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ABSTRACT An oscillator neural network model is. pre-
sented that is capable of processing local and global attributes
of sensory input. Local features in the input are encoded in the
average firing rate of the neurons while the relationships
between these features can modulate the temporal structure of
the neuronal output. Neurons that share the same receptive
field interact via relatively strong feedback connections, while
neurons with different fields interact via. specific, relatively
weak connections. This pattern of connectivity mimics that of
primary visual cortex. The model is studied in the context of
processing visual stimuli that are coded for orientation. We
compare our theoretical results with recent experimental evi-
dence on coherent oscillatory activity in the cat visual cortex.
The computational capabilities of the model for performing
discrimination and segmentation tasks are demonstrated.

The linking of sensory inputs across multiple sensory recep-
tive fields is a fundamental task of sensory processing (1-3).
Such linkage is necessary to identify distinct objects, segment
them from each other, and separate them from background.
The theoretical issues raised by this processing have been
difficult to approach within the framework of most current
neural network models. This difficulty originates from using
only the levels of activity in individual neurons to encode
information. It has been suggested by von der Malsburg and
Schneider (1) that global properties of stimuli are identified
through correlations in the temporal firing patterns of differ-
ent neurons. This concept has gained support from a recent
series of experiments by Eckhorn et al. (4) and by Singer and
colleagues (5-7), who have shown that neurons in the cat
primary visual cortex can exhibit oscillatory responses that
are coherent over relatively large distances and are sensitive
to global properties of stimuli.

In the present work we construct a model neural network
that is capable of linking activity in disparate visual receptive
fields in a manner that depends on extended features of the
stimulus. The network is comprised of neurons that act as
oscillators. The amplitude of their output corresponds to the
average neuronal firing rate and the phase describes the
temporal structure of the neuronal outputs.

In this study we focus on specifying the pattern of con-
nectivity that is capable of generating spatial and temporal
coherence in neuronal output similar to that observed in
experiments. The model incorporates three aspects of the
architecture of primary visual cortex: (i) The average firing
rate of neurons is a strong function of the orientation of a
moving bar or grating that passes through the receptive field
ofthe cell (8). (ii) Nearby neurons have overlapping receptive
fields and appear to be highly interconnected (9). (iii) Neu-
rons with nonoverlapping receptive fields form a sparse set of
long-range connections whose pattern appears to depend on

the orientation preferences of the pre- and postsynaptic cell
(9).

Before describing the model, we summarize the current
status of experimental results that are relevant to our work.
(i) Neurons that respond to moving, oriented bars have a
periodic component in their spiking output. The average
period, "20-30 ms, appears to be the same for different
neurons and is independent of the orientation of the stimulus
(4, 5). (ii) The activity of neurons that share a receptive field
can be synchronized by the presentation of a single, oriented
bar. The synchronization is fairly insensitive to the orienta-
tion preferences of the neurons (4-7). (iii) Neurons with
separate receptive fields will fire in synchrony only if bars
that simultaneously pass through the individual fields have
similar orientation (6, 7). Interestingly, this occurs even
though the coherent activity of neurons that share the same
receptive field is largely independent of the orientation of the
stimulus. (iv) The strength of the synchronization of the
activity of neurons with different receptive fields is signifi-
cantly enhanced by the use of a single long bar that extends
across several fields, rather than two discontinuous, short
bars (6). (v) The outputs of neurons with different receptive
fields are not synchronized if the two stimuli move in
opposite directions, even for neurons that respond vigorously
to both directions of motion (6, 7). (vi) There were no
substantial phase shifts in the temporal coherence for any of
the experimental paradigms (4-7).

