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(.pdf) 

Figure S1- Manhattan plot showing genome-wide FST values Calculation of Weir-Cockeram’s 

FST between the wild-type laboratory colony and the T1-Melon colony shows fixed differences 

where FST is equal to 1 across the genome. (.pdf) 

Figure S2 - Genome-wide levels of heterozygosity. Calculation of heterozygosity in both 

colonies show significantly higher levels of heterozygosity in both colonies relative to the 

expectation based on Hardy-Weinberg equilibrium. This indicates these colonies are not 

experiencing inbreeding in colony. (.pdf) 

Figure S3 - Comparison of cumulative assembly length with notable arthropod species. The 

cumulative lengths of the ALLMAPS super-scaffold assembly show the B. cucurbitae genome to 

be among the assemblies that have the highest contiguity shown by the steeper slope which 

indicates an assembly in a fewer number of large pieces. (.pdf) 

Figure S4 - Orthology analysis between B. cucurbitae and other arthropod gene sets. The 

phylogenetic relationship of B. cucurbitae and 17 species in Arthropoda was estimated using a 

maximum likelihood analysis of single-copy orthologous protein sequences, 1000 bootstrap 

replicates, and rooted using D. pulex (methods are described in File S1). The scale bar shows the 

branch distance for 0.1 amino acid substitution per site and all nodes with a bootstrap value of 

100 are noted with an asterisk. The gray horizontal bars for each species show the absolute 

number of proteins that are: single-copy orthologs in all species, present in all species not in 

single-copy, present in >10 of the species in the analysis, present in a 2-9 of the species in the 

analysis, and unique to the species. The pie charts at the end of the gray bars show the proportion 

of genes for each species that are unique to the species in single-copy, unique to the species not 

in single-copy, unique to the genus Bactrocera, unique to Tephritidae, unique to Diptera, unique 

to insecta, found in all species in the analysis in single-copy, and found in all species in the 

analysis not in single-copy. A total of 1,299 single copy orthologs were found in all species. In 

the B. curubitae gene set, 162 orthologs were found to be unique to the three Bactrocera in the 

dataset, 1,088 were unique to the four Tephritidae, 3,597 were unique to the nine Diptera, and 

5,596 were unique to the 17 Arthropoda. (.pdf) 



Figure S5 - Allelic discrimination plot. Control individuals of known phenotypes were 

genotyped using a Taq-Man SNP genotyping assay designed for the highest scoring QTL locus 

(methods are described in File S2). The observed genotypes for the white pupae GSS females, 

the brown pupae GSS males, and brown pupae wild males and females segregated with the white 

pupae phenotype as predicted. (.eps) 

Figure S6 - Synteny plot for collinear orthologs. An analysis for synteny for orthologous genes 

found in collinear blocks between B. cucurbitae (BC) and D. melanogaster (DM) shows that a 

higher proportion of genes are found in homologous chromosomes in contrast to the same 

analysis performed on all orthologous genes. (.pdf) 
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