

Supplementary Figure 1. ALVAC-protein vaccines and macaque immunization. (A) Maximum likelihood tree illustrating CRF01 AE gp120 protein sequence relationships between 107 Envs sampled in the RV144 trial (.1 vaccine and .0 placebo groups). The two CRF01 AE immunogens used in the RV144 vaccine are in red. The 3 additional natural Envs selected to be included in the pentavalent vaccine are in green, and the heterologous challenge SHIV (SHIV-1157(QNE)Y173H) shown in blue. (B) Logos comparing the vaccine antigens in the V2 region to the CRF01_AE sequences sampled from 110 infections in the RV144 trial and challenge SHIV. Black amino acids across represent the CRF01_AE consensus in this region and are not included in subsequent logos. Red amino acids are not found in the vaccines, RV144 vaccine residues are in green and pentavalent vaccine residues displayed in blue. The frequency of each amino acid in each position is indicated by the height of the letter on the y-axis, and HXB2 positions are highlighted from left to right. (C) Amino acid alignment of vaccine Env V2 sequences. Red are essential glycan sites and green residues are sites of immune pressure in RV144. (D) Alignment of amino acids of the challenge SHIV and A244 V2 sequence with contact sites for CH58 and CH59 indicated by the red stars. Site of immune pressure in RV144 are in red and green. (E) Single-genome amplification of the challenge virus stock. Nucleotide changes from the master sequence (top) are indicated by colored boxes.

Epitope ID	Peptide Region
C1.68-84	#23-25
C1.83-100	#28-29
C1.95-121	#32-36
C1-V1.119-136	#40-41
V2.154-183	#50-55
V2.175-192	#57-58
C2.199-222	#65-68
C2.226-258	#74-80
C2-V3.289-303	#95
V3.298-321	#98-101
V3.312-335	#102-105
C3.354-375	#116-118
V4.405-423	#130-131
C4.424-453	#136-141
V5-C5.457-480	#147-150
C5.481-507	#155-159
C5.496-513	#160-161

В

	Animal					Group	AE	AG					AE	AE	All
Group	ID	A Con	B Con	C Con	D Con	М	Con	Con	C ZM651	C TV1	C 1086	BMN	TH023	A244	Clade*
1	201-08	8.0%	7.4%	10.4%	6.1%	6.7%	10.4%	6.1%	7.4%	8.6%	9.2%	8.6%	11.7%	10.4%	6.9%
1	35-12	6.7%	8.0%	4.9%	3.7%	5.5%	6.1%	6.7%	3.7%	4.9%	6.1%	9.8%	8.0%	5.5%	5.4%
1	36-12	3.7%	6.1%	4.3%	2.5%	3.7%	7.4%	3.7%	2.5%	7.4%	4.9%	5.5%	8.0%	7.4%	4.6%
1	47-12	9.2%	9.8%	12.9%	6.1%	8.0%	12.3%	11.0%	12.3%	12.3%	11.0%	12.3%	14.7%	15.3%	10.4%
1	92-09	3.7%	4.3%	6.1%	2.5%	4.3%	4.3%	4.9%	5.5%	6.1%	6.1%	5.5%	4.9%	6.1%	4.1%
1	43-12	6.7%	7.4%	8.0%	4.3%	5.5%	8.0%	6.7%	4.9%	7.4%	6.7%	8.0%	8.0%	8.0%	6.1%
1	53-12	6.7%	6.7%	9.2%	5.5%	5.5%	5.5%	4.9%	6.7%	6.7%	6.1%	6.7%	6.7%	8.6%	6.9%
1	71-12	4.3%	4.9%	3.1%	0.6%	3.1%	3.7%	4.3%	1.8%	3.7%	2.5%	5.5%	4.3%	5.5%	3.1%
1	86-12	1.2%	1.8%	4.3%	0.0%	1.8%	2.5%	1.2%	2.5%	5.5%	4.9%	2.5%	4.3%	3.7%	3.0%
2	357-08	6.7%	4.9%	4.9%	3.7%	4.9%	5.5%	6.1%	4.3%	5.5%	4.9%	5.5%	6.7%	6.7%	4.6%
2	41-12	6.1%	8.6%	7.4%	8.6%	6.1%	7.4%	6.1%	5.5%	9.2%	4.9%	9.8%	8.6%	5.5%	6.0%
2	49-12	3.1%	4.3%	4.3%	2.5%	3.1%	6.7%	3.7%	2.5%	7.4%	4.3%	5.5%	7.4%	6.1%	4.1%
2	54-12	8.0%	9.2%	11.0%	8.6%	6.7%	13.5%	8.6%	6.7%	9.8%	6.7%	9.2%	15.3%	14.7%	7.3%
2	63-12	3.1%	3.1%	3.1%	1.2%	1.8%	3.7%	2.5%	0.6%	4.3%	3.7%	3.7%	4.3%	3.1%	2.6%
2	77-12	6.7%	7.4%	8.0%	6.1%	6.7%	12.9%	7.4%	6.1%	8.0%	8.6%	7.4%	12.3%	10.4%	6.9%
2	52-12	9.8%	11.0%	16.6%	10.4%	12.3%	16.6%	11.0%	12.9%	14.1%	12.3%	11.7%	18.4%	17.2%	11.9%
2	74-12	7.4%	6.7%	8.6%	4.9%	6.1%	9.8%	7.4%	6.7%	9.8%	6.7%	8.0%	9.2%	9.8%	7.1%
2	48-12	12.3%	11.7%	14.1%	9.2%	12.9%	15.3%	11.7%	11.0%	13.5%	14.7%	12.9%	16.6%	16.6%	10.5%

