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SUPPLEMENTARY INFORMATION

METHODS

Molecular Dynamic Simulations

X-ray crystal structures of ox-hPDI (PDB ID: 4EL1) and red-hPDI (PDB ID: 4EKZ) were
used as initial conformations for MD simulations' with CHARMM 27 force field in the
NAMD 2.10 package®. Short missing regions including residues 250 to 254, 321 to 323 and
single residue 479 were recovered using Modeller 9.13°. Missing hydrogens were added by
Reduce 3.23"%. Each system was then solvated in a rectangular box of around 16491 TIP3P
water molecules with at least 10 A padding around protein and neutralized by addition of 23
Sodium 1ons. Both systems were minimized for 20000 steps of conjugate gradient method
while harmonic restraints with a force constant of 10 kcal mol”' A were applied to protein
heavy atoms. Gradual heat up from 10 to 300 K were then performed via 500 ps NPT
dynamics with a time step of 1 fs while harmonic restraints were gradually relaxed. Nose-
Hoover Langevin piston was used to keep pressure at 1 atm and Langevin thermostat was
used to control temperature™®. Periodic boundary conditions were applied and non-bonded
interactions were truncated at 12 A using a smooth switching started at 10 A. Long-range
electrostatic interactions were calculated using the particle mesh Ewald (PME) method with a
orid spacing of 1 A’. After heat up and removal of restraints, the equilibration phase was
continued at 300 K up to 2 ns. In subsequent MD simulations, the time step was increased to
2 fs and all bonds with hydrogen partners were kept rigid using the SHAKE algorithm. MD
trajectories were recorded every 4 ps. To accelerate the conformational sampling, both

systems were simulated for 10 ns and recorded structures were clustered based on their

backbone RMSD via the quality threshold (QT) algorithm implemented in the VMD 1.9



package *. Six representative structures from most populated clusters of each of the ox-hPDI
and red-hPDI systems were then used as starting points of 55 ns NPT dynamics and all
recorded snapshots excluding those of the first 3 ns were used for subsequent analysis. This

consists of 156000 structures from a total of 600 ns NPT simulation.

Cross Correlation and Principal Component Analysis

Backbone RMSD for each domain and whole protein was calculated along each trajectory
with respect to the first production frame. Secondary structure character of all residues were
calculated over trajectories using the STRIDE program''. To identify groups of residues with
correlated motions, cross correlation matrix of atomic displacements was calculated

according to equation (1):

¢, =G —ENG — G (G -FENNE -F N (Eq. 1)

where C;;1s the cross correlation or normalized covariance between displacements ot atoms i
. . ~ - : 11 :
and j with position vectors 7, and r,, respectively * . The angular bracket < > represents time

average over collected trajectory and Co atoms were considered as reference for position of

each residue. By this definition, ¢;jelements, take values between -1 and 1. Extreme values -1

and 1 show average movements 1n opposite or the same direction, respectively, while a value
near 0 corresponds to uncorrelated displacements or movement in orthogonal directions.
Before calculation of cross correlation matrix, the overall rotation and translation of protein
were eliminated from trajectory by alignment from Ca atoms of domains b and b’ to the first
frame of the first production trajectory. Though there are many arbitrary choices for such an
alignment 1n a multi-domain protein, our choice 1s the most reasonable 1n the case of hPDI

since the bb’ pair of domains act as a base for domain motions.



To address domain motions 1n a more quantitative manner, some Inter-domain geometric

variables were defined and calculated over trajectories. Six inter-domain distances denoted as

R, (i, j € {a,a',b,b'}) were defined between domain geometric centers. Two inter-domain

angles ® .. and ®,  were defined between abb’ and bb’a’ domain centers, respectively.

One torsion angle @ , . was also defined as the angle between two intersecting planes

formed by abb’ and bb’a’ domain centers. Beside these mechanical “ball and spring”
variables, a more comprehensive assessment of domain dynamics was performed via
principal component analysis (PCA) of Ca Cartesian coordinates. The standard PCA was
performed by superimposition of trajectories on Cao atoms of domains b and b’ and
diagonalization of covariance matrix of atomic {fluctuations to obtain corresponding
eigenvectors and eigenvalues 1n descending order. MD trajectories were then transformed to
the new space defined by eigenvectors. To compare oxidized and reduced systems, all
trajectories were joined together for PCA. To analyze and visualize hPDI motions 1n reduced
dimensions, the most important collective modes of motions were selected based on their
eigenvalue magnitudes (1.e. their contribution 1n total variance). For visualization purposes
principal components were transformed back to Cartesian coordinates. The same procedure
was also repeated for two-domain subsets of coordinates including ab, bb” and b’a’ domain
pairs to obtain basic two-domain motions that results in complicated four-domain dynamics.
The free energy landscape (FEL) spanned by the first two principal components PCland PC2

1S given by equation (2).
AG(PC,,PC,) ==k, T[In p(PC,,PC,)—=lnp_ ]| (Eq.2)

where (PC1, PC2) 1s the probability distribution tunction obtained from MD data and p_ 1S

its maximum value which 1s subtracted to put zero of free energy on the most probable



conformation. The kernel density estimation with a Gaussian kernel was used for

construction of probability distribution functions. Projected FELs were also obtained for

PC1-PC3 and PC2-PC3 subspaces.

