Supplementary Material

Anti-allergic Hydroxy Fatty Acids from *Typhonium blumei* Explored Through ChemGPS-NP

Michal Korinek, Yi-Hong Tsai, Mohamed El-Shazly, Kuei-Hung Lai, Anders Backlund, Shou-Fang Wu, Wan-Chun Lai, Tung-Ying Wu, Shu-Li Chen, Yang-Chang Wu, Yuan-Bin Cheng, Tsong-Long Hwang^{*}, Bing-Hung Chen^{*}, Fang-Rong Chang^{*}

* **Correspondence:** T.-L. Hwang: htl@mail.cgu.edu.tw, B.-H. Chen: bhchen@kmu.edu.tw, F. R. Chang: aaronfrc@kmu.edu.tw

Content

Anti-allergic data with inhibition of degranulation data of fatty acids $(1 - 1000 \ \mu\text{M})$, Table S1 (attached as xlsx. file).

¹H NMR, ¹³C NMR, 2D NMR data of **1** and **2** and GC-MS data of mixtures A and B (see below).

Bioactivity screening data of *T. blumei* extract and fractions (see below).

Table of Contents

Figure S1. ¹ H NMR spectrum of compound 1 in CD ₃ OD, 400 MHz	S3
Figure S2. ¹³ C NMR spectrum of compound 1 in CD ₃ OD, 100 MHz	S4
Figure S3. ¹ H- ¹ H COSY spectrum of compound 1 in CD ₃ OD	S5
Figure S4. HSQC spectrum of compound 1 in CD ₃ OD	S6
Figure S5. HMBC spectrum of compound 1 in CD ₃ OD	S7
Figure S6. NOESY spectrum of compound 1 in CD ₃ OD	S8
Figure S7. GC-EIMS spectrum of compound 1	S9
Figure S8. ¹ H NMR spectrum of compound 2 in CD ₃ OD, 400 MHz	S10
Figure S9. ¹³ C NMR spectrum of compound 2 in CD ₃ OD, 100 MHz	S11

Figure S10. ¹ H- ¹ H COSY spectrum of compound 2 in CD ₃ OD	
Figure S11. HMQC spectrum of compound 2 in CD ₃ OD	
Figure S12. HMBC spectrum of compound 2 in CD ₃ OD	
Figure S13. NOESY spectrum of compound 2 in CD ₃ OD	
Figure S14. GC-EIMS spectrum of compound 2	
Figure S15. GC-EIMS spectrum of compound 3	
Figure S16. GC-EIMS spectrum of compound 4	
Figure S17. GC-EIMS spectrum of mixture A	S19
Figure S18. GC-EIMS spectrum of mixture B	
Table S1. Anti-allergic data of fatty acids $(1 - 1000 \ \mu M)$	see attached xlsx. file
Table S2. Anti-platelet activity of <i>Typhonium blumei</i>	
Table S3. Cytotoxicity of T. blumei	
Table S4. Anti-inflammatory activity of <i>T. blumei</i>	
Table S5. Cytotoxicity of T. blumei subfractions	
Table S6. Anti-inflammatory activity of <i>T. blumei</i> subfractions	
Table S7. Anti-allergic activity of T. blumei subfractions	

Figure S1. ¹H NMR spectrum of compound 1 in CD₃OD, 400 MHz

Figure S3. ¹H-¹H COSY spectrum of compound 1 in CD₃OD

Figure S4. HMQC spectrum of compound 1 in CD₃OD

1

Figure S5. HMBC spectrum of compound 1 in CD₃OD

Figure S6. NOESY spectrum of compound 1 in CD₃OD

Figure S7. GC-EIMS spectrum of compound 1

Figure S8. ¹H NMR spectrum of compound 2 in CD₃OD, 400 MHz

Figure S9. ¹³C NMR spectrum of compound 2 in CD₃OD, 100 MHz

Figure S10. ¹H-¹H COSY spectrum of compound **2** in CD₃OD

Figure S11. HMQC spectrum of compound 2 in CD₃OD

Figure S12. HMBC spectrum of compound 2 in CD₃OD

Figure S13. NOESY spectrum of compound 2 in CD₃OD

Figure S14. GC-EIMS spectrum of compound 2

Figure S15. GC-EIMS spectrum of compound 3

Figure S16. GC-EIMS spectrum of compound 4

Figure S17. GC-EIMS spectrum of mixture A

Figure S18. GC-EIMS spectrum of mixture B

Table S1. Anti-allergic data of fatty acids $(1 - 1000 \mu M)$. Please see attached xlsx. file.

