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Supplementary Material 

Additional details of multi-step-ahead adaptive estimation of psychometric thresholds 

through dynamic programming 

The Bayesian adaptive estimation of psychometric thresholds is extended to use longer-

horizon look-ahead optimization by dynamic programing through the following steps. 

1. Define the Bayesian model 

Give stimulus d, the Bayesian model of response y and underlying psychometric 

threshold θ  in a two-alternative-forced-choice detection task is defined by the joint probability 

distribution: 
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Here, the psychometric function ( )dθΨ  is given in Equation 1 and the prior distribution ( )p θ  is 

defined as a diffuse Gaussian distribution by selecting values of µ  and σ  that are suitable for 

the task domain. 

2. Define the stimulus, parameter, and state spaces 

The application of constrained backward induction to Bayesian adaptive estimation of 

thresholds involves representing three distinct variables on discretized continuums: (a) stimulus 

intensity d, (b) threshold θ , and (c) posterior distribution of θ . The scales of d and θ  depend on 

a task domain. In our simulation study, assuming the task of detecting visual objects with 

varying contrasts, possible values of d  and θ  were sampled, respectively, from 0.05% to 98% 

and from 0.1% to 90%, and stored in 120-by-1 and 100-by-1 vectors. Possible shapes of the 

posterior distribution of θ  were modeled parametrically by Equation 4 and its parameter space 

was discretized on a three-dimensional grid with a total of 23,331 grid points. The bounds, 

resolution, and sampling scheme of the grid were carefully determined by referring to the results 

of threshold estimation in empirical and simulated settings. With these key variables discretized, 
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grid-based computations are employed to evaluate numerical integration and maximization 

required in the following steps. 

3. Precompute the matrix of local state transitions and rewards 

From the standpoint of dynamic programming, Bayesian posterior updating is the 

transition of states from a trial to the next. Because all possible posteriors (including the prior at 

the start of a measurement session) are approximated on a discretized space, any transition from 

a given posterior to another can be mapped within the space, given a response to a chosen 

stimulus. Since stimuli are selected from 120 possible values and responses are binary (correct or 

incorrect detection), all possible transitions can be represented in a 23,331 × 120 × 2 matrix. 

Here, each of matrix elements denotes the resulting posterior (1 to 23,331) that is updated from 

one in the preceding trial (denoted by the position, 1 to 23,331, on the first dimension of the 

matrix), given a response (either 0 or 1) to a stimulus (1 to 120). This transition matrix is 

computed as follows. For each of all discretized states (i.e., approximate posteriors), denoted 

state iΘ , the next state jΘ  given stimulus d and response y is determined by 

( )KLarg min ( | , ) || ( )
h

h
j D p y d pθ θΘ=  

where 

( | , ) ( | , ) ( )
i

p y d p y d pθ θ θΘ∝ . 

Here, ( )
h

p θΘ  is the probability distribution corresponding to state hΘ  in the state space and 

KL ( || )D p q  denotes the Kullback-Leibler (KL) divergence from distribution p to distribution q. 

To interpret, given state iΘ , stimulus d and response y, the next state jΘ  is determined as the 

one in the state space that is closest to the posterior ( | , )p y dθ  in the sense of KL divergence. 

The local reward of a decision on stimulus d made at state iΘ  is defined by the expected 

information gain: 

|( , ) ( ) [ ( )]i i Y dr d H H ′Θ = Θ − Θ  

where ( )H p  is the entropy of distribution p, ′Θ  denotes the state updated from the preceding 

state iΘ  given response y to stimulus d, and the expected value |Y d  is with respect to the 

posterior predictive distribution of y at state iΘ . The values of ( , )ir dΘ  for all states and stimuli 

are also precomputed and stored in a matrix of size 23,331 × 120. 
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4. Backward induction 

Given the above setup, a backward induction algorithm is run as follows. 

Step 0. Initialize the global rewards ( )t iR Θ  and optimal stimuli ( )t id ∗ Θ  for all states iΘ  

(indexed from 1 to I ) and all trials t  (1 to T ) 

Step 1. FOR the last trial T  only 

FOR 1, 2, ,i I=   

Compute and store ( ) max ( , )T i id
R r dΘ = Θ  and 

( ) arg max ( , )T i i
d

d r d∗ Θ = Θ  

END 

 END 

Step 2. FOR 1, 2 ,1t T T= − −   

FOR 1, 2, ,i I=   

Compute and store ( )| 1( ) max ( , ) ( | , , )t i i Y d t j id
R r d R y d+ Θ = Θ + Θ Θ   

and ( )| 1( ) arg max ( , ) ( | , , )t i i Y d t j i
d

d r d R y d∗
+ Θ = Θ + Θ Θ  , where 

1( | , , )t j iR y d+ Θ Θ  denotes the (previously computed) global reward in 

trial 1t +  at state jΘ  which will be reached by the transition from iΘ  

given response y  to stimulus d . 

END 

 END 

 

Note that, in Step 2, the values 1( | , , )t j iR y d+ Θ Θ  are computed efficiently by using the 

precomputed transition matrix to determine transitions from iΘ  to jΘ . Also, in Steps 1 and 2, 

the precomputed values of ( , )ir dΘ  are used. 

For the order-constrained condition (see Simulation Experiments in the main text), the 

state space is augmented with 10 possible bins from which an optimal stimulus is selected in 
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each trial (i.e., Cartesian product {1, ,10}iΘ ×  ). Then, in computing ( )t iR Θ  and ( )t id ∗ Θ  in Step 

2, whenever the bin number of the next state jΘ  is greater than that of the current state iΘ  

corresponding to the candidate stimulus d , the quantity inside the max operator is set to 0 so that 

such d is excluded from maximization.  

5. Forward evaluation 

Given the optimal decisions computed and stored through backward induction, a session 

of adaptive threshold estimation over T trials is carried out by the forward evaluation of the 

stored look-up table. Suppose that stimuli in each trial are to be selected by k-trial-ahead 

optimization. Then, the algorithm for running a measurement session is as simple as follows. 

Set the prior distribution 0 ( )p θ  

FOR 1,2, ,t T=   

• Determine the optimal stimulus td  by ( )t u jd d ∗= Θ  where max( , 1)u t T k= − +  

and ( )KL 1arg min ( ) || ( )
ht

h
j D p pθ θ− Θ=  

• Present td  and observe the response ty  

• Update the posterior by 1( ) ( | , ) ( )t t t tp p y d pθ θ θ−∝  

END 

 

Note that, in each trial, the look-up table of optimal stimuli over all states and trials (i.e., ( )t id ∗ Θ  

computed from backward induction) is referred to at the position of the k-th to last trial unless 

the number of remaining trials is less than k (i.e., max( , 1)u t T k= − + ) and at the state jΘ  that is 

closest to the current, actual posterior 1( )tp θ−  before observing ty  in the sense of KL divergence 

(i.e., ( )KL 1arg min ( ) || ( )
ht

h
j D p pθ θ− Θ= ). 