MODEL

Phase Equations. The firing of the neurons is considered as
a stochastic event, described by the probability per unit time
that the neuron at location r will fire at time t. This probability
function, P(r, t), is assumed to have the form

P(r, t) = V(r) (1 + A cos 4I(r, t)). [1]

The phases '1(r, t) parametrize the temporal firing pattern of
the neurons. The coefficient A corresponds to the relative
contribution of the temporally modulated neuronal activity.
The amplitude V(r) is the normalized firing rate averaged
over the duration of stimulus. If no stimulus is present within
the receptive field ofthe neuron at r, V(r) = 0. With a stimulus
moving across the field, V(r) is taken to coincide with the
"tuning" curve of the neuron; i.e., V(r) = V(00(r) - 0(r)),
where 00(r) is the orientation of the stimulus and @(r) is the
orientation preferred by the neuron (Fig. 1A). Stimuli move
along an axis that is perpendicular to their orientation. The
difference in response to forward and reverse movement on
this axis is the difference between V(@) and V(0 - 180°).
The phase variables that govern the temporal aspects of the

neuronal activity are assumed to obey equations for a system
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FIG. 1. Properties of individual neurons. The neuron in the Rth cluster has orientation preference 0 and is stimulated by a moving bar with
orientation 00. (A) Tuning curve assumed for the neuron, described by V(x) = e-s"" with a = 360 (8). (B) Time-dependent part of the
autocorrelogram calculated (see Appendix and the text)jfor a neuron that is stimulated at its preferred orientation; i.e., 0 = 00. We chose Ws
= 0.2, for which r= 3ro (the text) and Tc = 0.1 (Appendix), with T = 0.2TC (solid line) and T = 5Tc (dashed line). The period of oscillations
was taken as 2ir/w = 8 TO. (C) Dependence of the long-time limit of the autocorrelation function on the orientation of the stimulus relative to
the preferred orientation of the neuron.

of coupled phase oscillators with noise (10); i.e.,

,ro(I(r, t) = CTro + tq(r, t)

- I J(r, r')sin(LD(r, t) - 4(r', t)), [21
r'#r

where To is the neuronal time scale and w is the frequency of
the neuronal oscillations. We assume that To << 2ir/Co; this
is consistent with the estimates r0 = 3 ms and 21T/w 25 ms
from experiment (4, 5). The term vq(r, t) represents white
noise with variance (27(r, t)77(r', t')) = 2TT086(t - t'), where
T is a measure of the noise level. The noise represents
fluctuations in the input to a cell. The connection strength
J(r, r') mediates the interaction between the phases of the
neurons at locations r and r'. Lastly, the sum over r' includes
all neurons in the network.

Architecture of the Connections. The interactions between
the neuronal phases are assumed to encode information about
the position and orientation ofthe stimulus. We postulate that
they depend on the average level of activity of the pre- and
postsynaptic cell; i.e.,

J(r, r') = V(r)W(r, r')V(r'), [3]

where W(r, r') specifies the architecture of the connections
and is independent of the external stimulus.
A central element in this model is the introduction of

short-range interactions that couple neurons with strongly
overlapping receptive fields and long-range interactions that
couple neurons with nonoverlapping receptive fields. We
assume an architecture in which neurons are grouped into
clusters, analogous to hypercolumns in the primary visual
cortex (8). The neurons in each cluster respond to a stimulus
in a common receptive field. They are labeled by the spatial
coordinates of the cluster, denoted R, and their preferred
orientation, 0, which is assumed to be uniformly distributed
within each cluster.
Each neuron interacts with cells in the same cluster via

short-range connections, taken as

WRR(O, 0') = WS/N, [4]

where N is the total number of neurons in the cluster that are
activated by the stimulus. This form allows the coherence
between two active neurons with the same receptive field to
vary only moderately as a function of their preferred orien-
tations. Neurons in different clusters interact via long-range
connections, taken as

WRR'(0, 6') = WLF(6 - 0')/N2; R $ R'. [5]

We have assumed that WRR,(O, 0') does not depend on the
spatial separation between the clusters. The function
F(0 - 6') will be chosen, as described below, so that the
phase coherence between different clusters will have a sub-
stantial dependence on the orientations of the stimuli. The
relative strength of the long-range to the short-range connec-
tions scales as 1/N << 1. This ensures that the coherence
between neurons that share the same receptive field is largely
independent of the global properties of the stimulus. The
equations for the phase of each neuron (Eq. 2), with the
connection strengths defined by Eqs. 3-5, constitute the
model.