To check the performance of adopted multi-trajectory approach 1n sampling of
conformational space of hPDI, the inner products between PCA eigenvectors obtained from
all data and those of different halves of the data were compared 1n Figure S10. Comparison of
diagonal and off diagonal elements in panel b of Figure S10 shows that the directions of
important collective motions would be the same 1f one considers only the half-length of all
trajectories while this 1s not true for full-length of all trajectories. Accordingly, starting from
multiple configurations 1s crucial for efficient sampling and for avoiding from trapping

regions of landscape.
Statistical Machine Learning Methods

Two types of structural variables were considered to discriminate dynamical behavior of ox-

and red-hPDI: /) Domain level features including R,.,0 ., ©,,. and @, .. ii) Residue

level features including pairwise residue-residue distances d,;, defined as the Euclidean

distance between Ca atoms of residues iand ;. Values of these parameters were collected

from all trajectory snapshots and labeled as “ox” or “red”. To find those features that can
discriminate oxidized states from reduced ones, a binary Support Vector Machine (SVM) was
used to classify conformations as oxidized or reduced states. Those features that result 1n
higher classification accuracy are assumed to be more important in description of dynamical

differences between ox- and red-hPDI systems. Let 7 be any of the considered dynamical

features, with observed ranges of values [V VO"] and [VR.ed prRed ] in ox- and red-hPDI

min 2 " max min 2 max

systems, respectively. The question 1s to what extent the red/ox state of the protein can be



determined solely based on J values. In a special case with [VO.X y ]: [VRed VRed] the

min 2 ° max min 2  max

state of the protein cannot be determined accurately based on the observed V' values. On the

other hand, if [VQX PO ]ﬂ [VRed VRed]z ¢, there is no overlap between sampled ranges of

min 2>’ max mn 2 max

V values 1n red and ox trajectories and a given frame from an unknown trajectory can be

classified, at 100% accuracy, to either ox or red state, depending on 1ts J value. For 1nstance,

in the open range (VO’“ VRed) can be used to

max 2’ min

if V2 <V>:“then a threshold of V

max sep

discriminate the red/ox state of any hPDI structure. In other cases with limited overlap

between [V N ] and [VRed Vriexd] ranges, we used a custom linear discriminator to find

min 2" max min

an optimum value for V from statistical distributions of J” values in ox and red states which

maximizes the accuracy of ox vs. red discrimination based on the value JV of a given
snapshot. We also used the SVM with radial-basis kernel to improve ox vs. red

discrimination accuracy over the linear models. Although this method could not provide a

single threshold ¥V, 1t significantly improved the discrimination accuracy in several cases,

particularly when the distribution of J was bimodal or multi-modal in some state. In all cases
the classifier was trained with 50% random selection of all available frames (in both ox and

red states) and tested with the rest of the frames. (Code available upon request)
Dynamic Residue Interaction Network (DRIN)

The standalone version of RING 2.0 program was used for calculation of residue interaction
network (RIN). Five types of non-covalent interactions were considered including hydrogen
bond, van der Waals, salt bridge, n-n and cation-n interactions. The RING was used 1n a
mode that reports multiple interactions per residue pair but only one interaction per
interaction type. Accordingly, each of the 156000 structures was converted to a graph with

residues as 1ts vertices and the pairwise interactions of the residues as its edges. There could



be different edges between a pair of residues due to different types of non-covalent

Interactions.

Let n be the number of residues and 4, (¢) be the nXn adjacency matrix of a RIN graph for

each type of non-covalent interaction. The A;;(t) elements are equal to zero or one for the
absence or presence of considered type of interaction between residues iand j 1n time t of
some MD trajectory. From time series of 4;;(t), the maximum interaction life time, [};, was
then extracted to build the matrix I' which will be denoted here as the DRIN matrix for

considered type of non-covalent interaction. Here we define [;; as the maximum length of a

continuous period of time 1n which a persistent interaction type 1s observed 1n the RIN graphs

between the residues i and j:

frimet
[, =argmaxi3z:| | | 4,0 |=1;  (Eq.3)

By this definition, for each type of interaction, 156000 RIN graphs were compiled to two

single DRIN graphs for each of the ox- and red-hPDI systems. The simpler choices, such as

summing 4;;(t) for each pair of residues during the whole period of time, results in noisy and

transient on-and-off interactions often make a big total which could often dominate the effect

of persistent interactions. Accordingly, a DRIN matrix can be considered as a complete nXn

weighted graph with edge weights equal to l;;. The DRIN matrices Fi(}x and FiI}Ed were

calculated for each of the ox- and red-hPDI systems, respectively, and for all five types of

non-covalent interactions considered. Values of I;; elements were averaged over six

separate trajectories of each system.



