
Supplementary Note 1 - Parity-time symmetric effective Hamiltonian in ultra-

cold atoms

Here we describe in detail how a parity-time (PT) symmetric field theory described by

equation (1) in the main text can be implemented by using ultracold atoms.

We consider a situation in which atoms in the system have an energy level diagram

shown in Supplementary Fig. 1. Here the excited state |e⟩ has the frequency ω0 relative to

the ground state |g⟩ and fast decay channels to other states with the total decay rate Γ much

larger than the spontaneous emission rate from |e⟩ to |g⟩. The system is subject to a weak

near-resonant light whose electric filed is given by E(x, t) = 2E0(x) cos(ωLt). The dynamics

of atoms in the levels {|g⟩, |e⟩} is then described by the many-body Lindblad equation:

dρ̂

dt
= − i

ℏ
[Ĥ, ρ̂]− Γ

2

∫ [
Ψ̂†

e(x)Ψ̂e(x)ρ̂+ ρ̂Ψ̂†
e(x)Ψ̂e(x)− 2Ψ̂e(x)ρ̂Ψ̂

†
e(x)

]
dx, (1)

where Ψ̂e denotes the field operator of an excited atom and the terms involving Γ describe a

loss of atoms in the state |e⟩. Here Ĥ is the Hamiltonian of the interacting two-level atoms:

Ĥ = Ĥg + Ĥe + V̂ . (2)

Going onto the rotating frame and making the rotating-wave approximation, the Hamilto-

nians Ĥg and Ĥe of ground- and excited-state atoms and the interaction Hamiltonian V̂

Ω Γ

〉|g

〉|e δ

ω0

Supplementary Figure 1. Energy-level diagram of an atom. The excited state |e⟩ has the

frequency ω0 relative to the ground state |g⟩ and fast decay modes with the total decay rate Γ. A

weak near-resonant light with the Rabi frequency Ω and detuning δ creates an effective imaginary

potential for the ground-state atom, provided that Γ is much larger than the spontaneous decay

rate from |e⟩ to |g⟩.
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describing the Rabi coupling between the two atomic levels are given by

Ĥg =

∫
dx

[
Ψ̂†

g(x)

(
−ℏ2∇2

2m
+ Ug(x)

)
Ψ̂g(x) +

g

2
Ψ̂†

g(x)Ψ̂
†
g(x)Ψ̂g(x)Ψ̂g(x)

]
, (3)

Ĥe =

∫
dx Ψ̂†

e(x)

(
−ℏ2∇2

2m
+ Ue(x) + ℏδ

)
Ψ̂e(x), (4)

V̂ = −ℏ
2

∫
dx

(
Ω(x)Ψ̂†

g(x)Ψ̂e(x) + H.c.
)
≡ V̂− + V̂+, (5)

where Ug,e(x)’s are optical trapping potentials of the ground- and excited-state atoms created

by a far-detuned light, g is the strength of the contact interaction between the ground-

state atoms, δ = ωL − ω0 is the detuning, Ω(x) = 2d · E0(x)/ℏ is the Rabi frequency with

d = ⟨e|d̂|g⟩ being the dipole moment, and V̂+(−) are the coupling terms that cause excitation

(deexcitation) of the atoms. Let us introduce the non-Hermitian Hamiltonian Ĥe,eff of the

excited-state atoms by

Ĥe,eff = Ĥe −
iℏΓ
2

∫
dxΨ̂†

e(x)Ψ̂e(x). (6)

Then, the time-evolution equation (1) is written as follows:

dρ̂

dt
= − i

ℏ

[(
Ĥg + Ĥe,eff + V̂

)
ρ̂− ρ̂

(
Ĥg + Ĥ†

e,eff + V̂
)]

+ Γ

∫
dxΨ̂e(x)ρ̂Ψ̂

†
e(x). (7)

In the limit of rapid decay Γ ≫ δ,Ω, we can adiabatically eliminate the rapidly evolving

excited states and obtain the effective dynamics of the ground-state atoms. We achieve this

by solving Supplementary Equation (7) using the second-order perturbation theory with

respect to weak coupling V̂ [1]. As shown below, the resulting time-evolution equation

for the ground-state atoms is given by Supplementary Equation (28), and it reduces to

the effective non-Hermitian dynamics (33) with the effective Hamiltonian (29) when the

postselection is implemented.

