Supporting Information

Highly conductive nano-sized Magnèli phases titanium oxide (TiO_x)

Aditya F. Arif¹, Ratna Balgis¹, Takashi Ogi¹, *, Ferry Iskandar², Akihiro Kinoshita³, Keitaro Nakamura³, Kikuo Okuyama¹

¹Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan

²Department of Physics, Institut Teknologi Bandung, Jalan Ganesha No. 10 Bandung 40132, West Java, Indonesia

³Research Center for Production and Technology, Nisshin Seifun Group Inc., 5-3-1, Tsurugaoka, Fujimino City, Saitama 356-8511, Japan

1. Raw data of XAFS spectra

Figure S1. XAFS spectra of (a) TiO_x-A, TiO_x-B, and TiO_x-C, and comparison of XAFS spectra before and after heat-treatment of (b) TiO_x-A, (c) TiO_x-B, and (d) TiO_x-C.

2. Raw data of XAFS spectra

Figure S2. TEM image and carbon elemental mapping of (a, b) TiO_x-A and (c, d) heat-treated TiO_x-A show a reduction in the carbon intensity after heat treatment. This result is aligned with (e) FT-IR spectrum of (i) TiO_x-A and (ii) heat-treated TiO_x-A which show a significant decrease in the Ti-O-OC peak intensity at 1103 cm⁻¹ after heat treatment.

3. Phase identification from XRD spectra

Figure S3. Raw XRD spectra and peak assignment of heat-treated (a) TiO_x-A, (b) TiO_x-B and (c) TiO_x-C

Phase	PDF No.	As-	Heat-
		synthesized	treated
TiO ₂	04-011-0664	\checkmark	\checkmark
TiO ₂	01-070-2556	\checkmark	\checkmark
Ti ₂ O ₃	00-010-0063	\checkmark	\checkmark
Ti _{2.5} O ₃	04-015-9125	-	\checkmark
Ti _{4.5} O ₅	01-071-6414	\checkmark	\checkmark
Ti ₄ O ₇	04-005-4521		
Ti ₂ C	04-007-1462		

Table S1. Summary of identified phases in TiO_x-A from XRD analysis

Table S2. Summary of identified phases in TiO_x-B from XRD analysis

Phase	PDF No.	As-	Heat-
		synthesized	treated
Ti ₃ O ₅	04-008-8183		\checkmark
Ti _{2.5} O ₃	04-015-9125	-	\checkmark
TiO ₂	04-003-0648	\checkmark	\checkmark
(rutile)			
TiO ₂ (P3121)	01-070-2556		
TiO ₂ (srilankite)	00-021-1236		\checkmark
Ti	00-055-0345		\checkmark
Ti ₄ O ₇	04-005-4521		-
TiH _{0.5}	01-079-6209		\checkmark
TiH ₂	04-007-5214	-	
Ti ₈ O ₁₅	00-050-0790	-	
Ti _{0.374} O _{0.5} (OH) _{0.5}	01-076-5388		\checkmark
(kleberite)			

Table S3. Summary of identified phases in TiO_x-C from XRD analysis

Phase	PDF No.	As-	Heat-treated
		synthesized	
Ti ₃ O ₅	04-008-8183	\checkmark	\checkmark
Ti _{4.5} O ₅	01-071-6414	\checkmark	\checkmark
TiO ₂	04-003-0648	\checkmark	\checkmark
(rutile)			
TiO ₂ (P3121)	01-070-2556	\checkmark	\checkmark
TiO ₂ (srilankite)	00-021-1236	\checkmark	\checkmark
Ti ₂ O ₃	00-010-0063	\checkmark	\checkmark

Ti ₄ O ₇	04-005-4521	\checkmark	\checkmark
TiH _{0.5}	01-079-6209	\checkmark	\checkmark
TiH ₂	04-007-5214	-	\checkmark
Ti ₈ O ₁₅	00-050-0790	\checkmark	-
TiC ₈	00-051-0622	-	\checkmark
Ti _{0.374} O _{0.5} (OH) _{0.5}	01-076-5388	\checkmark	\checkmark
(kleberite)			

4. Electrochemical characteristics of Ti₄O₇ synthesized *via* high temperature H₂ reduction of rutile TiO₂

Figure S4. (a) cyclic voltammogram and (b) potentiodynamic curve of Ti₄O₇ in oxygen-saturated 1M HCl. (c) XRD spectra of Ti₄O₇ sample showing Ti₄O₇ peaks (Ref. ICDD No. 50-787) and (d) SEM images of Ti₄O₇ particles

Table S4. Comparison of electrochemical characteristics of TiOx-A and Ti4O7

No	Parameter	Unit	TiO _x -A	Ti ₄ O ₇
1.	$E_{ m eq}$	(V/RHE)	0.11	0.31
2.	$E_{ m bd}$	(V/RHE)	1.3	1.3
3.	Corrosion current density	A cm ⁻²	5.37 x 10 ⁻⁷	1.58 x 10 ⁻⁷
4.	Corrosion rate	mm per year	0.006	0.00005