Correlation Functions. Coherent output in a population of
neurons is deduced in experiment from the autocorrelogram
of the output of each neuron and cross-correlograms of the
output of pairs of neurons (4, 5). The correlograms can be
expressed in terms of the correlation functions of the under-
lying phase variables in the model. We define

(R(O, t) = Ct + ORO, t), [6]

where OR(6, t) represents the noisy component of the total
phase (DR(O, t) for a neuron in the Rth cluster with orientation
preference 0. The autocorrelogram is

(PR(6, t)PR(6, t + r))t= V4(0)(1 + (A2/2)CR(0, T)cos CT), [7]

where (* ), denotes averaging over time ( >>1»/), VR(0)
V(00(R) - 0(R)), and the autocorrelation function CR(6, T)
(cos(4R(6, t) - 4R(6, t + T))), measures the temporal

fluctuations in the phase. The cross-correlogram of the
activity of a neuron in the Rth cluster with orientation
preference 0 with one in the R'th cluster with orientation
preference 6' is

(PR(0, t)PR'(6, t + T))t =

VR(0)VR'(0')(1 + (Ak/2)CRR'(0, 6', T)COS(COT + X)), [8]

where the cross-correlation function CRR'(0, 6', T) =
N/a~2+Wmeasures the amplitude of the phase coherence and
X = XRR'(0, 6', T) = tan-'(a/b) represents the average phase
shift with a (sin(OR(0, t) - OR.(6', t + r))), and b
(cos(4R(6, ii - OR(O', t + T))),.

RESULTS AND EXAMPLES
The model was analyzed using mean-field theory (see Ap-
pendix) and applies when the number of active neurons in
each cluster is large (N>> 1). For concreteness, we assumed
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that the tuning curve for every neuron has the shape shown
in Fig. 1A. The main results are given below.
Temporal Coherence Within a Single Cluster. The presence

of coherent oscillations depends on the rate of decay of the
correlation functions. When the level of noise is large, the
neurons behave as overdamped oscillators and both CR(6, T)
and CRR(O, 6', T) decay to zero in a time To/T<< 1/c (Fig.

1B, dashed line). In contrast, the neurons exhibit persistent,
coherent oscillations when the level of noise is below a

critical value, Tc, where Tc ct Ws. For noise levels less than
Tc, the autocorrelation function decays from its initial value
CR(O, 0) = 1 to a long-time limit CR(O) limb, CR(O, T) >
0 (Fig. 1B, solid line). This rapid decay is characterized by a

time-constant

Trs ro/(2VR(6)Ws) [9]

and results in a peak in the autocorrelation function that is
centered at r = 0 and has a width of =2rs. The magnitude of
CR(O) depends on as well as the level of noise (Fig. 1C). The
presence of noise and the restricted number of active neurons
in the cluster lead to an eventual decay of the correlation
functions, characterized by a time-constant TL NTO/T>>
1/cl. Thus the long-time limit referred to above corresponds
to TS << T << TL.

The cross-correlation functions between neurons in the
same cluster do not have a substantial peak centered at X =
0. Their magnitude is related to the long-time limit of their
autocorrelation functions through

CRR(O, 6', r) = iC-R(6CR('). [10]

There are no phase shifts associated with the cross-

correlation; i.e., X = 0 (Eq. 8), as the short-range connections
are excitatory. Thus, all of the active neurons in a cluster will
fire coherently as a result of the extensive, short-range
connectivity.
Temporal Coherence of Spatially Separated Clusters. The

coherence between neurons that belong to two separate
clusters depends on the coherence of the average phases of
the clusters. The cross-correlation function between a neuron
in the Rth cluster with one in the R'th cluster is

CRR'(0, ', T) = CR(6)CR'(6') CR', [ill]

where CRR' measures the correlation of the average phases of
the two clusters for times T << Nro - TL.
The value of CRR' depends on the strength of the effective

interaction between a cluster at R and one at R' and on the
effective noise that tends to randomize the relative phases of
the two clusters. The effective interaction, denoted JRR',
is a weighted average over the long-range connections
WRR'(O, 6') between neurons in clusterR and those in R'; i.e.,

WL
JRR' =

N

2v

X 0J 2 VR(6)\/CR(jiF(6 6')VR(6')\/C7i;Ki, [12]