To highlight differences between oxidized and reduced states, we computed the differential

DRIN graph A with the same nodes and edges as DRIN graph, but adjusted weights that

represent the told change of I'; values between ox- and red-hPDI systems. More specifically,
the elements of the differential DRIN matrix A were computed for each type of interaction as:

( FZ.J.O’“ +e )
Re d
\F.. +5)

g

(Eq. 4)

A, =log,

In the above equation, & 1s a small positive value with negligible effect on the outcome,

which 1s considered to prevent the division by zero. In our study, we set € equal to the time

between two consecutive MD snapshots that means we have elongated the maximum

duration of each interaction by 1 more frame. This 1s negligible with respect to the values of

L for persistent interactions that were 1n the order of hundreds or thousands of frames.

We used the differential DRIN matrix in a number of ways. By considering a cutoff on the

absolute values ot A, we could 1dentity the pairs of residues that had a significant alternated

pattern of interactions between ox and red states. We could also consider A as the weights of

a graph, where positively and negatively weighted edges depict the interactions that are more
persistent 1n ox and red states, respectively. We visualized such a network using the
Cytoscape version 3.3.0, by assigning the colors and the thickness of the edges according to
the interaction weight 1n differential DRIN matrix. For visualization and analysis purposes
differential DRIN graphs obtained for different types of interactions were merged together 1n

a single graph with different edge styles.
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Table S1 Structural features of representative conformers from FEL. R: inter domain distance; 0: angle; ®: Dihedral torsion.