D

	1	C1.1	C1.2	C1.3	C1-V1	V2	C2.1	C2.2	V3	C3	V4	C4	V5-C5	C5
	Animal	•	0.112	0.110	••••		•=			#116-	#130-	#136-	#147-	#155-
Group	ID	#23-25	#28-29	#32-36	#40-41	#50-57	#65-68	#74-80	#95-106	118	131	141	150	161
1	201-08	10,270	1	69	2,171	2,437	7,529	1	49,011	218	732	875	1,922	4,998
1	35-12	3,607	1	496	2,350	949	341	1	28,358	315	1	36	1,333	8,222
1	36-12	1,742	1	1	815	580	7,851	620	18,017	1	242	237	1,519	404
1	47-12	1,335	1	1,202	1	1,494	6,654	1	29,280	159	1	11,516	2,511	4,684
1	92-09	1	1	3,620	697	487	18,362	1	49,378	17	1	123	1	125
1	43-12	4	1	294	1	1	8,153	1	15,804	1	1	3,976	8,774	41,979
1	53-12	26,387	1	1	1,740	791	311	7,024	39,676	66	966	25,282	6,149	3,943
1	71-12	915	1	559	726	1	870	1	11,173	1	1	26	1,926	1,324
1	86-12	1	1	407	60	7,723	3,607	1	24,531	5,733	1	1	1	1
2	357-08	1	1	202	130	668	1,730	1	15,414	27	1	36	6,816	3,420
2	41-12	309	1	983	709	77	1	189	9,205	1	16	1	422	11,057
2	49-12	50	1	977	27	1	262	1	9,296	1	1	2,245	3,277	4,551
2	54-12	350	1	1,668	175	957	3,869	497	10,557	1	1	312	3,035	18,115
2	63-12	8	1	517	1	518	1	354	10,568	42	37	1	2,814	797
2	77-12	3,947	1	1,635	3,452	1	779	5,656	15,841	1	1	292	2,864	5,765
2	52-12	25,468	1	1,475	483	1,008	9,664	381	28,476	5,776	7	1,016	121	6,460
2	74-12	439	302	828	306	1	1,695	1,622	18,508	13	761	525	1,306	3,555
2	48-12	8,479	1	2,573	3,337	1,851	1,491	9,749	25,546	5,865	1	254	5,162	11,418

