

Supplementary Figure 1 | **Strain partitioning at the edge of mylonitic complexes.** From the protolith to the mylonitic complexes, the strain partitioning between the protomylonite layers (dark) and the mylonite layers (bright) progressively strengthens.

Supplementary Figure 2 | Element maps across ultramylonite layers. A) Thin section (polarized light) of a mylonitic peridotite, including ultramylonites. B) Distribution of magnesium (microprobe) across (ultra)mylonitic layers. Location in supplementary figure 2A. The colour coding refers to point counting. The step size is 0.8 μ m and the analytical conditions are 15 kV and 10 nA on polished thin section (diamond paste of 1 μ m). Ol = olivine; Amph = amphibole; CPx = clinopyroxene; Spl = Spinel. C) Distribution of calcium across the same area. This map highlights an enrichment in amphibole nearby ultramylonite layers. OPx = orthopyroxene.

Supplementary Figure 3 | Equilibrium phase diagrams (pseudosections) for ultramylonites. A) Pseudosection with 300 ppm H₂O. B) Pseudosection with 400 ppm H₂O. The pseudosections were produced using Perple_X calculations in the NCFMASH (Na₂O-CaO-FeO-MgO-Al₂O₃-SiO₂-H₂O) chemical system, and based on the modal proportions that include olivine (65.9%), orthopyroxene (28.8%), amphibole (3.0%), clinopyroxene (1.5%) and spinel (0.8%). For comparison, we show the calculated conditions of deformation for the ultramylonites (dotted white rectangle). Based on the absence of plagioclase in the Ronda shear zones, our Perple_X calculations indicate a minimum of ~400 ppm H₂O in the ultramylonite layers. Amph = amphibole; OPx = orthopyroxene; OI = Olivine; CPx = clinopyroxene.

Supplementary Figure 4 | **Phase distribution and olivine fabric between ultramylonites. A)** EBSD map (phases) of the mylonitic layer shown in figure 5A of the paper. The step size is 1 μ m and the analytical conditions are described in the methods section of the paper. While grain boundaries (black lines) are defined by correlated misorientation angles of more than 10°, the lattice tilt boundaries (white lines) are defined by correlated misorientation angles between 2° and 10°. X = shear direction; Z = pole to the shear plane. The black points within grains are non-indexed points. B) Sketch of the different areas highlighted in figure 5A of the paper and based on the olivine LPO distribution, including ultramylonites (B1), connected bands of strong LPO in the mylonite (B2), and isolated areas of moderate LPO between the ultramylonites (B3). **From C to F)** Olivine LPOs for each area, including the whole map (C), B1 area (D), B2 area (E) and B3 area (F). The three orthorhombic axes for olivine ([100], [010] and [001]) are shown in lower-hemisphere pole figures with respect to the shear plane (horizontal line) and shear direction (white dot). The iso-contours and grey shading (linear scale) are multiples of a uniform distribution. They were constructed using a Gaussian half-width angle of 10° and based on one point per grain. N = number of grains; OPx = orthopyroxene; CPx = clinopyroxene.

Oxides (%)	Ol ₁	Ol ₂	Ol ₃	Ol ₄	Ol ₅	Ol6	Ol ₇	Ol ₈	Ol9	Ol ₁₀	Ol ₁₁	Ol ₁₂
SiO ₂	40.86	40.96	41.11	41.00	41.03	41.13	41.2	40.85	40.38	40.80	40.91	40.89
TiO ₂	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Al ₂ O ₃	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cr_2O_3	0.00	0.03	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01
FeO	8.03	7.82	7.69	7.80	8.39	8.30	8.25	8.34	8.19	7.95	7.96	7.79
MnO	0.12	0.12	0.11	0.12	0.13	0.13	0.12	0.13	0.12	0.12	0.12	0.12
MgO	50.32	50.32	50.31	50.16	50.32	50.72	50.65	50.51	50.66	50.87	50.59	51.36
CaO	0.02	0.03	0.06	0.02	0.00	0.00	0.01	0.02	0.00	0.00	0.02	0.00
Na ₂ O	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00
NiO	0.40	0.40	0.41	0.38	0.38	0.39	0.40	0.40	0.39	0.40	0.40	0.39
Total	99.75	99.66	99.69	99.50	100.3	100.7	100.7	100.3	99.74	100.1	100.0	100.6
Grain size (μm)	250	40	25	25	80	60	300	400	Por	Por	Por	10

Supplementary Table 1 | Major-element compositions (in weight percent) and grain size of olivine (Ol) grains in the mylonites and ultramylonites. Por = porphyroclasts.