To perform the perturbative analysis, we work in the interaction picture, where the

density matrix is given by

ˆ̃ρI(t) = ei(Ĥg+Ĥe,eff)t/ℏρ̂(t)e−i(Ĥg+Ĥ†
e,eff)t/ℏ, (8)

and a general operator Ô is represented by

ÔI(t) = ei(Ĥg+Ĥe,eff)t/ℏÔe−i(Ĥg+Ĥe,eff)t/ℏ. (9)

We note that ˆ̃ρI in Supplementary Equation (8) is not normalized to unity in general. The

time-evolution equation (7) is then simplified to

˙̃̂ρI = − i

ℏ

[
V̂I
ˆ̃ρI − ˆ̃ρIV̂†

I

]
+ Γ

∫
dxΨ̂I,e(x)ˆ̃ρIΨ̂

†
I,e(x). (10)
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We assume that all the atoms reside in the ground state at t = 0. Then, we decompose the

evolving state ˆ̃ρI(t) into a perturbation series with respect to the weak coupling V̂I:

ˆ̃ρI(t) = ˆ̃ρ
(0)
I (t) + ˆ̃ρ

(1)
I (t) + ˆ̃ρ

(2)
I (t) + · · · ,

∣∣∣ ˆ̃ρ(n)I (t)
∣∣∣ ∝ (

|Ω|
Γ

)n ∣∣∣ ˆ̃ρ(0)I (t)
∣∣∣ , (11)

where | · · · | denotes the trace norm. The recursive equations of the first three terms in the

expansion (11) are given by

˙̃̂ρ
(0)
I = 0, (12)

˙̃̂ρ
(1)
I = − i

ℏ

[
V̂I
ˆ̃ρ
(0)
I − ˆ̃ρ

(0)
I V̂†

I

]
, (13)

˙̃̂ρ
(2)
I = − i

ℏ

[
V̂I
ˆ̃ρ
(1)
I − ˆ̃ρ

(1)
I V̂†

I

]
+ Γ

∫
dxΨ̂I,e(x)ˆ̃ρ

(2)
I Ψ̂†

I,e(x). (14)

From Supplementary Equation (12), we can take ˆ̃ρ
(0)
I as a time-independent operator. Sup-

plementary Equation (13) can formally be integrated to give

ˆ̃ρ
(1)
I (t) = − i

ℏ

∫ t

0

dt′
[
V̂I(t

′)ˆ̃ρ
(0)
I − ˆ̃ρ

(0)
I V̂†

I (t
′)
]
. (15)

To integrate out the excited states and obtain the effective dynamics of the ground-state

atoms, we decompose ˆ̃ρ
(2)
I into the subspaces of the ground- and excited-state atoms. To

do so, we introduce the projection P̂g onto the ground-state manifold by P̂g =
∑

N P̂N
g ,

where P̂N
g denotes the projection onto the subspace spanned by quantum states containing

N ground-state atoms only. We also introduce the projection Q̂1
e onto quantum states

having a single excited-state atom (and an arbitrary number of ground-state atoms). Then,

Supplementary Equation (14) can be decomposed as

P̂g
˙̃̂ρ
(2)
I P̂g = − i

ℏ
P̂g

[
V̂I
ˆ̃ρ
(1)
I − ˆ̃ρ

(1)
I V̂†

I

]
P̂g + ΓP̂g

∫
dxΨ̂I,eQ̂1

e
ˆ̃ρ
(2)
I Q̂1

eΨ̂
†
I,eP̂g, (16)

Q̂1
e
˙̃̂ρ
(2)
I Q̂1

e = − i

ℏ
Q̂1

e

[
V̂I
ˆ̃ρ
(1)
I − ˆ̃ρ

(1)
I V̂†

I

]
Q̂1

e, (17)

where Supplementary Equation (17) follows from the fact that ˆ̃ρ
(2)
I contains, at most, one

excited-state atom. We adiabatically eliminate the excited states by integrating out Sup-

plementary Equation (17):

Q̂1
e
ˆ̃ρ
(2)
I (t)Q̂1

e = − i

ℏ
Q̂1

e

∫ t

0

dt′
[
V̂I(t

′)ˆ̃ρ
(1)
I (t′)− ˆ̃ρ

(1)
I (t′)V̂†

I (t
′)
]
Q̂1

e. (18)

Substituting Supplementary Equations (15) and (18) into (16), we obtain

P̂g
˙̃̂ρ
(2)
I P̂g = − 1

ℏ2
P̂g

[
V̂I(t)

∫ t

0

dt′V̂I(t
′)ˆ̃ρ

(0)
I +H.c.

