Comparative transcriptomic and proteomic analyses provide insights into the key genes involved in high-altitude adaptation in the Tibetan

pig

Bo Zhang¹, Yangzom Chamba², Peng Shang¹,², Zhixiu Wang¹, Jun Ma¹, Liyuang Wang¹, Hao

Zhang^{1,*}

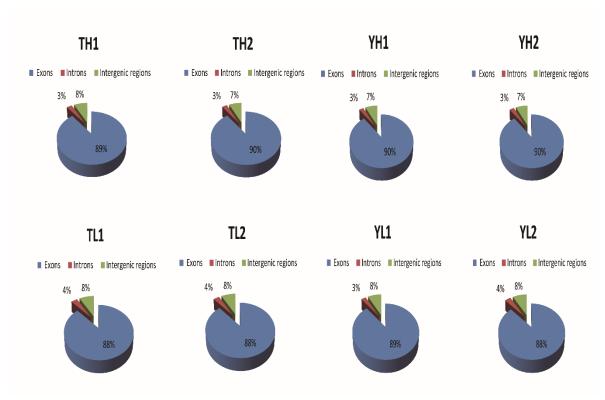
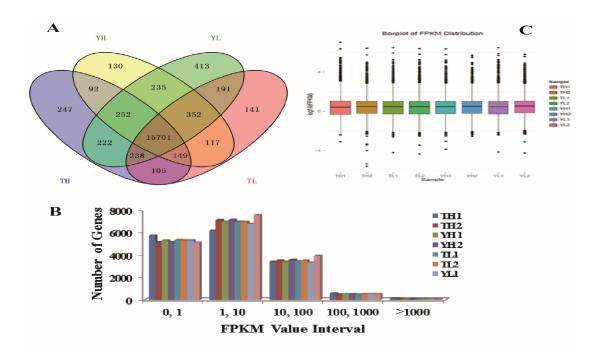
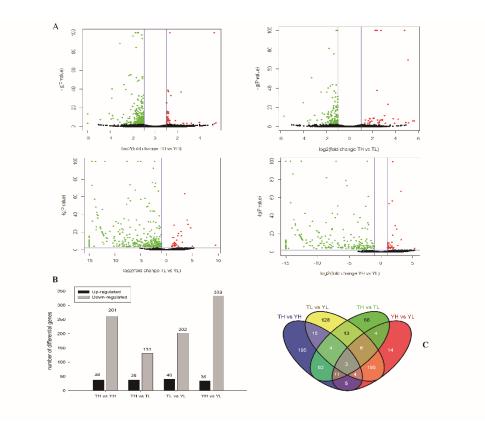
Supplementary information

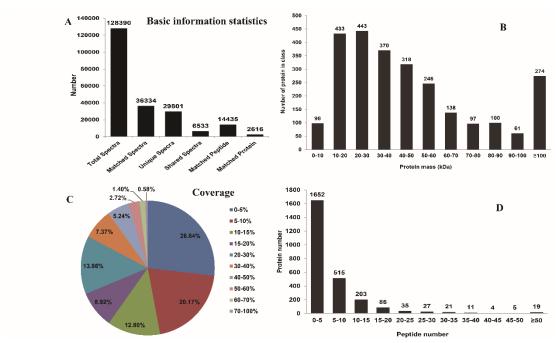
Supplementary Figures:	2
Supplementary Figure S1	
Supplementary Figure S2	
Supplementary Figure S3	4
Supplementary Figure S4	5
Supplementary Figure S5	
Supplementary Figure S6	7
Supplementary Figure S7	8
Supplementary Figure S8	9
Supplementary Figure S9	10
Supplementary Tables:	11
Supplementary Table S1	11
Supplementary Table S2	12
Supplementary Table S3	13
Supplementary Table S4: Please see the Excel file	14
Supplementary Table S5: Please see the Excel file	
Supplementary Table S6: Please see the Excel file	
Supplementary Table S7: Please see the Excel file	
Supplementary Table S8: Please see the Excel file	
Supplementary Table S9: Please see the Excel file	

