Secreted IgM deficiency leads to increased BCR signaling that results in abnormal splenic B cell development Dimitrios Tsiantoulas^{1,2,*}, Mate Kiss^{1,2}, Barbara Bartolini-Gritti^{1,2}, Andreas Bergthaler¹, Ziad Mallat³, Hassan Jumaa⁴, Christoph J. Binder^{1,2,*} ## **Supplementary Materials** Figure S1 **Figure S1. Secreted IgM deficiency results in altered splenic mature B cell development.** Bar graph shows T1 (B220+IgM+CD93+CD21-lowCD23-), T2 (B220+IgMhighCD93+CD21+CD23+), T3 (B220+IgM+CD93+CD21+CD23+), FO (B220+IgM+CD93-CD21+CD23+) and MZ (B220+IgM+CD93-CD21-lowCD23-) B cells of *slgM+/+* (grey bars) and *slgM-/-* (black bars) mice (n=4 mice per group). Data are shown as mean ± SEM and are representative of two independent experiments. (unpaired t test; * P<0.05, **** P<0.0001). Figures S2. Flow cytometry gating strategy of splenic B cells. Splenic B cell subsets: follicular and CD23⁺ transitional stage 2 B cells (FO/T2; blue) are defined as B220⁺CD21⁺CD23⁺CD43⁻, marginal zone (MZ; purple) B cells as B220⁺CD21^{high}CD23⁻CD43⁻, CD21⁺CD23⁻ B cells as B220⁺CD21⁺CD23⁻ CD43⁻ (red), transitional stage 1 (T1; green) B cells as B220⁺CD21^{low}CD23⁻CD43⁻ and newly formed (NF; grey) B cells as B220⁺CD21⁻CD23⁻CD43⁻. To assess only FO B cells, CD21^{high}CD23⁺ B cells were excluded from the gate (not shown).