Supplementary Figure 2. Humoral immune response to vaccination. (A) Plasma antibody blocking of CH59, CH01, A32 antibodies and sCD4 to A244 over the course of immunization by competitive ELISA. Average of all animals graphed. (B) HIV-1 Env region/epitope and corresponding peptide number on array. (C) Chart showing the percentage of positive peptides in a peptide microarray that contains overlapping 15-mer peptides covering the Env gp160 for 7 clade consensus (A, B, C, D, M, AE, AG) and 6 vaccine strains (ZM651, TV1, 1086, MN, 92TH023, and A244). Positive threshold is signal intensity/IgG concentration > 100. (D) Chart showing the maximum binding intensity for all clades along the HIV-1 Env regions (MFI/IgG concentration).

IgG (Week 0)

🗖 Group 1 (B/E)

- Group 2 (B/E/E/E/E)
- Negative responder

Supplementary Figure 3. Mucosal antibody binding responses. Mucosal IgG purified from rectal wecks taken at week 0 and week 23 (after 2nd protein boost) were tested for binding of 12 multi-clade HIV-1 Env proteins using the binding antibody multiplex assay. Binding intensity measure as mean fluorescence intensity (MFI) and normalized by IgG concentration (specific activity). Positive response determined when specific activity 3x baseline and 95th percentile of all baseline samples for each antigen. Each dot within the box and whisker plot represents an individual animal in the bivalent (blue) and pentavalent (red) immunized groups.

						G	roup 1 (B	/E)							Grou	.up 2 (B/E/E	E/E/E)			
Tier	Virus Name	Week	35-12	47-12	53-12	71-12	74-12	86-12	92-09	201-08	357-08	36-12	41-12	43-12	48-12	49-12	52-12	54-12	63-12	77-12
2	SHIV1157(QNE)Y173H	90	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0
2	AA058-04P	0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0
-	AA058a04K	90	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0
2	AA104aRH5	0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0
-	Artofartio	90	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0
2	AA107awg8	0	21	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0
-	, atter unge	90	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0
2	CNE8	90	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0
2	CM244	90	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0
		23	27	41	38	29	50	<20.0	22	35	35	34	<20.0	21	<20.0	62	24	<20.0	32	23
1	Bal.26	49	83	58	90	41	82	115	86	45	40	83	141	24	84	64	73	60	67	24
		90	61	<20.0	60	41	59	52	49	34	<20.0	66	204	36	127	43	50	62	35	34
1	6644.v2.c33	90	161	273	174	72	150	70	154	288	78	316	126	116	162	66	82	115	91	92
1	MN.3	23	430	805	1223	506	2071	1047	356	630	944	1168	172	159	216	898	469	280	534	367
		49	5582	3881	10462	2043	8671	9409	1677	2913	2465	7146	14489	1202	3162	2215	4386	12512	4471	1585
	MINIOCE OC	23	436	2/3/	1/82	467	11/6	617	1007	752	660	2054	96	183	376	451	508	409	955	349
1	WIVV965.26	49	3790	21095	125/9	1977	2/131	4800	5421	6942	0/09	18034	5048	1493	3059	2169	31/0	12//8	3071	14/0
		90	70	14042	13469	<20.0	152	4173	24	10107	2805	15625	24	5734	242	20	3000	26	3140	112
1	NP03 13	40	59	475	208	~20.0	556	108	579	108	20	606	561	357	1363	160	264	258	132	257
	11 03.13	90	164	508	225	44	942	133	751	72	39	1727	2217	915	1605	427	832	898	1033	1273
		23	32	42	34	38	74	<20.0	29	61	32	41	<20.0	37	39	53	27	<20.0	42	48
1	SF162.LS	49	962	658	1417	588	1269	1025	568	796	281	2261	2070	81	777	499	807	931	378	329
		90	2352	458	1109	652	1304	1046	664	1127	215	3532	3513	311	1078	684	1363	1814	729	780
1	SS1196.1	90	64	32	46	31	57	62	61	46	<20.0	57	75	38	75	34	39	63	40	40
		23	2665	2153	1963	922	2431	177	2609	3024	2105	8601	273	18492	3575	3223	5661	1217	2954	1425
1	TH023.6	49	925	6575	4303	1044	4079	896	1199	2260	1280	3880	722	6924	3971	1579	2221	7328	2184	1044
		90	803	1294	1020	6818	5143	1303	10403	5740	5254	1727	2437	1702	18046	2807	2476	4900	2206	3161
North		49	<20.0	<20.0	<20.0	28	<20.0	<20.0	43	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	27	23	<20.0	22	<20.0
Negative	SVA-MLV	90	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0

