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I. SUPPORTING INFORMATION15

A. Aggregation Equilibria and the Second Virial Coefficient16

Turbidity experiments monitor the aggregation of protein clusters (aggregation of haemoglobin17

tetramers [1]). Transmittance T = T/T0 falls when aggregation is promoted. That is tur-18

bidance (absorbance) S = − ln T rises, proportional to the concentration cagg of aggregates.19

If we assume aggregation is dominated by association of 2 haemoglobin tetramers then20

the aggregation process is21

2h −−⇀↽−− h−h (1)

(h represents one haemoglobin tetramer) with aggregation equilibrium constant22

Kagg =
γaggcagg
γ2
1c

2
1

(2)

Here c1 is the concentration of single haemoglobin tetramer and cagg is the concentration of23

aggregates. γ1 and γagg are the activity coefficients of the single tetramer and the aggregates,24

representing additional nonideal interactions. For simplicity here we take γ1 and γagg = 1,25

with protein-protein interactiosn represented via the aggregation constant Kagg.26

The second virial coefficient b characterises 2-body interactions (Eq.19 in the main27

manuscript),28

b = 2π

∫ ∞

0

(L+ 2R)2dL (1− exp [−G(L)/kT ]) (3)

G(L) is the interaction free energy between two tetramers. b is evaluated here with respect to29

the separation distance L between protein surfaces, rather than the distance between protein30

centres r = L + 2R, assuming hard sphere contact between tetramers. For a 2-member31

cluster, the aggregation constant is determined directly from second virial coefficient [2, 3],32

Kagg = −b (4)

Additional corrections can be added to account for excluded volume [2, 3] or metastable33

aggregation [4].34

The total protein (tetramer) concentration is35

cp = c1 + 2cagg (5)
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Combining with the equilibrium condition Eq. (2) (and taking ideal activity coefficients),36

we obtain an expression for the concentration of single tetramers in terms of cp and b,37

c1 =
1−

√
1− 8bcp

4b
(6)

We simplify this expression with the expansion
√
1 + x ≈ 1 + x/2− x2/8,38

c1 ≈ cp (1 + 2bcp) (7)

Aggregation occurs when the interaction G(L) is attractive, in which case b < 0. That is,39

we obtain a finite c1 < cp. It follows from Eq. (5) that the concentration of aggregates is40

cagg ≈ −bc2p (8)

That is, the concentration of aggregates is directly proportional to the second virial co-41

efficient. Of course, a more complex dependence on the second virial coefficient could42

be obtained by retaining the nonideal activity coefficient γ1, which also depends on b via43

γ1 = exp(2bcp) [5].44

B. Turbidity and the Second Virial Coefficient45

The turbidance (absorbance) S = − ln T is proportional to the concentration of absorb-46

ing species, assuming standard Beers-Lambert absorbance. We suppose that only single47

haemoglobin tetramers and aggregates of tetramers absorb significantly, with extinction48

coefficients k1 and kagg respectively. If l is the length of the turbimetry cell, then49

S = − ln T = l [k1c1 + kaggcagg] (9)

Taking concentrations from Eq. (7) and Eq. (8), we obtain50

S = − ln T = lcp [k1 − bcp (kagg − 2k1)] (10)

We expect absorbance to be stronger for the larger aggregates, kagg > k1 (in fact if T falls51

between 0 and 100%, then kagg > 2k1). We simplify analysis by assuming kagg is much52

greater than k1 such that k1 can be dropped, leaving53

S = − ln T ≈ −lbc2p (11)
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That is, turbidance (− ln T ) is proportional to the second virial coefficient.54

By taking bCs as a reference (assuming no binding of Cs+ to carboxylate sites), we can55

determine the best-fitting binding constants for Li+ and K+ from the ratio56

ln TM

ln TCs

=
bM
bCs

(12)

which is Eq. 20 in the main manuscript.57
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