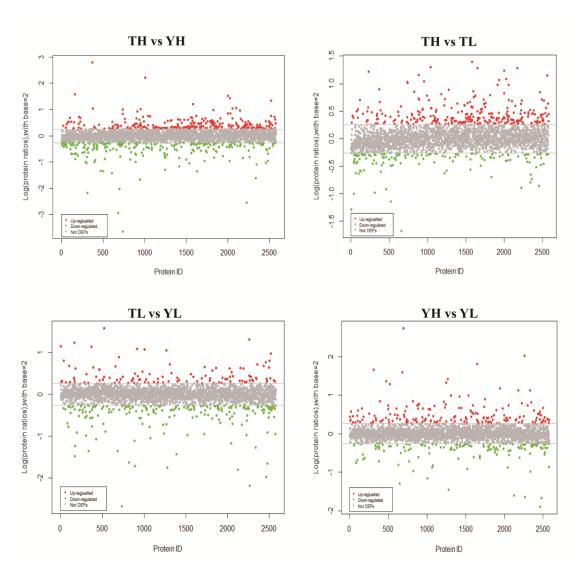
¹National Engineering Laboratory for Animal Breeding, China Agricultural University, No. 2 Yuanmingyuan West Rd., Beijing 100193, China

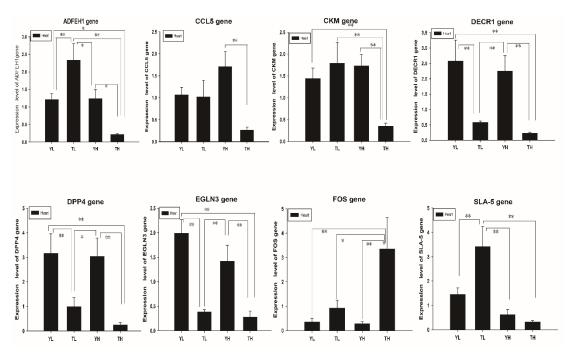
² Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet 860000, China

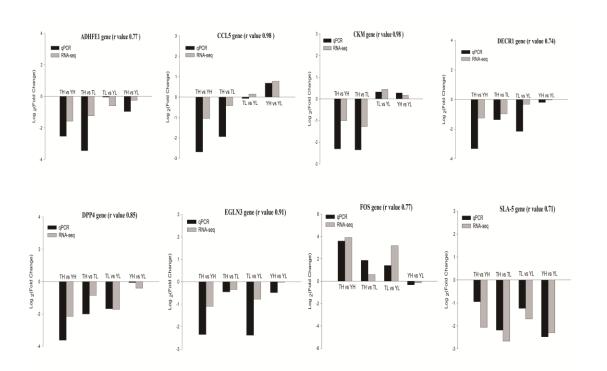
^{*}Corresponding author: <u>zhanghao827@163.com</u>.

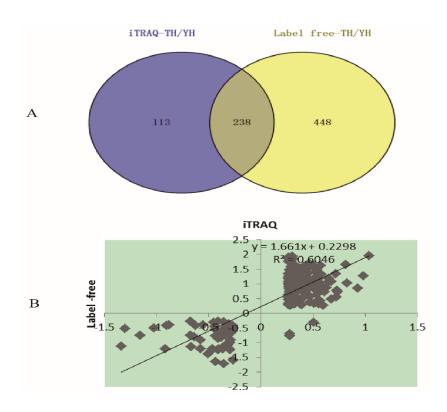





Figure S1. Distribution of reads mapped to the reference genes of eight samples.


Figure S2. Overview of RNA transcriptome profiles in pig heart tissue. A) Venn diagrams demonstrating relationship between differentially expressed genes (DEGs) in four treatment groups; B) Boxplot of fragments per kilobase of exon per million mapped fragments (FPKM) distributions in eight samples; C) Distributions of expression values of eight samples.


Figure S3. Differentially expressed genes (DEGs) for RNA-seq in four comparison groups. A) Volcano plot displaying DEGs among the four groups. The y-axis corresponds to the mean expression value of \log_{10} (P- value), and the x-axis displays the \log_2 fold change value. Upregulated and downregulated genes (P < 0.01) are shown in red and green, respectively. Black dots represent genes with similar expression levels; B) DEG regulatory trends in the four comparison groups. FC > 2 represents upregulated genes and FC < 1/2 represents downregulated genes; C) Comparison of DEGs among the four comparison groups using Venn diagrams. Numbers in overlapping areas refer to common DEGs.


Figure S4. Overview of protein identification information. (a) Basic information on protein identification. (b) Distribution of the proteins identified according to molecular weight. (c) Protein coverage by the peptides identified. (d) Distribution of proteins containing different numbers of identified peptides.


Figure S5. Differentially expressed proteins (DEPs) for iTRAQ in the four comparison groups.