Week 90 Group 1 (B/E) Group 2 (B/E/E/E)

Week 23

Week 49

Week 90

. Week 23

Week 49

Week 90

1

Week 49

Week 23

Week 90

Week 23

. Week 49

Α

Supplementary Figure 4. Plasma antibody effector functions. (A) Plasma neutralization of Tier-1 viruses at weeks 23, 49 and prior to challenge at week 90 and the tier-2 viruses at week 90 measured in the TZM-bl neutralization assay (red > 500, orange > 50, yellow < 50). (B) Phagocytosis of vaccine and challenge gp120 coated targets by postivie (HIVIG) and negative (palivizumab) controls. Average of two replicate experiments. (C-D) High-througput Fc functional analysis. Purified plasma IgG from each animal from group 1 and 2 were tested for (C) Complement deposition (C3b) on the surface of A244 gp120 pulsed CD4+ target cells from HIV-negative donors. (D) Antibody-dependent Neutrophil-mediated phagocytosis against A244 gp120 coated beads by primary neutrophils. Horizontal line indicates group mean. (E) Max ADCC (top), peak ADCC titer (Endpoint dilution that scored above positive threshold; bottom) of gp120 coated target cells (CEM.NKR_{CCR5}) by plasma from both immunization groups measured using the ADCC-GTL assay.

Δ							R
/ \	#	Binding	Blocking	Neutralization	ADCP	ADCC	
- F	1	A244 gp120	A32 x A244 gp120	Bal.26	A244	Binding infected cells MFI (CM235 infected)	HI-Functional Assays
	2	AA058 gp120	2g12 x JRFL	MW965.26	63521	Binding infected cells %cells (CM235 infected)	(A244 gp120)
	3	AA104 gp120	CH01 x A244 gp120	NP03.13	AA104	ADCC % killing (CM235 infected)	ADCD
	4	AA107 gp120	CH103 x 63521 gp120	SF162.LS	AA107	ADCC titer (CM235 infected)	ADNP
	5	63521 gp120	CH103 x CH505 TF gp120	SS1196.1	SHIV-1157(QNE)Y173H	ADCC titer (A244 gp120)	ADCC
	6	6644 gp120	CH58 x A244 gp120	TH023.6		ADCC titer (AA104gp120 coated)	ADCP
	7	63521 V2 peptide	CH59 x A244 gp120	GeoMean		ADCC titer (AA107gp120 coated)	MIP-1β
	8	A244 V2 peptide	CD4 x 63521 gp120			ADCC titer (SHIV1157(QNE)Y173Hgp120 coated)	CD107a
	9	AA058 V2 peptide	CD4 x A244 gp120			ADCC %GzB (CM235 infected)	IFN-γ
	10	AA104 V2 peptide	CD4 x CH505 T F gp120			ADCC %GzB (A244 gp120)	
	11	AA107 V2 peptide	CD4 x JRFL			ADCC %GzB (AA104gp120 coated)	
	12		PG9 x A244 gp120			ADCC %GzB (AA107gp120 coated)	
	13		PG9 x B 6240 gp120			ADCC %GzB (SHIV1157(QNE)Y173H gp120 coated)	

