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Appendix A

A.1. Backward induction algorithm

• If t = n, there is nothing to do because all n patients have already been treated and their outcomes observed. Thus,
Fn(sA,n,fA,n,sB,n,fB,n) = 0 ∀sA,n, fA,n, sB,n, fB,n.

• If t = n−1, there is only one patient left to treat and interest is in determiningwhich treatment to allocate to this patient
∀sA,n−1, fA,n−1, sB,n−1, fB,n−1 that sum to n − 1. There are two possibilities:
– If treatment A is allocated to the remaining patient, then we compute the expectation

F A
n−1(sA,n−1,fA,n−1,sB,n−1,fB,n−1) =

sA,n−1sA,n−1 +fA,n−1
· 1 +

fA,n−1sA,n−1 +fA,n−1
· 0,

where sA,n−1sA,n−1+fA,n−1
is the expectation of θA with respect to a Beta(sA,n−1,fA,n−1) distribution, and

fA,n−1sA,n−1+fA,n−1
is the

probability of a failure if treatment A is allocated.
– Alternatively, if treatment B is allocated to the remaining patient, then we compute the expectation

F B
n−1(sA,n−1,fA,n−1,sB,n−1,fB,n−1) =

sB,n−1sB,n−1 +fB,n−1
· 1 +

fB,n−1sB,n−1 +fB,n−1
· 0,

where sB,n−1sB,n−1+fB,n−1
is the expectation of θB with respect to a Beta(sB,n−1,fB,n−1) distribution, and

fB,n−1sB,n−1+fB,n−1
is the

probability of a failure if treatment B is allocated.
Interest is in choosing the optimal allocation such that

Fn−1(sA,n−1,fA,n−1,sB,n−1,fB,n−1) = max{F A
n−1(sA,n−1,fA,n−1,sB,n−1,fB,n−1), F B

n−1(sA,n−1,fA,n−1,sB,n−1,fB,n−1)}.

Thus, ifF A
n−1(sA,n−1,fA,n−1,sB,n−1,fB,n−1) > F B

n−1(sA,n−1,fA,n−1,sB,n−1,fB,n−1), then it is optimal to allocate the remaining
patient to treatment A, and vice versa. If they are equal, then both treatments are optimal choices.

• The next step is if t = n − 2, i.e. when there are two remaining patients to be allocated. To determine which treatment
to allocate to patient n − 1, there are two possibilities:
– If treatment A is allocated to patient n − 2, then we compute the expectation

F A
n−2(sA,n−2,fA,n−2,sB,n−2,fB,n−2) =

sA,n−2sA,n−2 +fA,n−2
·

1 + Fn−1(sA,n−2 + 1,fA,n−2,sB,n−2,fB,n−2)


+

fA,n−2sA,n−2 +fA,n−2
·

0 + Fn−1(sA,n−2,fA,n−2 + 1,sB,n−2,fB,n−2)


.

– Similarly, if treatment B is allocated, then we compute the expectation

F B
n−2(sA,n−2,fA,n−2,sB,n−2,fB,n−2) =

sB,n−2sB,n−2 +fB,n−2
·

1 + Fn−1(sA,n−2,fA,n−2,sB,n−2 + 1,fB,n−2)


+

fB,n−2sB,n−2 +fB,n−2
·

0 + Fn−1(sA,n−2,fA,n−2,sB,n−2,fB,n−2 + 1)


.

• et cetera.

These steps are just iterations, and can be expressed more succinctly in the general form as follows.
If treatment A is allocated to the next patient, then the expected number of successes for patients t + 1 through n under

an optimal policy is

F A
t (sA,t ,fA,t ,sB,t ,fB,t) =

sA,tsA,t +fA,t
·

1 + Ft+1(sA,t + 1,fA,t ,sB,t ,fB,t)

+

fA,tsA,t +fA,t
· Ft+1(sA,t ,fA,t + 1,sB,t ,fBt).

On the other hand, if treatment B is allocated to the next patient, then the expected total reward under an optimal policy
is

F B
t (sA,t ,fA,t ,sB,t ,fB,t) =

sB,tsB,t +fB,t ·

1 + Ft+1(sA,t ,fA,t ,sB,t + 1,fB,t)

+

fB,tsB,t +fB,t · Ft+1(sA,t ,fA,t ,sB,t ,fB,t + 1).

Therefore, F satisfies the recurrence

Ft(sA,t ,fA,t ,sB,t ,fB,t) = max

F A

t (sA,t ,fA,t ,sB,t ,fB,t), F B
t (sA,t ,fA,t ,sB,t ,fB,t) .
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Fig. A.8. The effect of changing the degree of constraining, ℓ, on the power and percentage of patients on the superior treatment when θA = 0.2 and
θB = 0.8 for the constrained DP design (without randomisation). The left and right dashed vertical lines correspond to ℓ = 0.10n and ℓ = 0.15n
respectively, where n = 75 in this case.