]
P̂g

+
Γ

ℏ2
P̂g

∫
dxΨ̂I,eQ̂1

e

∫ t

0

dt′
∫ t′

0

dt′′
[
V̂I(t

′)ˆ̃ρ
(0)
I V̂†

I (t
′′) + H.c.

]
Q̂1

eΨ̂
†
I,eP̂g. (19)
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Here, in the second line in Supplementary Equation (19), the terms proportional to V̂IV̂I
ˆ̃ρ
(0)
I

or ˆ̃ρ
(0)
I V̂†

I V̂
†
I vanish because of the projection Q̂1

e . Then, since we assume that the time scale

of the strong dissipation is fast compared with other time scales appearing in the system,

we approximate the leading contributions by

e−i(Ĥg+Ĥe,eff)t/ℏP̂g ≃ P̂g, e−i(Ĥg+Ĥe,eff)t/ℏQ̂1
e ≃ e−Γt/2Q̂1

e. (20)

From these equations, it follows that

P̂gV̂I(t) = P̂ge
i(Ĥg+Ĥe,eff)t/ℏ(V̂+ + V̂−)e

−i(Ĥg+Ĥe,eff)t/ℏ

≃ P̂gV̂−Q̂1
ee

−i(Ĥg+Ĥe,eff)t/ℏ

≃ e−Γt/2P̂gV̂−Q̂1
e. (21)

Similarly, we obtain

Q̂1
eV̂I(t)P̂g = Q̂1

ee
i(Ĥg+Ĥe,eff)t/ℏ(V̂+ + V̂−)e

−i(Ĥg+Ĥe,eff)t/ℏP̂g

≃ eΓt/2Q̂1
eV̂+P̂g (22)

We then perform the integration in the first line on the right-hand side of Supplementary

Equation (19) and obtain

− 1

ℏ2
P̂g

[
V̂I(t)

∫ t

0

dt′V̂I(t
′)ˆ̃ρ

(0)
I +H.c.

]
P̂g ≃ − 1

ℏ2

[
P̂gV̂−Q̂1

ee
−Γt/2

∫ t

0

dt′eΓt
′/2Q̂1

eV̂+P̂g
ˆ̃ρ
(0)
I +H.c.

]
≃ − 2

ℏ2Γ

(
P̂gV̂−V̂+P̂g

ˆ̃ρ
(0)
I + ˆ̃ρ

(0)
I P̂gV̂−V̂+P̂g

)
= −

{∫
dx

|Ω(x)|2

2Γ
Ψ̂†

g(x)Ψ̂g(x), ˆ̃ρ
(0)
I

}
, (23)

where we use Supplementary Equations (21), (22), and the relations P̂g
ˆ̃ρ
(0)
I P̂g = ˆ̃ρ

(0)
I and

(Q̂1
e)

2 = Q̂1
e in the first line, and use Supplementary Equation (5) to derive the last line. To

calculate the last line in Supplementary Equation (19), we approximate

Q̂1
e

∫ t

0

dt′
∫ t′

0

dt′′
[
V̂I(t

′)ˆ̃ρ
(0)
I V̂†

I (t
′′) + H.c.

]
Q̂1

e ≃ 2

∫ t

0

dt′
∫ t′

0

dt′′eΓ(t
′+t′′)/2Q̂1

eV̂+
ˆ̃ρ
(0)
I V̂−Q̂1

e

≃ 4eΓt

Γ2
V̂+

ˆ̃ρ
(0)
I V̂−, (24)

and

P̂gΨ̂I,eQ̂1
e ≃ e−Γt/2P̂gΨ̂eQ̂1

e, Q̂1
eΨ̂

†
I,eP̂g ≃ e−Γt/2Q̂1

eΨ̂
†
eP̂g (25)
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The last line in Supplementary Equation (19) can then be calculated as

Γ

ℏ2
P̂g

∫
dxΨ̂I,eQ̂1

e

∫ t

0

dt′
∫ t′

0

dt′′
[
V̂I(t

′)ˆ̃ρ
(0)
I V̂†

I (t
′′) + H.c.