Ε

Binding

Supplementary Figure 5. Bivalent and pentavalent vaccine arms elicit different antibody responses. (A)
Parameters that were measured pre-challenge (week 90) that were used for correlate analysis. (B) Parameters measured by high-throughput antibody profiling with A244 gp120 coated target cells. (C) Antigens and detection reagents used in the Fc array assay. (D) Mean True Positive Rate (balanced accuracy) of 100 runs of 9-fold cross-validation from weeks 15 through 90, comparing accuracy in predicting true group labels (cyan) vs. permuted labels (orange). The classifiers were trained on measurements taken only at the respective timepoints.
(E) Test of robustness for models trained on measurements taken at the second protein boost (week 23), comparing performance of 100 repetitions of 9-fold cross-validation for actual (orange) vs. permuted (cyan) group labels. Significance was evaluated using the Wilcoxon-Mann-Whitney test. (F) Other antibody responses illustrating the evolving differences between groups; Wilcoxon-Mann-Whitney, *: P<0.05, **: P<0.01, ***: P<0.001.

Titer ADCC (CM235-Infected)

estimates from Cox Proportional Hazard model Parameter with time varying covariates.

(%)		ي o - O	Parameter
king		• • •	Binding B.63
bloc			Binding AA1
g(e)	p < 0.03		Binding AA1
Lo 3,3	⁵ r = 0.51	r = 0.49	Blocking A32
			Blocking sCI
3.0	Binding gp120 (AA107)	Binding gp120 (A244)	Blocking sCI
	•		
AUC 12:0			
60- -	• • 8		
- - -	• p < 0.04	p < 0.04	
10.0	r = 0.49	r = 0.49	
	1 3 5 7 9 11	1 3 5 7 9 11	
	Week to infection	Week to infection	
	Tier-1 neutralization (NP03)	Binding gp120 (AA104)	
	• 000	- • •	
)50 7	•••		
e) IC	8		
-og(•		
4-	p < 0.05	p < 0.04	
	1 3 5 7 9 11	1 3 5 7 9 11	

В

Log AUC 11.0 12.0

Blocking sCD4 (CH505)

Week to infection

Parameter	Hazard ratio	P-value
Binding B.63521 gp120	1.060	0.9051
Binding AA107 gp120	0.448	0.0769
Binding AA107 V2 peptide	0.961	0.8222
Blocking A32 on A244 gp120	0.094	0.3211
Blocking sCD4 on CH505 gp120	0.176	0.1568
Blocking sCD4 on JRFL gp120	0.882	0.5735

Supplementary Figure 6. Correlates of delayed infection. (A) C-indices of individual variables used in Fig. 5E. (B) Correlation of antibody ADCC, binding and blocking titers and tier-1 neutralization at week 90 with the number of weeks after challenge required to establish infection. The plotted data reflect only the vaccinated animals and not controls. Group 1 (B/E) in blue and group 2 (B/E/E/E) in red, open circles indicate animals uninfected after 8 challenges. P values reflect Spearman rank correlation tests. (C) Parameters that were measured pre-challenge (week 90) and weekly until infection. P values reflect analysis with a Cox Proportional Hazard model with time varying covariates.

Week to infection

A

Group	Animal	Week	Hook	# Antibodies
B/E/E/E/E	4312	23	B.63521 V1/V2	3
B/E/E/E/E	4312	23	A244 gp120 V. N156N160K	1
B/E/E/E/E	4812	23	A244 V1/V2	8
B/E/E/E/E	4812	23	A244 gp120	29
B/E/E/E/E	4812	49	A244 gp120	96
			Total	137

