1	Supporting Information for
2	"Cation effects on haemoglobin aggregation: balance of
3	chemisorption against physisorption of ions"
4	published in <i>Interface Focus</i>
5	Drew F. Parsons [*]
6	School of Engineering and Information Technology,
7	Murdoch University, 90 South St, Murdoch, WA 6150, Australia
8	Timothy T. Duignan ^{\dagger}
9	Physical Science Division, Pacific Northwest National Laboratory,
10	P.O. Box 999, Richland, WA 99352, USA
11	Andrea $Salis^{\ddagger}$
12	Department of Chemical and Geological Sciences
13	University of Cagliari-CSGI and CNBS
14	Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato (CA), Italy

^{*} Corresponding author: D.Parsons@murdoch.edu.au † Timothy.Duignan@pnnl.gov

[‡] asalis@unica.it

15 I. SUPPORTING INFORMATION

¹⁶ A. Aggregation Equilibria and the Second Virial Coefficient

¹⁷ Turbidity experiments monitor the aggregation of protein clusters (aggregation of haemoglobin ¹⁸ tetramers [1]). Transmittance $\mathcal{T} = T/T_0$ falls when aggregation is promoted. That is tur-¹⁹ bidance (absorbance) $S = -\ln \mathcal{T}$ rises, proportional to the concentration c_{agg} of aggregates. ²⁰ If we assume aggregation is dominated by association of 2 haemoglobin tetramers then ²¹ the aggregation process is

$$2h \rightleftharpoons h-h$$
 (1)

²² (h represents one haemoglobin tetramer) with aggregation equilibrium constant

$$K_{\text{agg}} = \frac{\gamma_{\text{agg}} c_{\text{agg}}}{\gamma_1^2 c_1^2} \tag{2}$$

²³ Here c_1 is the concentration of single haemoglobin tetramer and c_{agg} is the concentration of ²⁴ aggregates. γ_1 and γ_{agg} are the activity coefficients of the single tetramer and the aggregates, ²⁵ representing additional nonideal interactions. For simplicity here we take γ_1 and $\gamma_{agg} = 1$, ²⁶ with protein-protein interactions represented via the aggregation constant K_{agg} .

The second virial coefficient b characterises 2-body interactions (Eq.19 in the main manuscript),

$$b = 2\pi \int_0^\infty (L + 2R)^2 dL \left(1 - \exp\left[-G(L)/kT\right]\right)$$
(3)

 $_{29}$ G(L) is the interaction free energy between two tetramers. b is evaluated here with respect to $_{30}$ the separation distance L between protein surfaces, rather than the distance between protein $_{31}$ centres r = L + 2R, assuming hard sphere contact between tetramers. For a 2-member $_{32}$ cluster, the aggregation constant is determined directly from second virial coefficient [2, 3],

$$K_{\text{agg}} = -b \tag{4}$$

³³ Additional corrections can be added to account for excluded volume [2, 3] or metastable ³⁴ aggregation [4].

³⁵ The total protein (tetramer) concentration is

$$c_p = c_1 + 2c_{\text{agg}} \tag{5}$$

³⁶ Combining with the equilibrium condition Eq. (2) (and taking ideal activity coefficients), ³⁷ we obtain an expression for the concentration of single tetramers in terms of c_p and b,

$$c_1 = \frac{1 - \sqrt{1 - 8bc_p}}{4b}$$
(6)

³⁸ We simplify this expression with the expansion $\sqrt{1+x} \approx 1 + x/2 - x^2/8$,

$$c_1 \approx c_p \left(1 + 2bc_p \right) \tag{7}$$

³⁹ Aggregation occurs when the interaction G(L) is attractive, in which case b < 0. That is, ⁴⁰ we obtain a finite $c_1 < c_p$. It follows from Eq. (5) that the concentration of aggregates is

$$c_{\rm agg} \approx -bc_p^2$$
 (8)

⁴¹ That is, the concentration of aggregates is directly proportional to the second virial co-⁴² efficient. Of course, a more complex dependence on the second virial coefficient could ⁴³ be obtained by retaining the nonideal activity coefficient γ_1 , which also depends on b via ⁴⁴ $\gamma_1 = \exp(2bc_p)$ [5].