]
Q̂1

eΨ̂
†
I,eP̂g

≃ 4

ℏ2Γ

∫
dxP̂gΨ̂e(x)V̂+P̂g

ˆ̃ρ
(0)
I P̂gV̂−Ψ̂

†
e(x)P̂g

≃ P̂g

∫
dx

|Ω(x)|2

Γ
Ψ̂g(x)ˆ̃ρ

(0)
I Ψ̂†

g(x)P̂g, (26)

where we use Supplementary Equations (24) and (25) and P̂g
ˆ̃ρ
(0)
I P̂g = ˆ̃ρ

(0)
I in the second

line. To derive the last line, we use the following relation

P̂gΨ̂e(x)V̂+P̂g = −ℏΩ∗(x)

2
P̂gΨ̂g(x)P̂g. (27)

From equations (19), (23), (26) and P̂g
˙̃̂ρ
(0)
I P̂g = P̂g

˙̃̂ρ
(1)
I P̂g = 0, the effective time-evolution

equation of the ground-state atoms is obtained as

dρ̂g
dt

= − i

ℏ

(
Ĥg,eff ρ̂g − ρ̂gĤ†

g,eff

)
+

∫
dx

|Ω(x)|2

Γ
Ψ̂g(x)ρ̂gΨ̂

†
g(x), (28)

Ĥg,eff ≡ Ĥg − iℏ
∫

dx
|Ω(x)|2

2Γ
Ψ̂†

g(x)Ψ̂g(x), (29)

where we go back to the Schrödinger picture and introduce the density matrix ρ̂g projected

onto the ground-state manifold by

ρ̂g(t) = P̂gρ̂(t)P̂g ≃ P̂g

(
ρ̂(0)(t) + ρ̂(1)(t) + ρ̂(2)(t)

)
P̂g. (30)

The non-Hermitian Hamiltonian (29) describes the effective dynamics of the system when

we postselect realizations in which no quantum jumps occur, i.e., no atoms escape from

the ground state [2–4]. To clarify this point, let us assume that N ground-state atoms are

initially prepared, i.e., P̂N
g ρ̂(0)P̂N

g = ρ̂(0). This initial condition implies

P̂N+l
g ρ̂g(0)P̂N+l

g = 0 (l = 1, 2, . . .), (31)

where we use
[
P̂N

g , P̂g

]
= 0. From Supplementary Equations (28) and (31), we can in

particular show that, during the course of the time evolution,

P̂N+1
g ρ̂g(t)P̂N+1

g = 0. (32)

Let us now consider the dynamics of the postselected system ˆ̃ρNg (t) ≡ P̂N
g ρ̂(t)P̂N

g =

P̂N
g ρ̂g(t)P̂N

g , where the dynamics is conditioned such that no atoms are lost from the
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initial state. Using Supplementary Equations (28) and (32), we can show that the dynamics

of the postselected system ˆ̃ρNg is governed by the non-Hermitian Hamiltonian (29):

dˆ̃ρNg
dt

= − i

ℏ

(
Ĥg,eff

ˆ̃ρNg − ˆ̃ρNg Ĥ
†
g,eff

)
. (33)

Some remarks are in order here. First, an imaginary potential −i|Ω(x)|2/(2Γ) in Supple-

mentary Equation (29) arises from the second-order process of a virtual excitation and

de-excitation of the ground-state atoms (see Supplementary Equation (23)). Since no atoms

are lost in this process, the non-Hermitian contribution exists even when we do not observe

actual losses of atoms. Physically, such a contribution originates from the measurement

backaction associated with continuous monitoring of the population of atoms in the excited

state [2]. Second, we note that the expression of the imaginary potential indicates that the

loss rate of atoms from the ground state is suppressed by a factor of Ω/Γ for large Γ. In

particular, in the limit of Γ → ∞, the dynamics reduces to the Hermitian evolution governed

by Ĥg. This limit can be interpreted as the quantum Zeno dynamics [5], where the strong

measurement confines the dynamics into the decay-free subspace and the time-evolution

obeys the effective “Zeno” Hamiltonian. In our model, such a Hamiltonian is given by

Ĥg = P̂gĤP̂g, where the total Hamiltonian Ĥ is projected onto the decay-free, ground-state

manifold. In a general case of a strong but finite Γ, we need to perform careful perturbative

analyses [6–9] to obtain the correction terms beyond the quantum Zeno dynamics, as we

have conducted above.