Oxides (%)	Ol ₁₃	Ol ₁₄	Ol ₁₅	Ol ₁₆	Ol ₁₇	Ol ₁₈	Ol ₁₉	Ol ₂₀	Ol ₂₁	Ol ₂₂	
SiO ₂	40.88	41.47	41.28	41.12	41.21	41.15	40.92	41.21	41.10	40.92	
TiO ₂	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Al ₂ O ₃	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Cr ₂ O ₃	0.00	0.03	0.02	0.00	0.01	0.01	0.00	0.21	0.00	0.00	
FeO	7.78	7.11	7.44	8.13	8.08	7.91	8.06	7.75	7.71	8.06	
MnO	0.11	0.11	0.11	0.12	0.12	0.12	0.12	0.13	0.11	0.12	
MgO	51.48	50.85	50.48	50.94	51.15	50.48	50.39	50.49	50.43	50.39	
CaO	0.00	0.03	0.05	0.01	0.01	0.14	0.01	0.01	0.01	0.01	
Na ₂ O	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	
NiO	0.41	0.43	0.39	0.40	0.42	0.39	0.40	0.39	0.42	0.4	
Total	100.7	100.0	99.77	100.7	101.0	100.2	99.90	100.2	99.77	100.0	
Grain size (µm)	10	100	80	150	80	30	200	30	100	200	

Supplementary Table 2 | Major-element compositions (oxides in weight percent) and grain size of enstatite

(En) grains in the mylonites and ultramylonites. Por = porphyroclasts.