0

where or is the width of the tuning curve (Fig. 1A). The
effective interaction of JRR' is a function of the difference in
the orientation of the stimuli, AN0 OA(R) - %(R'). The
magnitude of the effective noise that acts on the average
phases of the clusters is TIN. Thus the ratio of the effective
interaction strength to the effective noise level, which deter-
mines the magnitude of CRR', is WL/T 1.

z
w

FH
Cf)

-

0 X

z0.4

--

DIFFERENCE IN ORIENTATION PREFERENCE, 6-6'

FIG. 2. Interaction between two spatially separated clusters. (A)
Form of the long-range connectivity between neurons in different
clusters with orientation preferences and 6', respectively; F(x) =

(1 - a2a2/0x2)2e-x2/2C2 with E = 110. (B) An architecture that
incorporates neurons that are insensitive to the direction of motion
of the stimulus as well as those that are sensitive to the direction.

The absence of phase shifts in the experimentally observed
cross-correlations (6, 7) indicates that JRR' is excitatory.
Furthermore, experimental evidence (4, 6) and computa-
tional considerations suggest that JRR' is a rapidly decreasing
function of A60. The rate of decrease depends on the form of
F(6 - 6') (Eq. 12). We consider first the possibility that the
long-range connections represented by F(6 - 6') are purely
excitatory and occur only between neurons with similar
orientation preferences; i.e., F(6 - 0') o a(O - 6'). This
hypothesis leads to an effective interaction whose depen-
dence on ,A6 is roughly twice the width ofthe neuronal tuning
curve (Fig. lA). A sharper dependence ofJRR' on AO0 requires
the use of inhibitory as well as excitatory long-range con-

nections. A simple form of such connectivity, shown in Fig.
2A, leads toJRR' = (WL/N)e-(A9I)2/2e', where E determines the
angular range of the effective interaction.

Directional Selectivity. We have considered so far only
neurons that are sensitive to one direction of motion of the
stimulus (Fig. 1A). Stimulating two clusters of neurons with
co-linear bars moving in opposite directions-i.e., AO0 =

180°-will not generate coherence between the activity of
neurons in the two clusters.

It is known from experiment that even neurons that are not
selective to the direction of motion exhibit oscillatory output
in response to a stimulus moving either forward or backward
(6, 7). Yet the output of two such neurons remains uncorre-
lated when bars moving in opposite direction pass through
their respective, receptive fields (6, 7). These observations
can be accounted for within the model by incorporating
neurons that are insensitive to the direction of motion of the
stimulus (Fig. 2B). The short-range connections will not
depend on the directional properties of the neurons. How-
ever, the long-range connections will occur predominantly
between cells that are directionally selective and that have

B
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FIG. 3. Examples of the correlation between the average phases of two spatially separated clusters. (A) Correlation as a function of the
difference in orientation of two moving, short bars. The solid lines correspond to an effective interaction that uses the connectivity shown in
Fig. 2A while the dashed line assumes that only cells with identical orientation preference are connected. (B) Enhancement in the correlation
between two clusters that are stimulated by a long bar as opposed to two co-linear short bars. The length of the bar is expressed as the number
of receptive fields that it spans. (C) Segmentation offour oriented bars that span several receptive fields. The bars are ofequal length and spacing
and are arranged to subtend the same total angle (WL/T = 7). For bars arranged as a smoothly varying stimulus, pair-wise correlations between
adjacent clusters are equal with C12 = C23 = C34 = 0.6 (A6O = 150). Neurons in all of the active clusters fire in partial synchrony and the end-to-end
correlation is C14 = (C12)3 0.2. For bars arranged as discontinuous stimuli, pair-wise correlations between adjacent clusters are C12 = C34
= 0.8 (A00 = 00) and C23 0 (AO0 = 45°). The end-to-end correlation is C14 = 0.

the same directional preference. As a consequence, only
directionally sensitive neurons mediate the temporal coher-
ence between different clusters. The output of the neurons in
separate clusters will be coherent only when the two stimuli
move in the same direction.
The spatial extent and features of the stimulus must be

specified to evaluate the coherence between active clusters.
We consider below several examples of extended stimuli and
demonstrate the dependence of the coherence, CRR' (Eq. 11),
on global features of the stimulus. For each example we use
the form of F(6 - 0') shown in Fig. 2A, with e chosen so that
the half-width at half-maximum of JRR' is half that of the
tuning curve.