We are now in a position to derive the PT-symmetric Hamiltonian. We consider a system

confined in a one-dimensional (1D) optical trap, and assume that the system is subject to a

real shallow periodic potential (optical lattice), U(x) = Vr cos(2πx/d), which can be created

by a far-detuned off-resonant light. Here Vr is the lattice potential which is controlled by

changing the intensity of the light, and d = λ/2 is the lattice spacing. We then superimpose

the near-resonant standing-wave light discussed above with the displacement of d/4. We

thus have E0(x) = E0 cos(kx−π/4) with k = 2π/λ. From Supplementary Equations (3) and

(29), the resulting Hamiltonian is obtained as

Ĥeff =

∫
dxΨ̂†(x)

(
−ℏ2∇2

2m
+ V (x)

)
Ψ̂(x) +

g

2

∫
dxΨ̂†(x)Ψ̂†(x)Ψ̂(x)Ψ̂(x), (34)
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where we drop the subscript g and introduce

V (x) = Vr cos

(
2πx

d

)
− iVi sin

(
2πx

d

)
, (35)

Vi =
|d|2E2

0

ℏΓ
. (36)

Here we redefine the interaction parameter g by incorporating the renormalization factor

due to the 1D confinement and ignore the constant term −iViN proportional to the total

number of atoms. This constant term is irrelevant in the postselected dynamics here because

it is cancelled upon the normalization of the quantum state. The effective Hamiltonian (34)

satisfies PT symmetry because the potential satisfies the condition V (x) = V ∗(−x). While

we here assume that the wavelengths of the lasers creating the real and imaginary potentials

in Supplementary Equation (35) are the same, this assumption can be well met because the

detuning required for the real potential causes only a negligible shift in λ, as detailed later.

Finally, we derive the low-energy effective theory. An interacting 1D Bose gas as described

by Supplementary Equation (34) without the potential V (x) is described at low energies by

the Tomonaga-Luttinger liquid theory [10]:

ĤTLL =

∫
dx

ℏv
2π

[
K(∂xθ̂)

2 +
1

K
(∂xϕ̂)

2

]
. (37)

Here θ̂ is related to the phase of the bosonic field operator Ψ̂†(x) =
√
ρ̂(x)e−iθ̂(x), and ϕ̂ is

related to the density operator as

ρ̂(x) =

[
ρ0 −

1

π
∂xϕ̂

] ∞∑
p=−∞

e2ip(πρ0x−ϕ̂(x)), (38)

where ρ0 is the average atomic density. We discuss the perturbative role of the potential

term

ĤV =

∫
dx V (x)Ψ̂†(x)Ψ̂(x) =

∫
dx V (x)ρ̂(x). (39)

Since we are interested in the commensurate phase transition, we assume the unit filling

ρ0d = 1, i.e., one atom per site. By substituting Supplementary Equations (35) and (38)

into Supplementary Equation (39) and ignoring fast oscillating terms, we obtain [11]

ĤV = ρ0Vr

∫
dx cos

[
2ϕ̂(x)

]
− iρ0Vi

∫
dx sin

[
2ϕ̂(x)

]
. (40)

Defining αr,i ≡ πρ0Vr,i, we arrive at the PT-symmetric potential term in equation (2) in the

main text.
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Supplementary Note 2 - Experimental implementation and signatures in ultra-

cold atoms

We here describe detailed experimental signatures of the PT-symmetric system in ultra-

cold atoms. To create an imaginary optical potential, we need to realize atomic levels as

illustrated in Supplementary Fig. 1. The fast decay modes can be realized by choosing (i)

appropriate spontaneous emission processes or (ii) light-induced transitions. In the scheme