Oxides	En ₁	En ₂	En ₃	En4	En ₅	En ₆	En7	En ₈	En ₉	En ₁₀	En ₁₁	En ₁₂
SiO ₂	55.43	55.84	55.68	55.54	56.00	55.80	56.59	56.70	56.63	55.47	55.91	57.57
TiO ₂	0.01	0.01	0.02	0.00	0.00	0.01	0.02	0.00	0.01	0.00	0.01	0.00
Al ₂ O ₃	2.20	1.70	1.79	2.03	1.39	1.35	1.01	0.54	0.50	0.54	1.97	0.13
Cr ₂ O ₃	0.71	0.48	0.56	0.61	0.27	0.27	0.16	0.04	0.07	0.09	0.75	0.05
FeO	5.49	5.61	5.52	5.71	5.62	5.62	5.62	5.69	5.30	5.85	5.41	5.55
MnO	0.13	0.14	0.15	0.15	0.14	0.14	0.14	0.12	0.12	0.12	0.14	0.14
MgO	34.34	34.81	34.90	34.91	35.25	35.25	35.51	35.73	36.07	37.10	34.89	36.00
CaO	1.05	0.71	0.54	0.55	0.51	0.53	0.33	0.27	0.24	0.26	0.51	0.09
Na ₂ O	0.03	0.02	0.02	0.02	0.03	0.01	0.00	0.00	0.02	0.00	0.00	0.00
K ₂ O	0.00	0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00
Total	99.39	99.33	99.16	99.52	99.20	98.99	99.38	99.09	98.95	99.45	99.59	99.53
Grain size (µm)	Por (rim)	Por (core)	Por (rim)	Por (core)	30	20	20	40	5	5	Por (core)	Por (rim)
Oxides	En ₁₃	En ₁₄	En ₁₅	En ₁₆	En ₁₇	En ₁₈	En ₁₉	En ₂₀	En ₂₁	En ₂₂	En ₂₃	En ₂₄
SiO ₂	56.82	57.39	57.77	56.44	56.66	57.06	56.64	56.34	56.66	57.14	56.78	56.92
TiO ₂	0.01	0.00	0.02	0.00	0.02	0.01	0.01	0.02	0.02	0.01	0.01	0.00
Al ₂ O ₃	0.17	0.24	0.14	0.85	1.39	0.55	1.01	0.83	1.05	0.55	0.95	1.84
Cr ₂ O ₃	0.03	0.04	0.05	0.16	0.30	0.08	0.15	0.12	0.17	0.09	0.14	0.80
FeO	5.73	5.80	5.76	5.96	5.66	5.45	5.57	5.86	5.64	5.57	5.61	5.67
MnO	0.14	0.13	0.15	0.15	0.13	0.12	0.13	0.14	0.15	0.16	0.14	0.16
MgO	36.94	36.00	36.19	36.41	35.42	35.98	35.34	36.03	35.56	35.79	35.68	33.71
CaO	0.06	0.08	0.09	0.27	0.40	0.28	0.39	0.33	0.47	0.30	0.31	0.49
Na ₂ O	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.04	0.00	0.00	0.01	0.02
K ₂ O	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.00
Total	99.89	99.66	100.16	100.23	99.99	99.51	99.26	99.70	99.72	99.61	99.65	99.59
Grain size (µm)	10	15	10	8	40	10	20	10	50	6	10	Por (core)
Oxides	En ₂₅	En ₂₆	En ₂₇	En ₂₈	En ₂₉	En ₃₀	En ₃₁	En ₃₂	En ₃₃	En ₃₄	En ₃₅	En ₃₆
SiO ₂	57.13	56.72	57.33	57.62	56.94	57.11	57.63	57.12	57.12	57.60	57.37	57.27
TiO ₂	0.01	0.00	0.01	0.00	0.01	0.01	0.00	0.02	0.01	0.00	0.00	0.01
Al ₂ O ₃	1.75	0.42	1.08	0.45	1.30	1.98	1.46	1.19	1.15	0.39	0.67	0.60
Cr_2O_3	0.68	0.03	0.17	0.07	0.24	0.81	0.62	0.19	0.18	0.04	0.07	0.05
FeO	5.23	5.34	5.53	5.55	5.51	5.62	5.76	5.50	5.61	5.45	5.46	5.80
MnO	0.26	0.13	0.14	0.14	0.11	0.15	0.12	0.13	0.16	0.13	0.14	0.13
MgO	33.91	36.10	35.55	36.00	35.31	33.68	34.14	35.48	35.45	36.15	35.84	35.82
CaO	0.55	0.65	0.36	0.28	0.43	1.07	0.34	0.42	0.41	0.29	0.26	0.25
Na ₂ O	0.02	0.01	0.03	0.00	0.01	0.04	0.00	0.02	0.02	0.02	0.00	0.03
K_2O	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
Total	99.55	99.39	100.2	100.1	99.85	100.5	100.1	100.1	100.1	100.1	99.80	99.98
Grain size (µm)	Por (core)	8	20	35	30	Por (core)	Por (rim)	30	15	20	15	10

Supplementary Table 2 (continued)