Stimulation by Two Short Bars. The simplest example of
long-range coherence involves two clusters that are stimu-
lated by separate, short bars whose length spans the individ-
ual receptive fields (Fig. 3A, solid lines). The correlation of
the average phases ofthe two clusters depends on the relative
orientation of the bars through JRR'. Note that the choice F(6
- 6') c (6S - 6o) results in a relatively weak dependence of
CRR' on AO0 (Fig. 3A, dashed line).

Short Versus Long Bars. The coherence between clusters
can be enhanced when several receptive fields, as opposed to
just two fields, are stimulated by bars moving with the same
orientation. The enhancement depends on the magnitude of
WL/T and is most pronounced when this ratio is smaller than
unity (Fig. 3B). The experimental evidence (6) is consistent
with WL/T - 1.
Extended Curved Objects. The curvature of stimuli that

span several receptive fields can be used to segment a
stimulus into separate objects. We illustrate this by consid-
ering the coherence between clusters in the presence of four,
long bars with orientations that vary in space (Fig. 3C). In the
case of a smooth variation there is a substantial correlation
between the output of neurons in all pairs of clusters,
including those at the end of the object. In contrast, with a
discontinuous variation in orientation the coherent activity of
the neurons is segmented into two groups.

DISCUSSION

Our results suggest that the experimental evidence for co-
herent oscillations in the cat visual cortex (4-7) has important
implications regarding the underlying pattern of neuronal
connectivity. (i) The effective interaction between the phases
of the neuronal output depends on the level of activity in both

the pre- and the postsynaptic cell. (ii) The connections
formed by cells with overlapping receptive fields are signif-
icantly stronger than those between cells with nonoverlap-
ping fields. (iii) Connections between cells with nonoverlap-
ping receptive fields have a strong dependence on their
respective orientational and directional preference.

In our model, we assumed that cells with substantially
overlapping receptive fields form connections that do not
depend strongly on the orientation preference of the pre- and
postsynaptic cell. This choice allows proximal stimuli with
disparate features to be linked as a single object. However,
the experimental evidence regarding this issue is unclear (18).
The form of the interaction between the phases of the pre-

and the postsynaptic neurons (Eq. 3) is suggestive of a fast,
Hebb-like modification of the strength of synaptic connection
(2). However, the couplings between the phases of the
neuronal oscillations will depend on the level of activity ofthe
neurons even when the underlying synapses have a fixed
strength. Whether this can account for the required depen-
dence on the activity of the pre- and postsynaptic cells is an
important issue.
The absence of phase shifts between the output of coher-

ently active neurons resulted from the use of predominantly
excitatory connections that did not contain time delays.
However, the connections between cortical neurons with
different receptive fields are mediated by axons with slow
propagation speeds (9). The delays induced by these con-
nections may be substantial. A preliminary analysis, similar
to that in ref. 11, indicates that no phase shifts occur between
the output of neurons in different clusters provided that the
delay time is shorter than ir/2o.
The presence of noise plays a vital role in controlling the

coherence throughout the network. This is particularly cru-
cial for dephasing the output of only weakly interacting
clusters. Random variation in the driving frequency of each
neuron [w(r); Eq. 2] is an additional, potential source of
noise. Networks of coupled oscillators with a distribution of
driving frequencies will remain coherent active provided that
the width of this distribution is small relative to the strength
of the interactions within a cluster (10); i.e., I1oIl - l/Ts (Eq.
9). In general, the coherence between different clusters can
also be modulated by a variation ofthe driving frequency with
some property of the stimulus. Systematic variation of the
frequency with the velocity of visual stimuli is observed (4).
The role of cortical connections in maintaining phase

coherence between neurons has been the topic of much
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recent investigation (12-17). The modulation of the coher-
ence of neuronal activity by orientation-coded stimuli has
been studied by numerical simulations of circuits with rela-
tively complex neuronal architectures and dynamics (12, 14,
15). Our phenomenological model ofphase oscillators greatly
simplifies the dynamics. It allowed a comprehensive, ana-
lytical study of the temporal and spatial coherence in terms
of few parameters, e.g., the scales of short-range and long-
range connection strength and the level of noise. This anal-
ysis provides explicit relations between the underlying neu-
ronal connectivity and the computational capability of the
network to segment extended stimuli.