(i), one can use the F = 3 to F ′ = 3 transition (5S1/2 to 5P3/2) of
85Rb atoms to create an

imaginary potential [12], where the excited F ′ = 3 state has a decay channel to the F = 2

state. Implementations of complex potentials have also been demonstrated by using other

metastable atomic states [13–15]. The postselection of the null measurement outcomes can

be implemented by, e.g., applying the state-selective imaging technique [16, 17]. Here we

first load the ground-state atoms into a real optical potential with an accurately estimated

number of atoms. Such a preparation has been achieved with the single-site addressing tech-

nique in ultracold atomic experiments [18, 19]. Then we ramp up an imaginary potential

and let the system evolve in time. When an atom is excited by a weak near-resonant light,

it quickly decays into modes other than the original ground state. Thus, the postselection

can be realized by applying the state-selective imaging at the final stage of the time evo-

lution, thereby measuring the number of atoms residing in the ground state, and selecting

the realizations in which this number is unchanged between the initial and final states. In

this way, we can postselect processes with null quantum jump. We note that the experi-

mental fidelity of measuring the atom number with such site-resolved imaging has reached

almost unit fidelity (99.5% according to Ref. [20]). In view of this development, we expect

that the postselection process as described above can be performed with near-unit fidelity.

We note that various types of postselections have already been achieved owing to the high

experimental fidelity [17, 19, 21].

We next discuss the scheme (ii) that exploits light-induced transitions. Here, the level

structures for creating an imaginary potential can be obtained by inducing a fluorescent

transition between the excited state and a state other than the original ground state. In

this setup, when the ground-state atom is excited, it is quickly lost from an optical potential

because the recoil energy due to fluorescent imaging light causes heating of atoms. However,

only a few tens of scattered photons are enough for the loss of those atoms [22] and thus
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creating an imaginary potential. If the resulting loss rate Γ is much larger than both the

spontaneous emission rate and the Rabi frequency Ω, we can adiabatically eliminate the

excited state and implement an effective imaginary potential [13]. The postselection of the

null outcome can be realized, for example, by continuously monitoring the system with

quantum gas microscopy. If an atom is excited during the time evolution, it emits photons

which can be detected by quantum gas microscopy [20, 23]. Thus, by selecting the events in

which no atoms emit photons, the postselection of null quantum jumps (no atomic loss) can

be realized. We may also double check the postselection process by performing a projective

atom-number measurement at the final stage of the time evolution and ensuring that the

atom number stays constant during the time evolution, as described above.

While substantial atomic losses usually lead to experimental difficulties, our theoretical

predictions are accessible by using a very weak imaginary potential with which the atomic

loss rate can be made arbitrarily small. This is because the key parameter which drives the

phase transitions discussed in the main text is the ratio between gi and gr, which is equivalent

to the ratio between the amplitudes of the imaginary and real potentials (see Supplementary

Equation (40)), and the imaginary potential required to induce the transition can be made

very weak if the depth of the real part of the optical potential is chosen to be sufficiently

small. Indeed, such a weak imaginary potential can be implemented in our model since the

atomic loss rate is suppressed by a factor of Ω/Γ in the limit of large Γ (see Supplementary

Equation (29)).

Since the depth of the real potential can be made small, and the condition on the Rabi

frequency ∆off > Ω can easily be met owing to the smallness of the optical depth, the only

requirement for the detuning ∆off of the off-resonant light for the real part of the optical

potential is ∆off > Γ. This point validates our assumption that the real and imaginary

potentials have the same periodicity. For example, for (i) the spontaneous emission process

in 85Rb or (ii) the light-induced transition in the D2 transition of 87Rb, Γ is of the order

of tens of MHz [12, 22]. Thus, if we set the detuning at ∆off = 100 GHz, the off-resonant

condition is well satisfied, while such a detuning causes a less than 0.1% shift in the optical

wavelength.

We finally discuss experimental signatures of the theoretical predictions described in the

main text. First, the measurement-induced Berezinskii-Kosterlitz-Thouless (BKT) transi-

tion corresponds to a 1D superfluid-to-Mott-insulator transition for ultracold atoms. This
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is associated with a power-law divergence in the momentum distribution at zero momentum

[11], which can be detected by applying the standard techniques such as time-of-flight imag-

ing [24]. Second, the PT symmetry breaking can be probed by detecting the single-mode

lasing dynamics of the system. In the PT-broken region, the system has an excited state

whose eigenvalue possesses a positive imaginary contribution; such an excited state would

have an exponentially growing amplitude in the time evolution. Thus, after exciting the

system through, e.g., shaking of an optical lattice [25], the system eventually approaches

the state having the largest imaginary part of the eigenvalue. Such a single-mode lasing

dynamics entails a significant decrease in the entropy of the system, which can be probed

from shot-to-shot fluctuations in in-situ imaging of atomic gases [17, 19, 21, 25]. Third, the

anomalous variation of the critical exponent shown in Fig. 3 in the main text can be inves-

tigated through the analysis of the shot-to-shot noise correlations in density fluctuations of

a 1D Bose gas, as demonstrated in Ref. [26].