Oxides	En ₃₇	En ₃₈	En ₃₉	En ₄₀	En ₄₁	En ₄₂	En ₄₃	En ₄₄	En ₄₅	En ₄₆	En ₄₇	En ₄₈	En49
SiO ₂	57.08	57.49	58.23	55.89	57.06	56.70	56.88	55.81	57.61	56.70	57.55	57.29	57.71
TiO ₂	0.01	0.05	0.00	0.01	0.02	0.01	0.01	0.01	0.02	0.02	0.01	0.00	0.05
Al ₂ O ₃	1.13	1.44	1.35	0.89	0.91	1.33	1.16	0.62	0.64	1.02	0.48	1.82	1.17
Cr ₂ O ₃	0.22	0.36	0.31	0.18	0.21	0.29	0.22	0.08	0.09	0.16	0.05	0.69	0.31
FeO	5.51	5.46	5.98	5.72	5.33	5.52	5.48	5.73	5.42	5.51	5.36	5.85	5.50
MnO	0.14	0.18	0.10	0.14	0.11	0.14	0.15	0.12	0.14	0.14	0.13	0.09	0.26
MgO	35.49	33.97	34.56	36.57	35.46	35.20	35.43	35.92	35.41	35.13	35.90	33.71	34.33
CaO	0.36	0.55	0.61	0.30	0.29	0.52	0.39	0.26	0.27	0.38	0.21	0.60	0.45
Na ₂ O	0.00	0.03	0.00	0.00	0.00	0.00	0.01	0.02	0.00	0.00	0.00	0.02	0.02
NiO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.00
Total	99.95	99.52	101.1	99.72	99.39	99.71	99.73	98.58	99.59	99.07	99.71	100.1	99.90
Grain size	10	Por (rim)	Por (rim)	20	25	40	40	8	40	30	20	Por (core)	Por (rim)

Supplementary Table 3 | Major-element compositions (oxides in weight percent) and grain size of diopside (Di) grains in the mylonites and ultramylonites. Por = porphyroclasts.

Oxides (%)	Di ₁	Di ₂	Di ₃	Di ₄	Di ₅	Di ₆	Di ₇	Di ₈	Di9	Di ₁₀	Di ₁₁	Di ₁₂
SiO ₂	54.24	53.95	53.95	54.26	53.70	54.24	53.87	53.57	53.30	53.95	54.12	53.44
TiO ₂	0.03	0.03	0.02	0.02	0.05	0.01	0.01	0.04	0.06	0.07	0.04	0.05
Al ₂ O ₃	1.57	1.94	1.90	1.20	2.23	1.55	1.60	1.97	2.21	1.78	1.28	1.55
FeO	2.11	2.26	2.22	2.13	2.27	2.15	2.19	2.15	2.31	2.22	2.03	2.19
MnO	0.06	0.08	0.06	0.08	0.09	0.07	0.06	0.08	0.07	0.07	0.05	0.07
MgO	17.32	17.34	17.38	17.66	16.86	17.45	17.16	17.35	17.39	17.07	17.45	17.16
CaO	23.14	22.85	23.07	23.38	23.21	23.32	23.33	22.72	22.53	23.18	23.44	23.47
Na ₂ O	0.59	0.59	0.63	0.53	0.67	0.60	0.58	0.71	0.65	0.58	0.52	0.47
K2O	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00
Cr ₂ O ₃	0.55	0.72	0.65	0.39	0.81	0.55	0.55	0.89	0.99	0.70	0.33	0.44
Total	99.59	99.75	99.88	99.66	99.88	99.95	99.35	99.48	99.52	99.61	99.27	98.85
Grain size (µm)	15	30	50	8	15	5	10	200	100	25	15	25

Oxides (%)	Di ₁₃	Di ₁₄	Di ₁₅	Di ₁₆	Di ₁₇	Di 18
SiO ₂	54.14	53.27	53.12	53.96	54.10	53.55
TiO ₂	0.04	0.02	0.01	0.03	0.01	0.02
Al ₂ O ₃	1.36	1.73	1.93	1.69	1.29	1.82
FeO	2.20	2.26	2.30	2.29	2.13	2.19
MnO	0.06	0.07	0.07	0.07	0.07	0.05
MgO	17.23	17.38	17.33	17.36	17.55	17.22
CaO	23.34	23.33	23.00	23.29	23.81	23.23
Na ₂ O	0.49	0.51	0.54	0.59	0.51	0.65
K2O	0.00	0.01	0.00	0.00	0.00	0.00
Cr ₂ O ₃	0.38	0.65	0.73	0.59	0.42	0.68
Total	99.25	99.22	99.02	99.86	99.89	99.42
Grain size (µm)	15	10	60	10	10	80

