/mL EGF, 1 uM RA (first 24 hours), and 50 ng/mL FGF7 (second 24 hours). Media

was completely replenished daily for 2 days.

Quantitative RT-PCR

RNA was isolated from samples using an RNeasy mini kit (Qiagen, cat # 74104) and reverse
transcribed to generate cDNA using a high-capacity reverse transcription kit and random hexamer
primers (Applied Biosystems, 4368814, 1 ng RNA per 20 pL reaction). Quantitative RT-PCR was
carried out using SYBR Select Mastermix (Applied Biosystems, 4472908). Data were analyzed using
the AACT method, and normalized to expression of the housekeeping gene TBP in each sample. The

primers used for qRT-PCR are shown in Supplementary Table 3.

Immunofluorescence staining

The following primary antibodies were used for immunofluorescence staining: mouse monoclonal anti-
PDX1 (R&D Systems, MAB2419, 1:50), rabbit anti-SOX9 (Sigma, HPA001758, 1:2000), rabbit anti-
HNF6 (ONECUT1) (Santa Cruz, SC13050, 1:100), goat anti-FOXA2 (R&D Systems, AF2400, 1:200),
rabbit anti-GATAG6 (Cell Signaling Technologies, 5851, 1:1600), sheep anti-NGN3 (R&D Systems,
AF3444, 1:200), mouse anti-NKX6-1 (developmental studies hybridoma bank, F55A12, 1:80), mouse
monoclonal anti-NKX2-2 (BD biosciences, 564731, 1:400), mouse monoclonal anti-pro-Insulin c-
peptide (Millipore, 05-1109, 1:100), rabbit monoclonal anti-glucagon (Cell Signaling Technologies,
8233, 1:400), rat monoclonal anti-KRT19 (developmental studies hybridoma bank, TROMA-III-s,
1:10), sheep anti-trypsin (pan-specific) (R&D Systems, AF3586, 1:13). Primary antibodies were
recognized by Alexa-fluorophore conjugated secondary antibodies raised in Donkey (Thermo Fisher

Scientific, 1:500). Images were acquired using an Olympus FV1000 inverted confocal microscope.



Immunofluorescence staining transplanted kidneys

Mouse kidneys were dissected, cleaned, longitudinally sectioned, embedded in Jung freezing medium
(Leica, 020108926), and cryopreserved in liquid nitrogen. Sections (6um) were mounted on APES-
coated glass slides, dried and fixed in 4% paraformaldehyde for 10 min at room temperature. After
washing 3X with PBS for 15 min, samples were permeabilised with PBS containing 0.3% Triton X-
100 for 10 min, then blocked for 1 hour each in Rodent block M (Biocare medical, RBM961H) and
blocking buffer (PBS + 20% normal donkey serum + 1% BSA + 0.3% Triton X-100). After washing
3X with wash buffer (PBS + 0.1% Tween-20 + 0.1% BSA) for 15 min, samples were incubated
overnight at 4°C with primary antibodies diluted in blocking buffer. After washing 3X with wash
buffer for 15 min, samples were incubated at room temperature for 1 hour with secondary antibodies
diluted 1:500 in blocking buffer. All subsequent steps were carried out in the dark. After washing 1X
with wash buffer, samples were incubated at room temperature for 20 min with 2pg/mL Hoechst-33342
(Thermo Fisher Scientific, 62249) diluted in PBS. Finally, after washing 3X with wash buffer for 15
min, samples were covered with Vecashield hard set mounting medium (Vector Laboratories, H-1400),

covered with a coverslip and sealed.

Immunofluorescence staining cultured cells

Adherent cells were washed 2X with PBS then fixed in 4% paraformaldehyde for 20 min at room
temperature. After washing 3X with wash buffer (PBS + 0.1% BSA), samples were incubated with
blocking buffer (PBS + 20% normal donkey serum + 0.1% BSA + 0.3% Triton X-100) for 1 hour at
room temperature. Samples were then incubated overnight at 4°C with primary antibodies diluted in
blocking buffer. After washing 3X with wash buffer for 15 min, samples were incubated at room
temperature for 1 hour with secondary antibodies diluted 1:500 in blocking buffer. All subsequent steps
were carried out in the dark. After washing 3X with wash buffer for 15 min, samples were incubated at
room temperature for 15 min with 2pg/mL Hoechst-33342 (Thermo Fisher Scientific, 62249) diluted in

PBS. Finally, samples were washed 2X with PBS for 15 min and imaged.