<i>T. blumei</i> sample	Abbreviation	Concentration	In	ducer ^a
		(µg/ml)	Collagen	Thrombin
Leaves crude	TB-L	50	28.2	8.3
Dichloromethane	TB-LD	50	93.6	7.1
Water	TB-LW	50	16.7	22.6
Butanol	TB-LB	50	100.0	100.0
Hexane	TB-LH	50	7.1	4.8
Methanol aq.	TB-LM	50	-14.3	2.4
Rhizomes crude	TB-R	50	17.1	4.8
Ethyl acetate	TB-RE	50	42.9	16.7
Water	TB-RW	50	0.0	-2.4
BuOH	TB-RB	50	65.7	31.0
Hexane	TB-RH	50	22.9	11.9
Methanol aq.	TB-RM	50	14.3	7.1

 Table S2. Anti-platelet activity of Typhonium blumei

^aPlatelets were incubated with samples (50 μ g/ml) or with vehicle for 3 min, followed by the addition of platelet inducers, collagen (10 μ g/ml) or thrombin (0.05 U/ml). Results are expressed as percent inhibition of platelet aggregation (n = 1); compared with the control value (collagen or thrombin). Active fractions are indicated by red color.

		Concentration			Car	ncer cell lin	e ^a	
<i>I. blumei</i> sample	Abbreviation	(µg/ml)	HepG2 ^b	Hep3B ^b	Ca9-22 ^b	A549 ^b	MCF7 ^b	MDA-MB-231 ^b
Leaves crude	TB-L	20	23.2	27.2	26.1	3.3	21.6	15.8
Dichloromethane	TB-LD	20	49.6	36.2	42.4	25.9	44.3	22.9
Water	TB-LW	20	17.8	19.9	16.4	3.7	4.0	-4.6
Butanol	TB-LB	20	25.7	19.9	18.9	10.2	14.0	5.4
Hexane	TB-LH	20	24.8	21.3	22.3	6.0	17.1	4.3
Methanol aq.	TB-LM	20	49.3	17.9	32.7	12.1	31.8	15.9
Rhizomes crude	TB-R	20	5.2	15.1	17.2	5.7	14.5	5.4
Ethyl acetate	TB-RE	20	51.7	17.0	23.7	12.6	31.8	19.1
Water	TB-RW	20	4.1	8.8	5.2	1.2	0.3	0.1
BuOH	TB-RB	20	5.9	8.5	3.6	-0.6	-2.7	-1.8
Hexane	TB-RH	20	3.4	16.9	21.9	-2.1	7.3	2.3
Methanol aq.	TB-RM	20	48.1	16.3	24.4	18.7	29.5	18.0
Doxorubicin		2	93.9	98.0	99.9	86.8	78.5	97.5

 Table S3. Cytotoxicity of T. blumei

^aCytotoxicity was evaluated using MTT viability assay; results are presented as percent inhibition of cell growth (n = 1); compared with the control value (DMSO). Active fractions are indicated by red color.

^bHep-G2: human hepatocellular carcinoma cells; Hep3B: human hepatocellular carcinoma cells; Ca9-22: oral squamous cell carcinoma cells; A549: human lung adenocarcinoma cells; MCF7: human adenocarcinoma cells; MDA-MB-231: human breast adenocarcinoma cells.

<i>T. blumei</i> sample		Concentration	Anti-inflammatory assay ^a		
	Addreviation	(µg/ml)	Superoxide anion generation	Elastase release	
Leaves crude	TB-L	10	46.7	22.6	
Dichloromethane	TB-LD	10	80.0	88.4	
Water	TB-LW	10	18.0	10.5	
Butanol	TB-LB	10	78.2	84.5	
Hexane	TB-LH	10	43.1	74.4	
Methanol aq.	TB-LM	10	98.6	95.6	
Rhizomes crude	TB-R	10	42.1	12.2	
Ethyl acetate	TB-RE	10	90.2	93.1	
Water	TB-RW	10	3.3	5.4	
BuOH	TB-RB	10	97.2	84.6	
Hexane	TB-RH	10	89.7	94.1	
Methanol aq.	TB-RM	10	99.2	108.7	

Table S4. Anti-inflammatory activity of T. blumei

^aAnti-inflammatory activity was evaluated by superoxide anion generation and elastase release assays in human neutrophils using fMLF/CB as inducer. Percent inhibition; results are presented as mean \pm SEM (n = 3 - 4); compared with the control value (fMLF/CB). Active fractions are indicated by red color.

<i>T. blumei</i> rhizomes		Concentration Cancer		cell line ^a	
ethyl acetate layer	Abbreviation	(µg/ml)	HepG2 ^b	A549 ^b	MDA-MB-231 ^b
TB-RE subfraction 1	TB-1	20	-56.2	4.6	12.7
TB-RE subfraction 2	TB-2	20	-39.6	-2.9	5.6
TB-RE subfraction 3	TB-3	20	-69.4	-0.3	6.6
TB-RE subfraction 4	TB-4	20	-84.1	-1.5	4.1
TB-RE subfraction 5	TB-5	20	-52.4	1.6	3.0
TB-RE subfraction 6	TB-6	20	-88.7	-2.1	-0.9
TB-RE subfraction 7	TB-7	20	33.5	30.9	18.5
TB-RE subfraction 8	TB-8	20	-82.6	-5.6	2.0
TB-RE subfraction 9	TB-9	20	56.8	25.3	23.3
TB-RE subfraction 10	TB-10	20	-27.2	3.9	5.8
TB-RE subfraction 11	TB-11	20	-87.2	-7.7	-4.9
TB-RE subfraction 12	TB-12	20	-21.3	-6.6	-14.8
TB-RE subfraction 13	TB-13	20	-67.5	-16.7	-16.6
Doxorubicin		2	95.2	70.0	73.7
		1	70.1	22.1	31.9
		0.5	58.7	17.3	22.9
		0.25	42.9	16.5	14.7