Oxides (%)	Spl ₁	Spl ₂	Spl ₃	Spl4	Spl5	Spl ₆	Spl7	Spl ₈	Spl9	Spl ₁₀	Spl ₁₁	Spl ₁₂
SiO ₂	0.05	0.20	0.04	0.01	0.01	0.00	0.03	0.04	0.05	0.01	0.84	0.02
TiO ₂	0.04	0.02	0.01	0.01	0.01	0.07	0.03	0.03	0.08	0.08	0.04	0.02
Al ₂ O ₃	22.13	20.62	30.47	26.08	27.20	20.48	28.38	27.71	24.24	23.69	24.68	24.12
Cr ₂ O ₃	43.16	41.45	36.02	41.28	39.80	45.57	36.96	36.07	41.91	42.48	39.30	42.71
V2O3	0.15	0.16	0.18	0.18	0.19	0.15	0.17	0.16	0.15	0.16	0.15	0.19
FeO	17.19	19.84	17.60	14.78	16.85	16.05	17.92	18.06	15.72	15.69	17.12	15.73
Fe2O3	6.02	7.38	2.77	4.43	3.71	5.61	4.46	5.56	5.16	5.51	4.21	4.63
MnO	0.22	0.28	0.21	0.19	0.21	0.21	0.22	0.22	0.20	0.20	0.21	0.20
MgO	11.91	9.88	12.13	13.90	12.58	12.45	11.83	11.54	13.13	13.10	12.59	13.03
NiO	0.11	0.10	0.08	0.12	0.10	0.11	0.09	0.11	0.12	0.12	0.10	0.11
ZnO	0.25	0.24	0.49	0.17	0.25	0.13	0.42	0.39	0.13	0.16	0.17	0.19
Total	101.2	100.2	100.0	101.2	101.0	100.8	100.5	99.90	100.9	101.2	99.41	100.9
Grain size (µm)	400	15	20	Por	80	Por	10	10	150	300	80	150

Supplementary table 4 | Major-element compositions (oxides in weight percent) and grain size of spinel (Spl) grains in the mylonites and ultramylonites. Por = porphyroclasts.

Oxides (%)	Spl ₁₃	Spl ₁₄	Spl ₁₅	Spl ₁₆	Spl ₁₇	Spl ₁₈			
SiO ₂	0.01	0.07	0.03	0.00	0.00	0.02			
TiO ₂	0.02	0.02	0.05	0.06	0.04	0.05			
Al ₂ O ₃	26.10	30.72	21.46	21.28	23.35	21.61			
Cr ₂ O ₃	39.82	35.14	45.03	44.93	42.89	44.91			
V2O3	0.19	0.19	0.16	0.17	0.17	0.17			
FeO	16.32	16.24	15.33	16.42	16.00	15.49			
Fe2O3	4.91	3.87	5.32	5.28	5.12	5.22			
MnO	0.21	0.19	0.20	0.22	0.20	0,.20			
MgO	12.75	13.18	13.05	12.30	12.75	12.96			
NiO	0.12	0.12	0.12	0.10	0.11	0.11			
ZnO	0.22	0.27	0.13	0.15	0.17	0.14			
Total	100.7	100.0	100.9	100.1	100.8	100.9			
Grain size (μm)	100	10	Por	10	200	Por			

Supplementary Table 5 | Major-element compositions (oxides in weight percent) of amphibole grains (Amp) in the mylonites and ultramylonites. Por = porphyroclasts.