Supplementary Note 3 - Preparation of the ground state in the PT-symmetric

spin-chain model

Let us here discuss how we can study the ground state of the PT-symmetric spin-chain

model in the PT-broken regime. When the PT symmetry is broken, some excited eigen-

states turn out to have complex pairs of eigenvalues while the ground state remains to have

a real eigenvalue (see Supplementary Fig. 2(a)-(d) for typical spectra). In particular, there

exist high-lying unstable modes having positive imaginary parts of eigenvalues. As a re-

sult, if the system is significantly perturbed and highly excited, the amplitudes of these

modes can grow in time and eventually govern the physical properties of the system. This

is reminiscent of the phenomenon known as parametric instability or self-pulsing [27] in

excition-polariton systems, which in general destroys the off-diagonal quasi-long-range order

in 1D Bose systems [28–30].

In contrast, our main focus here is on the ground state that sustains the quantum critical

behavior. This state is indeed relevant in our setup, where the system is initially prepared

in the zero-temperature state of the hermitian Hamiltonian and then the imaginary part of

the potential required for the PT symmetry is adiabatically ramped up. We numerically

demonstrate in Supplementary Fig. 3 that the system remains in the ground state with

almost unit fidelity for a long time interval. Here we consider the spin-chain model (equa-
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Supplementary Figure 2. Exact finite-size spectra. The spectra of the lattice spin-chain model

are plotted with the parameters −∆ = 0.5, hs = 0.0, N = 12 for different strengths of the imaginary

hopping (a) γ = 0, (b) γ = 0.025, (c) γ = 0.05, and (d) γ = 0.075. When the PT symmetry is

broken, some of excited states have pairs of complex eigenvalues which are conjugate to each other,

while the ground state remains to have a real eigenvalue. The plotted energy levels reside in the

sector (Sz = 0, q = 0, P = T = 1). The ground state (GS) is indicated by the black arrow.

tion (4) in the main text) and adiabatically ramp up the imaginary term with the time

dependence γ(t) = γ ×
(
1− 2/

(
e(t/τ)

2
+ 1

))
, where τ characterizes the timescale of the

operation. The initial state |Ψ(0)⟩ is chosen to be the ground state of the Hamiltonian with

γ(0) = 0, and the time evolution |Ψ(t)⟩ is calculated by diagonalizing the Hamiltonian at
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Supplementary Figure 3. Ground-state fidelity in the PT-broken regime. The time evolution

of the ground-state fidelity of the system in the PT-broken regime is plotted for several different

values of τ . The imaginary hopping term γ is ramped up with different timescales τ = 0, 20, 50, 100.

The ground state |ΨGS,γ(t)⟩ is calculated from the exact diagonalization of the Hamiltonian at each

time step. The parameters are set to −∆ = 0.5, hs = 0, γ = 0.05, and N = 12.

each time step. Supplementary Figure 3 shows the ground-state fidelity |⟨ΨGS,γ(t)|Ψ(t)⟩| of

the instantaneous Hamiltonian with γ(t), indicating that the system remains in the ground

state for a time much longer than the ramping time τ . Using a typical experimental time

scale ℏ/J = 3.6/(2π) ms [31], the lifetime of the ground state can reach ∼ 150 ms, which is

sufficiently long compared with a typical operation time of ultracold atom experiments [31].