45 B. Turbidity and the Second Virial Coefficient

The turbidance (absorbance) $S = -\ln \mathcal{T}$ is proportional to the concentration of absorb-47 ing species, assuming standard Beers-Lambert absorbance. We suppose that only single 48 haemoglobin tetramers and aggregates of tetramers absorb significantly, with extinction 49 coefficients k_1 and k_{agg} respectively. If l is the length of the turbimetry cell, then

$$S = -\ln \mathcal{T} = l \left[k_1 c_1 + k_{\text{agg}} c_{\text{agg}} \right] \tag{9}$$

⁵⁰ Taking concentrations from Eq. (7) and Eq. (8), we obtain

$$S = -\ln \mathcal{T} = lc_p \left[k_1 - bc_p \left(k_{\text{agg}} - 2k_1 \right) \right]$$
(10)

⁵¹ We expect absorbance to be stronger for the larger aggregates, $k_{\text{agg}} > k_1$ (in fact if \mathcal{T} falls ⁵² between 0 and 100%, then $k_{\text{agg}} > 2k_1$). We simplify analysis by assuming k_{agg} is much ⁵³ greater than k_1 such that k_1 can be dropped, leaving

$$S = -\ln \mathcal{T} \approx -lbc_p^2 \tag{11}$$

⁵⁴ That is, turbidance $(-\ln T)$ is proportional to the second virial coefficient.

⁵⁵ By taking $b_{\rm Cs}$ as a reference (assuming no binding of Cs⁺ to carboxylate sites), we can ⁵⁶ determine the best-fitting binding constants for Li⁺ and K⁺ from the ratio

$$\frac{\ln \mathcal{T}_M}{\ln \mathcal{T}_{\rm Cs}} = \frac{b_M}{b_{\rm Cs}} \tag{12}$$

⁵⁷ which is Eq. 20 in the main manuscript.

⁵⁸ [1] Medda L, Carucci C, Parsons DF, Ninham BW, Monduzzi M, Salis A. Specific Cation
 ⁵⁹ Effects on Hemoglobin Aggregation below and at Physiological Salt Concentration. Lang ⁶⁰ muir. 2013;29(49):15350-15358. Available from: http://pubs.acs.org/doi/abs/10.1021/
 ⁶¹ la404249n.

⁶² [2] Hirschfelder JO, McClure FT, Weeks IF. Second Virial Coefficients and the Forces Between
 ⁶³ Complex Molecules. J Chem Phys. 1942;10(4):201–214. Available from: http://dx.doi.org/
 ⁶⁴ 10.1063/1.1723708.

⁶⁵ [3] Swope WC, Andersen HC, Berens PH, Wilson KR. A computer simulation method for
⁶⁶ the calculation of equilibrium constants for the formation of physical clusters of molecules:
⁶⁷ Application to small water clusters. J Chem Phys. 1982;76(1):637-649. Available from:
⁶⁸ http://dx.doi.org/10.1063/1.442716.

⁶⁹ [4] Stogryn DE, Hirschfelder JO. Contribution of Bound, Metastable, and Free Molecules to the
⁷⁰ Second Virial Coefficient and Some Properties of Double Molecules. The Journal of Chemical
⁷¹ Physics. 1959;31(6):1531-1545. Available from: http://dx.doi.org/10.1063/1.1730649.

72 [5] Duignan TT, Parsons DF, Ninham BW. Ion Interactions with the Air-Water Interface Using

a Continuum Solvent Model. J Phys Chem B. 2014;118(29):8700–8710. Available from: http:

^{//}pubs.acs.org/doi/abs/10.1021/jp502887e.