Oxides (%)	Amp1	Amp2	Amp3	Amp4	Amp5	Amp6	Amp7	Amp8	Amp9	Amp10
SiO ₂	44.81	43.92	44.28	43.81	44.00	44.16	44.27	43.89	44.40	43.62
TiO ₂	0.34	0.44	0.40	0.21	0.21	0.21	0.36	0.49	0.42	0.50
Al ₂ O ₃	13.11	13.42	13.23	13.05	13.01	12.85	12.99	13.39	12.64	13.22
Cr ₂ O ₃	1.56	2.17	1.90	2.11	2.04	2.24	1.83	1.91	1.58	1.91
Fe ₂ O ₃	3.73	3.95	3.91	3.82	3.75	3.86	4.08	3.91	4.22	4.22
FeO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MnO	0.06	0.05	0.04	0.05	0.06	0.06	0.01	0.04	0.04	0.05
MgO	19.02	18.42	18.73	18.93	18.90	18.76	18.75	18.19	18.68	18.37
CaO	12.04	11.99	12.03	11.95	11.93	11.87	12.14	12.04	11.96	12.10
Na ₂ O	2.77	2.88	2.85	3.01	3.24	3.28	3.12	2.85	2.88	2.94
K ₂ O	0.09	0.09	0.08	0.08	0.07	0.07	0.17	0.21	0.19	0.20
H ₂ O	2.13	2.12	2.12	2.11	2.11	2.12	2.12	2.11	2.11	2.11
Total	99.66	99.44	99.58	99.12	99.34	99.47	99.84	99.03	99.12	99.25

Supplementary Table 6 | Pressure (P in kbar) and temperature (T in °C) data estimated in the mylonites and ultramylonites based on the major-elements compositions and geothermobarometers. Each number refers to the phase number shown in previous tables (from tables S1 to S5). The temperature data are summarized in the figure 3D of the paper. (1) = Ca in OPx at 5 kbar¹; (2) = Ca in OPx at 8 kbar¹; (3) = Al and Cr in OPx²; (4) = Two-pyroxene thermometer at 5 kbar¹ (TBKN); (5) = two-pyroxene thermometer at 8 kbar¹. (6) = Olivine-spinel thermometer³. (7) = Two-pyroxene barometer⁴.

Phase(s)	En1	\mathbf{En}_2	En ₃	En_4	En ₅	En ₆	\mathbf{En}_7	En_8	En ₉	\mathbf{En}_{10}	En ₁₁	\mathbf{En}_{12}	En13	\mathbf{En}_{14}	En ₁₅	En ₁₆	En_{17}	En ₁₈
T (1)	1016.9	923.4	866.7	871.6	855.2	865.5	777.2	742.0	726.0	740.5	856.3	596.7	559.5	586.0	595.2	742.5	811.3	752.1
T (2)	1032.5	937.8	880.5	885.4	868.9	879.3	789.9	754.2	738.1	752.8	870.0	607.3	569.6	596.4	605.7	754.8	824.4	764.4
T (3)	932.05	823.6	858.1	873.9	723.8	713.7	683.9	613.3	610.9	510.9	950.2	624.4	537.6	614.1	615.1	617.4	754.1	635.6
Phase(s)	En ₁₉	En_{20}	En_{21}	En ₂₂	En23	En ₂₄	En ₂₅	En ₂₆	En ₂₇	En ₂₈	En ₂₉	En ₃₀	En ₃₁	En ₃₂	En ₃₃	En ₃₄	En ₃₅	En ₃₆
T (1)	804.5	776.2	838.4	759.6	766.5	847.3	869.6	905.8	790.6	750.4	821.5	1018.0	780.4	818.9	812.2	754.8	734.8	731.0
T (2)	817.5	788.7	851.9	772.1	779.0	860.8	883.4	920.0	803.5	762.8	834.7	1033.6	793.2	832.1	825.3	767.2	747.0	743.1
T (3)	691.0	616.2	683.3	644.6	672.3	1054.9	1009.9	714.2	641.7	746.1	976.4	1047.4	978.6	720.6	715.4	619.9	654.0	627.2
Phase(s)	En ₃₇	En ₃₈	En ₃₉	En_{40}	En ₄₁	En ₄₂	En43	En ₄₄	En ₄₅	En ₄₆	En ₄₇	En ₄₈	En_{49}	Di ₁ / En ₂₆	Di ₂ / En ₂₇	Di ₃ / En ₃₂	Di ₄ / En ₃₄	Di5/ En35
T (1)	791.5	869.5	887.6	759.7	753.9	858.0	804.7	737.8	742.9	800.3	708.4	886.5	830.5		_			
T (2)	804.4	883.3	901.6	772.2	766.3	871.7	817.7	750.0	755.2	813.3	720.3	900.5	843.8					
T (3)	730.6	883.0	840.4	601.3	728.8	760.8	724.7	586.5	690.7	709.4	647.7	1017.2	841.9					
T (4)														804.6	852.3	806.7	769.2	759.9
T (5)														809.1	857.1	811.3	773.5	764.3
Phase(s)	Di ₆ / En ₃₆	Di ₇ / En ₃₇	Di ₈ / En ₄₂	Di ₉ / En ₄₁	Di ₁₀ / En ₄₀	Di ₁₁ / En ₄₇	Di ₁₂ / En ₄₅	Di ₁₃ / En ₄₄	Di ₁₄ / En ₁₀	Di ₁₅ / En ₆	Di ₁₆ / En ₁₈	Di ₁₇ / En ₂₀	Di ₁₈ / En ₂₁	Ol ₁ / SPl ₁	Ol ₂ / SPl ₂	Ol ₃ / SPl ₂	Ol ₄ / SPl ₂	Ol ₅ / SPl ₃
T (4)	766.8	740.2	827.8	870.4	785.6	742.8	717.5	768.9	752.2	800.8	786.7	866.4	743.1					
T (5)	771.1	744.5	832.4	875.2	790.1	747	721.6	773.3	756.5	805.4	791.2	871.3	747.3					
T (6)														749.0	656.0	652.0	657.0	696.0