APPENDIX
The equations for the noisy component of the phase of each
neuron that incorporate our assumptions about the form of
the connectivity are

r4'R(0, t) = tR(6, t)

- (WS/N) > VR(6)VR(0')sin(4R(0, t)- 4R(', t))

- (WL/N2) z z VR(0)F(0 - 0')VR'(6')
R'R 0'

sin(4R(6, t) - 4R'(0', t)). [Al]

The term 7qR(O, t) represents white noise with a variance
2TrOS(t - t')ORR'300'. The sum over 0' includes all of the
active neurons in a cluster. The sum over R' includes only
clusters that are activated by the stimulus. The analysis of
Eq. Al is performed in two stages. Terms that are of order
unity describe the coherence of the activity within the clus-
ters and do not involve the interactions between clusters.
They are analyzed using mean-field theory, exact in the limit
of large N; see Eq. A2 below. The relationship between the
phases of different clusters is described by terms that are of
order 1/N; see Eq. A4 below.
The intracluster equations reduce to

T041(O, t) = i7(0, t) - WsM V(6)sin(4(0, t) - O), [A2]

where the coordinate of the cluster has been suppressed and
the orientation of the stimulus is taken to be 0o = 00. The
parameter M is determined self-consistently by

r21
M (dO/1o)V(0)m(0), [A3

where m(8) is the local order parameter that characterizes
the temporal coherence of the neurons with orientational
preference 6. Both m(@) and the phase q, which corresponds
to the mean phase of the whole cluster, are defined by

m()ei-= (ei(O.0)). [A4]

The phase q, fluctuates on time scales of order NMO and does
not affect the intracluster correlations on shorter time scales.
Evaluating Eq. A4 yields m(0) = H(WsMV(6)/T), where H(x)
= l1(x)/Io(x) is the ratio of modified Bessel functions. Sub-
stituting this result into Eq. A3 yields a self-consistent
equation for M. For T greater than Tc = (WS/2)f21r (dO!
o)V2(0), the only solution is M = 0. For V(O) of the form
shown in Fig. 1A, Tc - 0.5 Ws. Below Tc, M is greater than
zero. Using Eq. A2 the correlation functions C(6, 0', T) =
(cos(#(O, t) - 4(O ', t + r))), were evaluated. Their long-time
limit is m(O)m(0') = (C(0)C(O'))112 (Fig. 1C and Eq. 10). The
time dependence of the autocorrelation function is approxi-

mately C(Q, T) - m2(0) + (1 - m2(0))e -TTS with rs given by
Eq. 9 (Fig. 1B).
The intercluster phase equations are found by summing

Eq. Al over the internal coordinates of the clusters, 6 and 6';
i.e.,

4o0R(t) = 21R(t) - JRR'sin(kR(t) - 4'w(t)), [A5]R'#&R

where 4iR is the average phase ofthe Rth cluster, (qR(t)R'(t'))
= (2T/N)6c,8(t - t'), and JRR' is given by Eq. 12. The OR
vary on time scales of order Nro. The equal-time correlation
function between neurons in different clusters is given by Eq.
11 with CRR' (CoS(IR(t) - qR'(t))),. The function CRR' was
calculated analytically for a few simple cases. For two, short
bars at R and R', Eq. A5 reduces to a single equation for the
phase difference k - O This yields CRR, = H(NJRR'/T)
(Fig. 3A). For the case of a long, straight bar spanning L
receptive fields (Fig. 3B), there is a set of L fully connected
phase oscillators with a constant coupling JRR' for AO = O.
For the example of the smooth, curved object (Fig. 3C), the
pair-wise interactions between nonadjacent clusters are neg-
ligible due to their orientation difference. This results in a
linear chain of coupled oscillators.
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