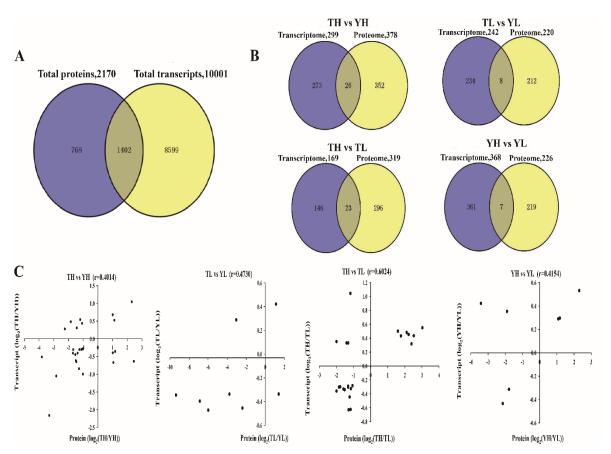

Figure S6. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) results for eight differentially expressed genes (DEGs). Each bar represents the mean \pm S.E. *Significant difference (P < 0.05), **Extremely significant difference (P < 0.01).

Figure S7. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) verification of genes in RNA-seq. The expression levels of eight differentially expressed genes (DEGs) were detected by RT-qPCR. r represents the Pearson correlation coefficient. The RT-qPCR provided results that were consistent with the RNA-seq data (r > 0.7).

Figure S8. Validation of iTRAQ data by the label-free method. (A) Venn diagram of iTRAQ and label-free for TH *vs.* YH (Tibetan highland pig versus Yorkshire highland pig). (B) Correlation analysis of iTRAQ and label-free.

Figure S9. Integrated analysis of differentially expressed genes (DEGs) and differentially expressed proteins (DEPs).

Supplementary Tables:

Supplementary Table S1

Table S1. Sample sets used in the study

Group Name Sample	Commis	Collection	A contract that	Altituda (matan)	Number	Samples in RNA-seq
	Place	Age(months)	Altitude(meter)	Number	and iTRAQ	
Tibet pig in highland (TH)	TH1	Linzhi, Tibet	6	3000	8	mixture of 4
						indivduals
	TH2					mixture of 4
	1112					indivduals
Tibet pig in lowland (TL) TL2	TI 1					mixture of 4
	Beijing	6	100	8	indivduals	
	TI 2	Beijing	6	100	0	mixture of 4
	1L2					indivduals
Yorkshire in highland (YH) YH1 YH2	VII1					mixture of 4
	Linzhi,	6	3000	8	indivduals	
	VIII	Tibet	O	3000	0	mixture of 4
	1112					indivduals
Yorkshire in lowland (YL)	YL1		6	100	8	mixture of 4
	ILI	Daiiina				indivduals
	YL2	Beijing				mixture of 4
						indivduals

Supplementary Table S2

Table S2. Primers of eight randomly selected genes for RNA-seq

		•
GeneBank.	Gene	Sequence of primer $(5' \rightarrow 3')$
		F:GGCTTTGGAAATGCTGGTGT
XM_003125603.2	ADHFE1	R:GTGAATACTGCTGGGGAGGT
		F:TTATCACCAGAAAGAACCGC
NM_001129946.1	CCL5	R:CTCAAGGCTTCCTCCATC
		F:TGTGGGTGAACGAGGAGGA
NM_001129949.1	CKM	R:AGGTTAGACGGGCAGGTGAG
		F:ATTACAACCATCTATGCCGA
NM_001190232.2	DECR1	R:TTCTTTCTCAAATGCTCCAG
		F:TGGAACAGCAGATGATAACG
NM_214257.1	DPP4	R:GTAGGGTAGAGAGAAGCATTGT
		F:TCCCCAGAAGAAGAAGAAA
NM_001123113.1	FOS	R:CGCTTGGAGTGTCTCAGTC
		F:TGGTTCTCGTCCTGGTCGCT
NM_001114056.1	SLA-5	R:AAGAAACACATCAGAGCCCT
		F:GGGAAATCATTCATAGCAGA
XM_001928507.4	EGLN3	R:TGAGGGCAGGCTCGGTTTT
		F:TCTGGCACCACACCTTCTA
AJ312193	β -actin	R:AAGGTCTCGAACATGATCTG
		F:GGTCACCAGGGCTGCTTTTA
NM_001206359	GAPDH	R:CCTTGACTGTGCCGTGGAAT

Note: All primers were designed based on mRNA sequences. GAPDH $\,$ and $\beta\text{-actin}$ genes were used as internal controls of genes.