SUPPLEMENTARY TABLES

index symbol frame Rab Rav’ Raa Rob’ Roa’ Roa’ Babb’ Obb'a Pabba’ PC1 PC2 PC3 PC4 PC5
1 C1 21572 31.4 41.2 48.4 32.2 58.1 36.2 80.7 116.2 40.3 -15.3 -20.6 110.6 26.5 -13.9
2 C2 3364 31.5 47.6 56.8 34.2 61 34.3 92.7 125.9 19.4 24.9 -38 -46.3 71.2 -52.8
3 C3 20565 32 37.4 48 32.8 63.8 38.2 70.5 128 28.4 85.3 -68.8 65.5 -5.3 -7
4 C4 5215 34.3 45.3 49.6 33 59.3 34 84.5 124.4 10 77.8 -7.8 -25.2 45.3 12.8
5 C5 4290 31.7 47.2 63.9 33.2 63.8 35.2 93.3 137.5 36.5 -18 -114 -66.4 -1.8 32.3
6 C6 10534 32.5 46.6 48.7 31.3 54 32.7 93.7 115 21.8 -62.8 86.8 18.6 20.4 14.9
7 C7 25295 32.4 47.7 48.1 30.9 52 31.2 97.7 113.7 6 1.6 92.3 -29 87.2 -72.3
8 C8 28306 33.4 54.8 72.7 32.5 55.4 32 112.5 118.6 85.7 -252.4 -140.4 31 120.9 8.4
9 C9 14656 32.7 45.6 62.9 31.4 62.8 34.5 90.7 145 31.4 -32.5 -103.3 -78.2 -70.7 19.2
10 C10 27825 32.9 53.6 72.9 32.5 59.9 32.2 110.2 135.9 63.2 -225.2 -93.7 -49.3 15.6 2.1
11 C11 26766 31.7 47.8 57.9 33.8 56.2 32.3 03.8 116.5 56.6 -184.9 3.9 96.4 -10.9 26.4
12 Ci2 7360 31 40.3 49.3 32.3 62.6 38.4 79 124.1 20.9 79.4 -36 19.9 11.1 45.2
13 C13 19248 31.3 37.7 44.6 31.8 59.7 37.2 73.4 119.7 31.4 86.7 -58.6 97.8 48.1 5.5
14 Ci14 4485 32 44.3 59.1 32.6 63.3 34.9 86.6 139.3 25.5 29.1 -08.8 -55.3 -25.3 32.2
15 C15 21129 31.7 40.7 47.9 32 58.3 36.2 79.5 117.5 39.4 -21 -9.3 103.9 -8.1 -12.4
16 C16 17722 32.5 32.9 37.7 31.9 57.6 34.7 61.4 119.9 33.4 46.4 12.1 146.8 -70.5 -22.3
17 C17 2567 32.8 49.2 69.3 32.7 67.5 37.9 97.3 145.9 -6.2 30.9 -32.1 -197.9 -54.1 -73.5
18 C18 9870 33.1 46.3 48.2 32 55.2 32.1 90.5 119.1 3.5 3.6 103.8 -44.5 -0.5 80.4
19 C19 28935 32.7 42.6 40.9 31.9 53.3 31.5 82.5 114.4 6.3 -0.7 131.5 19.5 -29.3 40.9
20 C20 23659 31.8 44 44.2 32.6 53.2 31.6 86.3 112 23.5 -75.6 103.7 58.6 -33.9 7.7
21 C21 27792 32.2 53.2 72 32.2 58.1 31.6 111.3 131.2 70.7 -226.1 -107.9 -31.4 56.1 8.9
22 Cc22 28374 33.7 56.6 73 32.1 54.5 32.1 119 116.6 80.1 -255.7 -125.7 13.6 153.1 31.2
23 C23 26653 31.8 46.4 59.9 33.8 59 32.8 90.1 125.1 57.5 -172.9 -30.3 74.3 -54.6 20.3
24 C24 15549 32.1 49.9 71.1 31.6 65.5 36.8 103.2 146.8 20.1 13.2 -139.3 -165.8 12.5 32.3
25 C25 18641 31.3 37.1 43.5 32 59.6 36.3 71.8 121.5 26.7 84.2 -28.2 88.3 21.5 3.3
26 C26 22495 30.5 41 50.1 33.3 60.3 34.1 79.9 127.1 24.5 26.7 -20.7 17.9 -23.3 6.4
27 Cc27 1349 31.5 41.9 55.5 33.6 64.8 36.1 80.2 136.8 16.4 38.8 -30.3 -55.9 -82.6 -47.6
28 C28 2581 34 49.8 67.6 32.2 66.1 37.5 97.3 143 -9.1 59.7 -11.5 -195.9 -30.9 -53
29 C29 3915 32.9 45.4 65 32.7 64.3 34.8 87.6 145.1 51 -49.3 -156.9 -43.7 -64.7 11.5
30 C30 6592 31 43.8 51.7 33.3 60.1 34 86 126.9 5.5 8.8 63.4 -52.5 -44.5 18.8
31 C31 8816 33.1 43.2 45.2 32.2 56.7 33 82.8 121 -1.9 52.9 89.3 -34.2 -28.8 75.4
32 C32 29128 32.3 42.1 42.7 32 55.1 32.5 81.8 117.3 9.7 -19.3 112.1 25.7 -67 0.9
33 C33 24421 32.1 44.5 48.6 32.3 54.7 32.9 87.2 113.9 38 -105.4 60.4 98.4 -32.7 13.8
34 C34 14370 33.2 43.6 58.6 32.4 64.1 35.6 83.2 140.8 27.8 14.8 -100.3 -39.9 -71.9 -4.1
35 C35 28171 32.8 54.7 73.3 32.1 55.7 31.3 114.8 123.1 84 -255.2 -139.8 6.9 109.9 3.5
36 C36 15299 33.2 46.6 66.3 32.3 66.5 36.5 90.7 150.5 6.5 39.9 -109.8 -154.9 -78.3 8.9
Table S2 Overview of the experimentally point mutations 1n hPDI compared to the DRIN results (highlighted in red columns).
Reported point Domain Functional consequences on | DRIN interaction result with Doma!n Iocali_z ation :
mutations localization hPDI interacting partner(s) of interacting Interaction type | References
partner(s)
RO7E . Decrease reductase activity | Ox-dominated interactions with o Hydrogen bonds
(~31.8%) E321 and E322 & salt bridges
Decrease reductase activit - | ' i ' .
D180R/D181R b ~73.3% ) y | OX dom;?;;jda':;egg(')ons with b and b’ Salt bridge
K326E b’ DeCFeaS@(rEiljﬁjgse activity Fied-dommat;cjr éqteractlon with b and & Hydrogen bonds
Decrease reductase activit - | ' | | _
: e oo ™" bamax | Sanbrges
Decrease reductase activit - ' | '
P235G b—b’ (~38.7%) 4 Redwiﬁrggz’gsegrzgt%r;:’gons b and b’ Van der waals
R300A " R_ed-dominated iInteractions 2 and b’ Hydrogen bond &
with W396, P395 and E242 Van der Waals
Rgd-dominated interactions Hydrogen bond,
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Ox-dominated interaction with . .
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