Table S5. Cytotoxicity of *T. blumei* subfractions

^aCytotoxicity was evaluated using MTT viability assay; results are presented as percent inhibition of cell growth (n = 1); compared with the control value (DMSO). Active fractions are indicated by red color.

^bHep-G2: human hepatocellular carcinoma cells; A549: human lung adenocarcinoma cells; MDA-MB-231: human breast adenocarcinoma cells.

		Anti-inflammatory assay ^a				
T. blumei rhizomes	Abbreviation	Superoxide anion generation	Elastase release			
etnyi acetate layer		$IC_{50} (\mu g/ml)^{b}$	$IC_{50} (\mu g/ml)^{b}$			
TB-RE subfraction 1	TB-1	>10	3.8 ± 2.2			
TB-RE subfraction 2	TB-2	2.0 ± 0.4	2.9 ± 0.5			
TB-RE subfraction 3	TB-3	>10	>10			
TB-RE subfraction 4	TB-4	>10	>10			
TB-RE subfraction 5	TB-5	>10	>10 ^c			
TB-RE subfraction 6	TB-6	$> 10^{d}$	>10			
TB-RE subfraction 7	TB-7	>10 ^e	6.4 ± 0.9			
TB-RE subfraction 8	TB-8	4.3 ± 0.6	2.4 ± 0.5			
TB-RE subfraction 9	TB-9	1.5 ± 0.2	1.3 ± 0.1			
TB-RE subfraction 10	TB-10	2.5 ± 0.6	1.9 ± 0.6			
TB-RE subfraction 11	TB-11	2.6 ± 0.6	1.6 ± 0.3			
TB-RE subfraction 12	TB-12	$>10^{ m f}$	4.2 ± 1.2			
TB-RE subfraction 13	TB-13	6.5 ± 1.8	2.3 ± 0.6			

Table S6. Anti-inflammatory activity of T. blumei subfractions

^aAnti-inflammatory capacity was evaluated by superoxide anion generation and elastase release assays in human neutrophils using fMLF/CB as inducer. IC₅₀ values; results are presented as mean \pm SEM (n = 3 - 4); compared with the control value (fMLF/CB).

 ${}^{b}IC_{50}$ values express the concentration of the sample required to inhibit superoxide anion generation or elastase release by 50%.

 $^cTB\text{-}5$ exerted significant inhibitory activity in elastase release (22.9 $\pm 5.6\%$) assay at 10 $\mu M.$

^dTB-6 exerted significant inhibitory activity in superoxide anion generation ($23.2 \pm 3.7\%$) assay at 10 μ M.

^eTB-7 exerted significant inhibitory activity in superoxide anion generation ($39.4 \pm 1.3\%$) assay at 10 μ M.

^fTB-12 exerted significant inhibitory activity in superoxide anion generation ($14.8 \pm 1.4\%$) assay at 10 μ M.

		Inhibition of A23187-induced β-hexosaminidase releas				
<i>T. blumei</i> rhizomes ethyl acetate layer	Abbreviation	Concentration (µg/ml)				
		10.0	50.0	100.0		
TB-RE subfraction 1	TB-1			—		
TB-RE subfraction 2	TB-2	—	—	30.7		
TB-RE subfraction 3	TB-3	—		—		
TB-RE subfraction 4	TB-4	—		27.0		
TB-RE subfraction 5	TB-5	—		—		
TB-RE subfraction 6	TB-6	—	—	—		
TB-RE subfraction 7	TB-7	—		41.0		
TB-RE subfraction 8	TB-8	—		—		
TB-RE subfraction 9	TB-9	27.7	42.7	TOXIC		
TB-RE subfraction 10	TB-10	—	42.0	TOXIC		
TB-RE subfraction 11	TB-11	—		25.7		
TB-RE subfraction 12	TB-12	—		—		
TB-RE subfraction 13	TB-13	—		—		
Dexamethasone			80% (50 n	M)		

Table S7.	Anti-aller	gic a	activity	of <i>T</i> .	blumei	subfractions
-----------	------------	-------	----------	---------------	--------	--------------

^a The cytotoxicity of samples to RBL-2H3 was evaluated using MTT viability assay and the toxic concentrations are labelled as 'TOXIC' (viability less than 80%). The inhibition of degranulation was assessed by A23187-induced β -hexosaminidase release in RBL-2H3 cells; percent inhibition; results are presented as mean (n = 3); compared with the control value (A23187). — not active (insignificant inhibition of degranulation, below 20%)