Supplementary Online Content

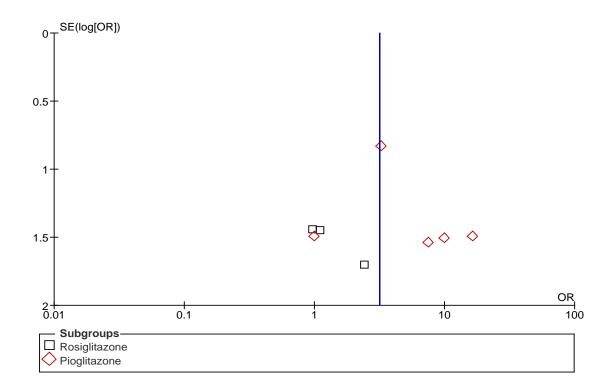
Musso G, Cassader M, Paschetta E, Gambino R. Thiazolidinediones and advanced liver fibrosis in nonalcoholic steatohepatitis: a meta-analysis. *JAMA Intern Med.* Published online February 27, 2017. doi:10.1001/jamainternmed.2016.9607

eMethods. Supplemental Methods

eFigure 1. Funnel Plot of Comparison: 2 TZD and Improvement in Advanced (F3-4) Fibrosis

eFigure 2. Body Weight Changes (% Initial Body Weight) in RCTs

This supplementary material has been provided by the authors to give readers additional information about their work.


eMethods. Supplemental Methods

Data Sources and Searches

Example of an online strategy run in PUBMED:

- 1. liver.tw.
- 2. (non-alcoholic or non alcoholic or nonalcoholic).tw.
- 3. (fatty or steato*).tw.
- 4. (NAFLD or NAFLD or NASH or fibrosis).tw.
- 5. 1 and 2 and 3
- 6. 4 or 5
- 7. (insulin sensit* or pioglitazone or rosiglitazone or thiazolidinedione* or glitazone* or PPAR- γ agonist).tw.
- 8. 6 and 7.

eFigure 1. Funnel Plot of Comparison: 2 TZD and Improvement in Advanced (F3-4) Fibrosis

eFigure 2. Body Weight Changes (% Initial Body Weight) in RCTs

	TZD			Co	ontro	I	Mean Difference	Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
2.24.1 Rosiglitazone									
Idilman 2008	-1.9	3	11	-2.2	5	8	9.6%	0.30 [-3.59, 4.19]	
Omer 2009	-4	6.2	20	-10.4	6.2	22	10.0%	6.40 [2.65, 10.15]	
Ratziu 2008	1.6	5.5	32	-1.1	3.8	31	14.8%	2.70 [0.37, 5.03]	_
Subtotal (95% CI)			63			61	34.4%	3.11 [0.10, 6.12]	
Heterogeneity: Tau ² =	4.28; Ch	ni² = 5	5.06, df	= 2 (P =	= 0.08	3); I ² =	60%		
Test for overall effect: 2	Z = 2.02	(P =	0.04)						
2.24.2 Pioglitazone									
Aithal 2009	2.9	10	37	-3.8	10	37	8.0%	6.70 [2.14, 11.26]	
Belfort 2006	2.7	4	26	-0.6	4	21	14.9%	3.30 [1.00, 5.60]	
Cusi 2016	1.2	3	50	0.3	3	51	19.0%	0.90 [-0.27, 2.07]	 -
Sanyal 2004	0	4	10	1.6	5	10	9.4%	-1.60 [-5.57, 2.37]	
Sanyal 2010	4.8	8	80	0.7	8	83	14.3%	4.10 [1.64, 6.56]	
Subtotal (95% CI)			203			202	65.6%	2.51 [0.36, 4.66]	
Heterogeneity: Tau ² = 3	3.96; Ch	ni² = 1	4.53, c	lf = 4 (P	= 0.0	006); l²	= 72%		
Test for overall effect: 2	Z = 2.29	(P =	0.02)						
Total (95% CI)			266			263	100.0%	2.70 [1.06, 4.34]	•
Heterogeneity: Tau ² = 3	3.34; Ch	ni ² = 2	21.00, c	lf = 7 (P	= 0.0	004); l²	= 67%		+ + + +
Test for overall effect: 2	Z = 3.23	(P =	0.001)			,			-10 -5 0 5 10 Favours control Favours TZD
Test for subgroup diffe	rences:	Chi ² :	= 1.40,	df = 1 (P = 0	.24), I ²	= 28.7%		1 avours control T avours 12D