We note that the first signature of the enhancement of superfluid correlation can appear

from a relatively small size such as ∼ 10 sites (see Fig. 3b in the main text).
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Supplementary Methods - Determination of the phase diagram of the lattice

model

Here we describe in detail the methods for determining the BKT and PT phase boundaries

in the lattice model (equation (4) in the main text). We first describe the so-called level

spectroscopy method [32, 33], which has been developed to accurately determine the BKT

transition point. The key idea of this method is to relate the low-energy spectrum to the

running coupling constants that appear in the renormalization group (RG) equations. Under

the periodic boundary condition, the lattice Hamiltonian is invariant with respect to spin

rotation about the z axis, translation by two sites, space inversion, and spin reversal. The

corresponding conserved quantum numbers are the total magnetization Sz ≡
∑N

i=1 S
z
i , the

wavenumber q = 2πk/L (k ∈ Z, L ≡ N/2), the parity P = ±1, and the spin reversal T = ±1.

The ground state with energy Eg(L) resides in the sector (Sz = 0, q = 0, P = T = 1).

Following Ref. [33], we denote the second lowest eigenenergy in this sector by E0 and the

lowest eigenenergy in the sector (Sz = ±4, q = 0, P = 1) by E3. Near the BKT transition

line, these excitation energies satisfy [32]

E0(L)− Eg(L) =
2πv

L

(
2 +

1

3
δ(l)− 8

3
g′(l)

)
, (41)

E3(L)− Eg(L) =
2πv

L
(2− δ(l)), (42)

where δ ≡ K − 2, g′ ≡
√
g2r − g2i , and the logarithmic RG scale l is related to the system

size L via el = L/π. At the lowest order of the RG flow equation (3) in the main text,

the boundary of the BKT transition corresponds to δ = 2g′. Since E0 = E3 is equivalent

to this condition, the BKT transition point is determined from the crossing point of these

two energy levels. In our model, this corresponds to the crossing of the levels shown as the

red dashed line and the blue solid line in Supplementary Fig. 4. In numerical calculations,

we obtain the excitation energy of the energy level (Sz = ±4, q = 0, P = 1) by multiplying

that of the level (Sz = ±1, q = 0, P = 1) by a factor of 16 to minimize a change in

the field-theory parameters due to an increase in the total magnetization Sz in finite-size

systems. We note that, even though we consider a non-Hermitian model here, the level

spectroscopy method is applicable because the BKT phase boundary is entirely within the

PT-unbroken region and the low-energy spectrum is thus equivalent to that of the sine-

Gordon model as proved in the main text. We calculate the transition point for different

system sizes (Supplementary Fig. 4(a)-(c)), and extrapolate it to the thermodynamic limit
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to determine the BKT transition point (Supplementary Fig. 4(d)). Since −∆ = cos(π/2K)

for hs = γ = 0 and the BKT transition occurs near K = 2, our analysis focuses on a region

around −∆ = cos(π/4) = 1/
√
2.

The PT threshold is determined from the first coalescence point in the low-energy spec-

trum. To confirm that the identified point indeed represents an exceptional point of the

spectrum, we plot the square of the energy difference (δE)2 and test the square-root scaling

of δE which appears when an exceptional point is formed by the coalescence of two eigen-

states [1, 34] (see insets in Supplementary Fig. 4(a)-(c)). We then perform a linear fit to

the (δE)2-γ plot and identify the PT threshold γPT for different system sizes. Finally, we

extrapolate it to the thermodynamic limit and determine the PT symmetry breaking point

(Supplementary Fig. 4(d)).
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Supplementary Figure 4. Exact finite-size spectra for different system sizes. The spectra

are plotted with the parameters −∆ = 0.73 and hs = 0.1 for different system sizes (a) N = 12, (b)

N = 14, and (c) N = 16. Here the three lowest excited levels in the (Sz = 0, q = 0, P = T = 1)

sector (red, green, and yellow curves from the lowest), and the lowest excitation energy in the

(Sz = ±4, q = 0, P = 1) sector (blue curve) are plotted. The Berezinskii-Kosterlitz-Thouless

(BKT) transition point corresponds to the crossing point of the two energy levels in (Sz = 0, q =

0, P = T = 1) (red) and (Sz = ±4, q = 0, P = 1) (blue). The PT transition point corresponds to

the first coalescence point of two low-energy levels (e.g., red and green), which is confirmed to be

an exceptional point of the spectrum by testing the square-root scaling of the energy difference δE

between the two coalescing levels (inset). (d) The PT threshold (γPT ) and (e) the BKT transition

point (γBKT) are determined by extrapolating finite-size data to the thermodynamic limit.
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