Phase(s)	Ol ₄ / SPl ₂	Ol ₅ / SPl ₃	Ol ₆ / SPl ₃	Ol ₇ / SPl4	Ol ₈ / SPl5	Ol ₉ / SPl ₆	Ol ₁₀ / SPl ₆	Ol ₁₁ / SPl ₆	Ol ₁₂ / SPl ₇	Ol ₁₃ / SPl ₈	Ol ₁₄ / SPl9	Ol ₁₅ / SPl ₁₀	Ol ₁₅ / SPl ₁₁	Ol ₁₆ / SPl ₁₂	Ol ₁₇ / SPl ₁₃	Ol ₁₈ / SPl ₁₄	Ol ₁₉ / SPl ₁₅	Ol ₂₀ / SPl ₁₆	Ol ₂₁ / SPl ₁₇	Ol ₂₂ / SPl ₁₈
T (6)	657.0	696.0	691.0	821.0	750.0	811.0	800.0	802.0	660.0	641.0	745.0	764.0	726.0	796.0	743.0	707.0	827.0	780.0	772.0	822.0
Phase(s)	Di ₁ / En ₂₆	Di ₂ / En ₂₇	Di ₃ / En ₃₂	Di ₄ / En ₃₄	Di ₅ / En ₃₅	Di ₆ / En ₃₆	Di ₇ / En ₃₇	Di ₈ / En ₄₂	Di ₉ / En ₄₁	Di ₁₀ / En ₄₀	Di ₁₁ / En ₄₇	Di ₁₂ / En ₄₅	Di ₁₃ / En ₄₄	Di ₁₄ / En ₁₀	Di ₁₅ / En ₆	Di ₁₆ / En ₁₈	Di ₁₇ / En ₂₀	Di ₁₈ / En ₂₁		
P (7)	4.8	9.0	6.9	8.8	10.6	10.7	6.5	5.9	11.8	9.0	10.8	7.7	9.6	9.2	4.9	8.9	6.1	5.1		

Supplementary References

- 1. Brey, G. P., & Köhler, T. Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. *J. Petrol.* **31**, 1353-1378 (1990).
- 2. Witt-Eickschen, G. & Seck, H. A. Solubility of Ca and Al in orthopyroxene from spinel peridotite: an improved version of an empirical geothermometer. *Contrib. Min. Petrol.* **106**, 431-439 (1991).
- 3. Jianping, L., Kornprobst, J., Vielzeuf, D. & Fabriès, J. An improved experimental calibration of the olivine-spinel geothermometer. *Chinese J. Geochem.* 14, 68-77 (1995).
- 4. Putirka, K. D. Thermometers and barometers for volcanic systems. Rev. Min. Geochem. 69, 61-120 (2008).