Immunofluorescence staining differentiation spheres

Differentiation spheres were washed 1X with PBS + 2% serum then fixed in 4% paraformaldehyde for
30 min at room temperature. After washing 1X for 15 min with wash buffer (PBS + 0.1% BSA + 0.1%
Tween-20), samples were blocked for 6 hours in blocking buffer (PBS + 20% normal donkey serum +
1% BSA + 0.3% Triton X-100). Samples were then incubated overnight at 4°C with primary antibodies
diluted in blocking buffer. After washing 2X with wash buffer for 15 min, samples were incubated at
4°C for 6 hours with secondary antibodies diluted 1:500 in blocking buffer. All subsequent steps were
carried out in the dark. After washing 1X with wash buffer for 15 min, samples were incubated at room
temperature for 1 hour with 2ug/mL Hoechst-33342 (Thermo Fisher Scientific, 62249) diluted in PBS.
Finally, spheres were washed 2X with PBS for 30 min, resuspended in Vectashield hard set mounting
medium (Vector Laboratories, H-1400), mounted on glass slides, covered with a coverslip and sealed.

All washing and incubation steps are carried out in 1.5mL Eppendorf tubes.

Flow cytometry

Single cells were generated using accutase (Thermo Fisher Scientific, 14190), washed 1X with PBS +
1% serum, then fixed in 4% paraformaldehyde for 10 min at room temperature. Cells were washed 1X
with wash/permeabilization buffer (BD, 554723), then up to 10° cells were incubated with primary or
isotype control antibody diluted in 250uL wash/permeabilization buffer for the required length of time
(see below for antibody dilutions and incubation times). For unconjugated antibodies, cells were
washed 1X with wash/permeabilization buffer then incubated for 15 min with secondary antibody
diluted in wash/permeabilization buffer. If staining for a second antigen, cells were washed 1X with
wash/permeabilization buffer then subject to the aforementioned incubation step(s). After washing 1X
with wash/permeabilization buffer, cells were resuspend cells in PBS + 1% serum and analyzed using a
BD FACSCalibur flow cytometer. All steps were carried out at room temperature and cells were

pelleted by centrifugation at 6000 rpm for 5 min in a microcentrifuge.

The following antibodies were used: mouse monoclonal anti-PDX1 PE-conjugate (BD biosciences,
562161, 1:50, 45 min), mouse IgG1 PE-conjugate (BD biosciences, 556650, 1:50, 45 min), mouse
monoclonal anti-NKX6.1 (developmental studies hybridoma bank, F55A12, 1:25, 45 min), goat anti-

mouse IgG APC-conjugate (BD biosciences, 550828, 1:400, 15 min), mouse monoclonal anti-Oct3/4



Alexa Fluor 488-conjugate (BD biosciences, 560253, 1:5, 60 min), mouse monoclonal anti-pro-Insulin
c-peptide (Millipore, 05-1109, 1:100, 60 min), anti-mouse IgG Alexa Fluor 488-conjugate (Thermo
Fisher Scientific, A21202, 1:300, 30 min). All flow cytometry experiments were gated using cells
stained only with fluorophore-conjugated isotype control (in the case of directly conjugated primary

antibodies) or fluorophore-conjugated secondary antibodies.

Microbioreactor Array (MBA) Screening of cPP Maintenance and Proliferation

Microbioreactor arrays (previously described, (Titmarsh et al., 2012)) were used to screen the effects of
combinations of exogenous signaling molecules on cPP cells. MBAs provide combinatorial mixing of
input factors, combined with continuous flow of culture media over culture chambers. MBAs were
autoclaved and filled with sterile PBS, then coated (2-4 h, room temperature) with a single 1 mL
injection of hESC-qualified matrigel at the manufacturer’s recommended concentration. cPP cells in
suspension in complete medium at 5 x10°/mL were then seeded in the MBA, giving a surface density
of 50x10°cells/cm’. Cells were allowed to attach for a total of 20 h, with a media exchange performed
every 6 h. Subsequently, factor provision was commenced with an initial filling step of 300uL,
followed by constant perfusion of factors at 36 pL/h, for a total culture time of 3 days. At the endpoint,
cells were rinsed with PBS, fixed with 2% PFA/PBS solution for 30 min, then rinsed with PBS and
blocked/permeabilised with PBS + 20% normal donkey serum + 0.1% BSA + 0.3% Triton X-100 for
30 min. Then, cells were labeled with primary antibodies against PDX1 (R&D Systems, MAB2419,
1:25), and SOX9 (Sigma, HPA001758, 1:1000) diluted in blocking buffer, overnight at 4°C. Cells were
then washed with 0.1% BSA/PBS and labeled with Alexa-fluorophore conjugated secondary antibodies
(Thermo Fisher Scientific, 1:500 dilution) and Hoechst 33342 (2 pg/mL) for 1 hour. Finally, cells were
rinsed with PBS, and the MBA inlets and outlets plugged closed. The MBA was then mounted in a
microplate adapter and imaged. Nuclear segmentation and quantification of nuclear intensities of

PDX1 and SOX9 then proceeded similarly as previously described (Titmarsh et al., 2016).
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