Dietary nitrate attenuates renal ischemia-reperfusion injuries by modulation of immune responses and reduction of oxidative stress Ting Yang^{1*#}, Xing-Mei Zhang², Laura Tarnawski³, Maria Peleli¹, Zhengbing Zhuge ¹, Niccolo Terrando^{1*}, Robert A. Harris², Peder S. Olofsson³, Erik Larsson⁴, A. Erik G. Persson^{1,5}, Jon O. Lundberg¹, Eddie Weitzberg¹, Mattias Carlstrom^{1#} *Authors current institution: Dept. of Medicine, Div. of Nephrology (T.Y.), Dept. of Anesthesiology (N.T.), Duke University Medical Center, Durham, NC, USA # Corresponding authors ## **Correspondence to:** Ting Yang (MD, PhD) Department of Physiology and Pharmacology, Karolinska Institutet Nanna Svartz Väg 2, 17177 Stockholm, Sweden Email: ting.yang2@duke.edu Mattias Carlström (PharmD, PhD) Associate Professor of Physiology Department of Physiology and Pharmacology, Karolinska Institutet Nanna Svartz Väg 2, 17177 Stockholm, Sweden Email: mattias.carlstrom@ki.se ¹Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden ² Dept. of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden ³ Dept. of Medicine, Center for Molecular Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden ⁴ Dept. of Immunology, Genetics and Pathology, Uppsala University, Sweden ⁵ Dept. of Medical Cell Biology, Uppsala University, Sweden Figure S1. Experimental protocol Adult male mice (C57BL/6J) were fed with regular or nitrate-supplemented chow for two weeks ($\bf A$), which was followed by unilateral ischemia of the left kidney ($\bf B$). The reperfusion time, before termination, was 24 hours or two weeks ($\bf C$). Renal function determined by renal plasma flow (RPF) and glomerular filtration rate (GFR) was assessed *in vivo*, and at the end of the reperfusion period plasma, tissues and bone-marrow-derived macrophages were collected for analyses of kidney injuries, oxidative stress (NADPH oxidase-derived $O_2^{\bullet-}$ generation), immune cell activation (cytokines in plasma and in kidney) and infiltration of macrophages (M Φ) in the kidney, and finally the phenotype of bone marrow-derived macrophages was characterized ($\bf D$).