Supplementary Table S3

Table S3. Summary of the sequencing reads alignment to the pig reference genome

Sample	TH1	TH2	YH1	YH2	TL1	TL2	YL1	YL2
Clean reads	86,923,902	52,533,158	65,184,090	67,468,286	64,210,492	79,379,614	62,073,534	73,689,732
Total mapped reads	72,420,772	43,113,696	55,389,296	57,467,339	52,884,724	66,027,615	52,757,743	61,437,704
	(83.32%)	(82.07%)	(84.97%)	(85.18%)	(82.36%)	(83.18%)	(84.99%)	(83.37%)
Unique mapped	66,820,768	39,327,822	50,609,288	51,552,262	48,132,537	60,045,081	48,257,243	55,965,043
reads	(76.87%)	(74.86%)	(77.64%)	(76.41%)	(74.96%)	(75.64%)	(77.74)	(75.95%)
Multiple mapped	5,600,004	3,785,874	4,780,008	5,915,077	4,752,187	5,982,534	4,500,500	5,472,661
reads	(6.44%)	(7.21%)	(7.33%)	(8.77%)	(7.40%)	(7.54%)	(7.25%)	(7.43%)
Fragments mapped	31,537,503	18,889,684	23,625,490	24,270,894	22,279,021	27,850,601	22,295,735	25,385,755
to Exons	(43.55%)	(43.81%)	(42.65%)	(42.23%)	(42.13%)	(42.18%)	(42.26%)	(41.32%)
Fragments mapped	2,230,119	1,288,024	1,521,350	1,613,847	1,893,572	2,252,673	1,485,644	2,192,840
to Introns	(3.08%)	(2.99%)	(2.75%)	(2.81%)	(3.58%)	(3.41%)	(2.82%)	(3.57%)
Fragments mapped	5,564,427	3,149,067	4,133,613	4,113,394	4,415,997	5,363,928	4,215,620	5,248,920
to Intergenic	(7.68%)	(7.30%)	(7.46%)	(7.16%)	(8.35%)	(8.12%)	(7.99%)	(8.54%)
Reads overlapped	33,088,723	19,786,921	26,108,843	27,469,204	24,296,134	30,560,413	24,760,744	28,610,189
with exons	(45.69%)	(45.89%)	(47.14%)	(47.80%)	(45.94%)	(46.28%)	(46.93%)	(46.57%)
Total unmapped	14,503,130	9,419,462	9,794,794	10,000,947	11,325,768	13,351,999	9,315,791	12,252,028
reads	(16.68%)	(17.93%)	(15.03%)	(14.82%)	(17.64%)	(16.82%)	(15.01%)	(16.63%)
Genes with >1000	141							
FPKM	(0.88%)	95 (0.58%)	81 (0.50%)	89 (0.54%)	96 (0.59%)	90 (0.55%)	98 (0.61%)	64 (0.37%)
Genes with 100 to	577	481	504	507	488	514	528	521
1000 FPKM	(3.62%)	(2.96%)	(3.11%)	(3.10%)	(3.00%)	(3.15%)	(3.31%)	(3.05%)
Genes with 10 to	3,387	3,485	3,403	3,548	3,432	3,483	3,306	3915
100 FPKM	(21.23%)	(21.44%)	(20.99%)	(21.69%)	(21.11%)	(21.37%)	(20.71%)	(22.88%)
Genes with 1 to 10	6,141	7,082	6,954	7,096	6,946	6,932	6,748	7526
FPKM	(38.49%)	(43.57%)	(42.90%)	(43.38%)	(42.73%)	(42.52%)	(42.28%)	(43.99%)
Genes with <1	5,709	5,111	5,268	5,116	5,295	5,283	5,282	5083
FPKM	(35.78%)	(31.44%)	(32.50%)	(31.28%)	(32.57%)	(32.41%)	(33.09%)	(29.71%)
Total genes	15,955	16,254	16,210	16,356	16,257	16,302	15,962	17,109

Supplementary Table S4: Please see the Excel file

Table S4. All differentially expressed genes (DEGs) from heart tissues for RNA-seq.

Supplementary Table S5: Please see the Excel file

Table S5. Functional analysis of differentially expressed genes (DEGs) using DAVID.

Supplementary Table S6: Please see the Excel file

Table S6. Functional analysis of differentially expressed genes (DEGs) using IPA.

Supplementary Table S7: Please see the Excel file

Table S7. All differentially expressed proteins (DEPs) from heart tissues for iTRAQ.

Supplementary Table S8: Please see the Excel file

Table S8. Overlapping proteins in the comparison groups.

Supplementary Table S9: Please see the Excel file

Table S9. Gene Ontology (GO) functional analysis of differentially expressed proteins (DEPs).