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fig. S1. Comparison of gene expression in male and female dragons. Gene expression profiles for normal

female (ZWf) and male (ZZm) dragons were compared in order to identify sex-specific differences. (A and B)

Volcano plots show average gene expression fold-change between adult brain from ZZm and ZWf relative

to average normalized expression level (mean; n = 2). Expression measurements were made separately

using Kallisto alignment-free quantification (A) and STAR-RSEM alignment-based quantification (B). Under

each method, genes that exceeded a differential expression threshold of FDR < 0.01 are highlighted (red

dots). (C) Venn diagrams show the number of genes that were found to be differentially expressed (FDR <

0.01) under either or both methods of quantification. Only genes concordant between the two methods

were reported as differentially expressed. (D) We found eight genes that were significantly over-expressed

in ZZm relative to ZWf brain. All eight are involved in canonical muscle processes, including the eminent

muscle genes Actin (ACTA1), Myosin (MYH1), Troponin (TNNI2) and Creatine kinase (CKM). The plot shows

the average normalized expression (transcripts per million; mean +/- SD; n = 2) recorded in adult brain from




ZWf, ZZm and sex-reversed female (ZZf) dragons for the eight genes that were differentially expressed
between ZZm and ZWf. Importantly, ZZf dragons exhibited normal female expression for all sex-biased
genes. (E) Gene ontology terms that were enriched (GOrilla) among the top 500 genes upregulated in ZZm,
relative to ZWHf, brains included ‘muscle system process’ as well as related sub-terms like ‘filament sliding’
and ‘electron transport chain’. Collectively, these data reveal a previously unreported male-bias in the

expression of canonical muscle genes in dragon brain.
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fig. S2. Comparison of gene expression in normal and sex-reversed female dragons. Gene expression
profiles of normal female (ZWf) and sex-reversed female (ZZf) dragons were compared in order to identify
sex-reversal specific transcriptome features. (A and B) Volcano plots show average gene expression fold-
changes between adult brain from ZZf and ZWf relative to average normalized expression level (mean; n =
2). Expression measurements were made separately using Kallisto alighment-free quantification (A) and
STAR-RSEM alignment-based quantification (B). Under each method, genes that exceeded a differential
expression threshold of FDR < 0.01 are highlighted (red dots). (C) Venn diagrams show the number of genes
that were found to be differentially expressed (FDR < 0.01) under either or both methods of quantification.
Only genes concordant between the two methods were reported as differentially expressed. (D) 17 genes
were classified as differentially expressed between ZZf and ZWf, of which 14 were down-regulated in ZZf.
Expression of prominent immune genes, such as IgM and IRF1, was reduced in ZZf dragons compared to
ZWf or ZZm, while the circadian regulator, CIART, was over-expressed. The immune and circadian systems
are known to be intertwined with stress. (E) Annotated gene model for the predicted ortholog of
Proopiomelanocortin (POMC) in dragon. Normalized coverage by mapped RNA sequencing reads shows
expression of POMC in a single replicate of ZWf (blue), ZZm (yellow) and ZZf brain (red). (F) Top 5 non-
redundant gene ontology terms (GOrilla) that were enriched among the top 500 genes down-regulated

(above) or up-regulated (below) in ZZf, relative to ZWHf, individuals.
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fig. S3. Differential JARID2 IR in normal and sex-reversed dragons. Annotated gene model for the
predicted ortholog of JARID2 in dragon. Normalized coverage by mapped RNA sequencing reads (gray) and
density of spliced-read junctions (colored) spanning annotated introns are shown for a single replicate from

adult tissues for normal female (ZWf; blue), male (ZZm; yellow) and sex-reversed female (ZZf; red).
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fig. S4. Temporal dynamics of JARID2/JMJD3 expression and splicing in alligator and turtle embryo. (A)
Alligator eggs were incubated under FPT (30°C) until Ferguson developmental stage 19, a period in which
the gonads are still bipotential and morphologically indistinguishable. At stage 19, a subset of eggs was
shifted to MPT (33.5°C) while the remaining eggs were maintained at FPT for the subsequent incubation
period. Tissues comprising the developing gonad were sampled at FPT of day O, then at FPT and MPT at
multiple time points after stage 19. Full procedure is described in reference (4). Turtle eggs were separately
incubated at FPT (31°C) or MPT (26°C) from the day of laying. Whole embryos were sampled at FPT and
MPT at development stage 12, before the initiation of gonad development. Gonads were then sampled at
FPT and MPT from stage 15-21, fully encompassing the temperature sensitive period of development. Full
procedure is described in reference (5). (B) Normalized coverage by mapped RNA sequencing reads (gray)
and density of spliced read junctions spanning annotated introns are shown for a single replicate of: (left)
alligator embryonic gonad at FPT day O (stage 19; blue), FPT day 3 (blue) and MPT day 3 (yellow); (right)
turtle whole stage 12 embryos at FPT (blue) and MPT (yellow) and embryonic gonad at stage 15 FPT (blue)
and MPT (yellow). Note that the section of zero-coverage in the center of the retained intron for turtle is a
string of undefined (N) bases in the genome, to which reads cannot be mapped. (C) Average normalized
expression (transcripts per million; mean +/- SD; n = 3) for spliced (IR-) and intron retaining (IR+) isoforms of
JARID2 and JMJD3 in alligator and turtle. Measurements shown are from alligator gonad at FPT day 0 and
FPT/MPT day 3 and 6 and turtle FPT/MPT whole stage 12 embryos, and embryonic gonads at FPT/MPT
stage 15 and 16.
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fig. S5. Expression and splicing of JMJD3 in the brain and gonad from normal and sex-reversed dragons.
(A) Annotated gene model for the predicted ortholog of JMJD3 in dragon. Normalized coverage by mapped
RNA sequencing reads (gray) and density of spliced read junctions (colored) spanning annotated introns are
shown for for a single replicate from adult brain for normal female (ZWf; blue), male (ZZm; yellow) and sex-
reversed female (ZZf; red). (B to C) Average normalized expression of JMJD3 (transcripts per million; mean

+/- SD; n = 2) recorded in adult brain (B) and gonad (C) from ZWf, ZZm and ZZf individuals.
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fig. 6. Differentially retained introns in JARID2/JMJD3 are nonparalogous. (A to B) This schematic shows
the relationship between orthologous introns, which fall between ortholgous coding exons, and non-
paralogous introns, which do not fall between paralogous coding exons. (C to E) Alignment (MUSLCE) of
peptide sequences for dragon and aligator JARID2 (C), dragon and aligator JMJD3 (D) and dragon
JARID2/IMJD3 (E), with exon-intron architecture indicated. Alignments demonstrate that the differentially
retained introns identified in dragon and alligator for JARID2/JARID2 and JMJD3/JMJD3 are orthologous but
the differentially retained introns in JARID2/JMJD3 are not paralagous to one and other, suggesting that
their capacity for differential retention is not underpinned by a shared conserved sequence element. The
same relationships were true for JARID2/IMJD3 differentially retained introns between dragon/turtle and
alligator/turtle (not shown).