В

Antibody ID	VH gene	HCDR3 Length (AA)	VH Mutation (nt %)	VL gene	LHCDR3 Length (AA)	VL mutation (nt %)	Specificity
DH631	1-E	16	4.5	λ 2-D	10	1.7	CD4bs
DH632	1-E	16	6.6	λ 2-D	10	2	CD4bs
DH633	1-E	16	4.5	λ 2-D	10	4	CD4bs
DH635	4-J	20	7.1	к7-1	8	4.3	CD4bs
DH640	4-D	11	7.8	к2-1	9	3.6	gp120
DH637	4-K	17	5.7	к2-S4	9	3.5	V1/V2
DH638	4-F	16	8.9	λ 5- Β	9	1.9	V1/V2
DH641	3-AA	17	4.4	λ 2-F	10	6	V1/V2

DH637

DH641

15-

10

ROAM OF TO MORNAL

D	Peptide	Clade/Strain	Sequence	Signal Intensity
	56	A244&TH023	VHALFYKLDIVPIED	6,273
	56	MN	EYALLYKLDIEPIDN	3,327
	56	1086	VHALFYKLDVVPLNG	4,529
	56	TV1	EYALFYRLDIVSLNN	6
	56	ZM651	VYALFYKLDIVSLNE	5
	56	M	VYALFYRLDVVPINN	9
	56	A	VYSLFYRLDVVQINE	160
	56	в	EYALFYKLDVVPIDN	2,575
	56	С	VYALFYRLDIVPLNE	6
	56	D	VYALFYKLDVVPIDN	23
	56	CRF1	VYALFYKLDIVQIEN	398
	56	CRF2	VYALFYRLDVVQINE	1
	57	A244	LFYKLDIVPIEDNND	7,979
	57	A244	YKLDIVPIEDNNDSS	24,232
	57	TH023	LFYKLDIVPIEDNTS	3,169
	57	TH023	YKLDIVPIEDNTSSS	23,156
	57	MN	LLYKLDIEPIDNDST	2,300
	57	1086	LFYKLDVVPLNGNSS	12,100
	57	1086	KLDVVPLNGNSSSSG	1,284
	57	1086	DVVPLNGNSSSSGEY	1,321
	57	TV1	LFYRLDIVSLNNKPN	3,511
	57	ZM651	LFYKLDIVSLNETDD	49
	57	M	LFYRLDVVPINNNSS	665
	57	A	LFYRLDVVQINENSN	11,677
	57	В	LFYKLDVVPIDNDNT	8,932
	57	С	LFYRLDIVPLNENNS	5,076
	57	D	LFYKLDVVPIDNNNN	5,483
	57	CRF1	LFYKLDIVQIENNNS	11,604
	57	CRF2	LFYRLDVVQINENNS	1,086

CLIPE AVING NIED 1.300 AVIVA

Supplementary Figure 7. Isolation of antibodies from macaques immunized with the pentavalent vaccine.

(A) Number of antibodies isolated from each animal, timepoint and antigen used for sorting. (B) Immunogenetic characteristics of isolated antibodies. (C) ELISA binding of DH638, DH637 and DH641 to wild-type and mutated gp120 and V1/V2 HIV antigens. (D) DH637 binding (signal intensity) to peptides on a linear microarray. Sequences of peptides 56 and 57 that are in the V2 and contain the $\alpha_4\beta_7$ integrin binding site for each clade/strain are shown. (E) Inhibition of $\alpha 4\beta7$ on RPMI8866 cells to cyclic 92TH023 (Clade E Env) V2 epitope peptide by DH637. Representative graph of blocking over time of $\alpha 4\beta7$ by DH637 at 20µg/ml and 50µg/ml antibody concentrations or media (blue) over time. Chart below shows the percent inhibition of both experiments by DH637 and two negative control antibodies (Ab82, influenza; 7B2, HIV gp41). Both Experiments performed in triplicate. Error bars indicate standard deviation. (F) ELISA binding of DH632, DH631 and DH633 to YU2 gp120 (Solid line) and YU2 gp120 D368R mutant (Dashed line).