Table A.2
Expected proportion of successes (EPS), run time in minutes (m) and seconds (s) and RAM memory
requirements of the DP design (with uniform priors) on a standard laptop.

n EPS Run time RAM

10 0.60218 0.01 s 0.1 MB
30 0.63066 1 s 6.2 MB
50 0.63993 6 s 47.7 MB
70 0.64485 24 s 183.2 MB
90 0.64799 1 m:04 s 0.56 GB

110 0.65020 2 m:22 s 1.1. GB
130 0.65186 4 m:37 s 2.1 GB
150 0.65316 8 m:03 s 3.86 GB
200 0.65547 25 m:20 s 11.9 GB

Table A.3
The effect of changing the degree of randomisation, p, on the performance measures when n = 75 and θA = θB = 0.2 for the RDP design (without the
constraint).

p Bias MSE Type I error EPS % on superior

0.5 0.000 0.004 0.035 0.200 50.0
0.6 −0.002 0.004 0.034 0.200 50.1
0.7 −0.001 0.005 0.027 0.200 50.2
0.8 0.000 0.005 0.022 0.200 50.0
0.9 0.000 0.006 0.008 0.200 50.2
1.0 0.001 0.008 0.000 0.200 49.7

Table A.2 illustrates the computational speed of the backwards induction algorithm to compute the allocation policy of
the DP design on a standard laptop with 16 GB of RAM. The maximum trial size that can be computed on a standard laptop
using R is 215. Although trials of sizes larger than 215 are very unlikely to occur in a rare disease context, computations of
the DP design are feasible on a standard performance workstation (1 TB of RAM) for 215 < n < 600. Trials of a size up to
3500 patients would be feasible with today’s number #1 supercomputer (with 1.3 PB of RAM).

A.2. Choosing the degree of constraining, ℓ

Fig. A.8 illustrates the non-linearity of the power, based on which we recommend ℓ = 0.15n in our proposed CRDP
design.

A.3. Choosing the degree of randomisation, p

Tables A.3, A.4, A.5, and A.6 illustrate the effect of randomisation, based onwhichwe recommend p = 0.9 in our proposed
CRDP design.
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Fig. A.9. Probability of allocating a patient to treatment B for CRDP when θA = 0.5 and θB = {0.5, 0.6, 0.8, 0.9} in a trial of size n = 75 estimated over
10,000 simulations.

Table A.4
The effect of changing the degree of randomisation, p, on the performance measures when n = 75, θA = 0.2 and θB = 0.4 for the RDP design (without the
constraint).

p Bias MSE Power EPS % on superior

0.5 −0.001 0.004 0.428 0.300 50.0
0.6 −0.002 0.005 0.406 0.315 57.3
0.7 −0.003 0.006 0.355 0.329 64.5
0.8 −0.007 0.007 0.289 0.344 71.4
0.9 −0.018 0.010 0.183 0.356 77.9
1.0 −0.058 0.017 0.021 0.368 83.6

Table A.5
The effect of changing the degree of randomisation, p, on the performance measures when n = 75, θA = 0.2 and θB = 0.6 for the RDP design (without the
constraint).

p Bias MSE Power EPS % on superior

0.5 −0.001 0.004 0.938 0.400 50.0
0.6 −0.002 0.005 0.935 0.437 59.1
0.7 −0.002 0.007 0.910 0.473 68.2
0.8 −0.005 0.009 0.830 0.509 77.3
0.9 −0.015 0.015 0.636 0.544 86.0
1.0 −0.089 0.03 0.070 0.577 94.2
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Fig. A.10. The changes in power and type I error for each design θA = 0.5 and θB ∈ (0.1, 0.9) for varying sample sizes. The upper dashed line at 0.8
represents the desired power level, and the lower dashed line at 0.1 represents the nominal significance level. Note that WI is not available for n = 100
due to computational reasons.

Table A.6
The effect of changing the degree of randomisation, p, on the performance measures when n = 75, θA = 0.2 and θB = 0.8 for the RDP design (without the
constraint).

p Bias MSE Power EPS % on superior

0.5 −0.001 0.004 1.000 0.500 50.0
0.6 −0.001 0.005 1.000 0.557 59.6
0.7 −0.001 0.007 0.999 0.615 69.2
0.8 −0.004 0.010 0.995 0.672 78.8
0.9 −0.009 0.019 0.937 0.730 88.3
1.0 −0.100 0.043 0.118 0.786 97.6

A.4. CRDP patient allocation: other scenarios

Fig. A.9 complements Fig. 6 to show average allocation probabilities of our proposed CRDP design in other scenarios.

A.5. Combined performance measures

Table A.7 summarises the performance of the four key features (power, average bias, MSE and patient benefit) per design
by showing the followingmeasures: (i) sum of the distance of each key feature from the best achievable value (SDis), (ii) the
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Fig. A.11. The percentage of patients on the superior treatment arm for each design when θA = 0.5 and θB ∈ (0.1, 0.9) for varying sample sizes. Note
that WI is not available for n = 100 due to computational reasons.

Table A.7
The summary measures of performance in terms of the four key features. SDis: sum of the distance of each
key feature from the best achievable value; MD: maximum difference among each of the key features from
the best achievable value; SDev: sum of the deviations of each key feature from the fixed randomisation
design.

Design SDis MD SDev

CRDP 32.925 24.7 53.513
RDP 36.936 29.7 63.009
DP 74.439 72.3 95.494
WI 73.307 73.2 113.695
RPW 30.714 29.7 11.801
Fixed 40.512 50.0 0

maximum difference among each of the four key features from the best achievable value (MD), (iii) sum of the deviations of
each key feature from the fixed randomisation design (SDev).

A.6. Results for other sample sizes

Figs. A.10–A.12 complement Figs. 1–3, respectively, to compare the performance of our proposed CRDP design with
alternative designs for different sample sizes.
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Fig. A.12. The average bias of the treatment effect estimator when θA = 0.5 and θB ∈ (0.1, 0.9) for varying sample sizes. Note that WI is not available for
n = 100 due to computational reasons.
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