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Concise Whole-Cell Modeling of BKCa-CaV Activity
Controlled by Local Coupling and Stoichiometry
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ABSTRACT Large-conductance Ca2þ-dependent Kþ (BKCa) channels are important regulators of electrical activity. These
channels colocalize and form ion channel complexes with voltage-dependent Ca2þ (CaV) channels. Recent stochastic simula-
tions of the BKCa-CaV complex with 1:1 stoichiometry have given important insight into the local control of BKCa channels by
fluctuating nanodomains of Ca2þ. However, such Monte Carlo simulations are computationally expensive, and are therefore
not suitable for large-scale simulations of cellular electrical activity. In this work we extend the stochastic model to more realistic
BKCa-CaV complexes with 1:n stoichiometry, and analyze the single-complex model with Markov chain theory. From the
description of a single BKCa-CaV complex, using arguments based on timescale analysis, we derive a concise model of
whole-cell BKCa currents, which can readily be analyzed and inserted into models of cellular electrical activity. We illustrate
the usefulness of our results by inserting our BKCa description into previously published whole-cell models, and perform
simulations of electrical activity in various cell types, which show that BKCa-CaV stoichiometry can affect whole-cell behavior
substantially. Our work provides a simple formulation for the whole-cell BKCa current that respects local interactions in BKCa-
CaV complexes, and indicates how local-global coupling of ion channels may affect cell behavior.
INTRODUCTION
Mathematical modeling has played an important role in
investigations of cellular electrophysiology at least since
the works on neuronal action-potential generation by
Hodgkin and Huxley (1). In the Hodgkin-Huxley model
and most of its descendants, the system of ion channels is
coupled globally via the membrane potential or the bulk
cytosolic Ca2þ concentration. However, some ion channels
are colocalized, implying that the activity of one channel
may affect the other via local control. Electrical activity is
thus a result of the complex interactions of local and global
coupling of ion channels. Of note, the standard Hodgkin-
Huxley formulation does not take into account local
coupling of channels.

Large-conductance Ca2þ- and voltage-dependent Kþ

(BKCa, KCa1.1) channels, ubiquitously found in excitable
cells where they shape electrical activity (2), provide an
example of such ion channels, whose activity is influ-
enced locally by associated voltage-gated Ca2þ channels
(CaVs). BKCa channels have a single-channel conductance
of�100 pS in physiological conditions (3), and are activated
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by Ca2þ and transmembrane voltage, which is seen as a
Ca2þ-dependent left-shift of the BKCa activation curve
(4–6). In neurons (7–10) and vascular myocytes (11), BKCa

channels colocalize with CaVs, which exposes the BKCa

channels to the Ca2þ nanodomains below the mouth of the
CaV channels (12–15), where the local Ca2þ concentration
reaches the tens ofmicromolar that are required for activating
the BKCa channels at physiological voltages (2,16). There is
increasing evidence for a direct coupling between BKCa and
CaV channels, forming BKCa-CaV ion channel complexes
with a stoichiometry of 1–4 CaV channels per BKCa channel
(2,11), and differences in stoichiometry likely affect channel
activity. Intuitively, we expect that more CaVs per complex
would augment the BKCa open probability, both because of
higher local Ca2þ concentration when the CaVs open simul-
taneously, and because of greater probability that at least one
of the CaVs is open at any given time.

Recently, Cox (17) presented a Markov chain model for a
BKCa-CaV complex with 1:1 stoichiometry, and performed
Monte Carlo simulations that provided important insight
into the open probability of BKCa channels during depolariza-
tions and action potentials, and how e.g., inactivation of CaVs
directly influence BKCa channel activity. Such Monte Carlo
simulations are computationally intensive and explicit math-
ematical relations between assumptions and consequences
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are not available.MonteCarlo simulations have also been per-
formed for whole-cell simulations of electrical activity to
investigate the effects of stochastic ion channel kinetics, for
example for Ca2þ-sensitive SK andBKCa channels controlled
by local Ca2þ dynamics (18,19). When stochasticity is not of
interest, to speed up simulations, many models of whole-cell
electrical activity that includeBKCa channels express this cur-
rent in a simplified way that neglects local effects due to the
BKCa-CaV complexes (20,21) or use heuristic expressions
involving the whole-cell Ca2þ currents (22,23), which may
not respect the dynamicswithinBKCa-CaVcomplexes.Alter-
natively, diffusion of Ca2þ around a CaV (or a cluster of syn-
chronized CaVs) has been simulated to investigate, e.g., how
BK channels inherit properties of the CaVs, and how distance
between channels influence BKCa activity (10). Another
frequent approach (which, however, neglects local interac-
tions) is to model Ca2þ dynamics in one or more shells
beneath the cell membrane, which then drives BKCa channels
(24–26). The computational intensity is increased in such
a model because local Ca2þ concentrations resulting from
buffering and diffusion must be simulated in addition to ion
channel gating.

It would therefore be advantageous to have a simple but
mechanistically correct model of the BKCa current, which
respects the local effects of BKCa-CaV coupling, and that
can be inserted in Hodgkin-Huxley-type models of whole-
cell electrical activity. Such a model would also make
explicit how local effects and stochastic ion channel kinetics
are reflected in average, whole-cell behavior of BKCa chan-
nels with the advantage compared to simulations that the
dependence on parameters can be read directly from the for-
mulas of the reduced model. Here we achieve both these
aims. Our approach is similar to analyses of Ca2þ-depen-
dent inactivation of Ca2þ channels (27), and local control
of ryanodine receptors in dyadic subspaces (28,29). Impor-
tantly, in the nanodomains controlling BKCa activity, Ca

2þ

is fast enough to avoid the need for, e.g., a probability-den-
sity approach for handling local Ca2þ dynamics correctly at
the whole-cell level (30). We use the mechanistically correct
description of single BKCa-CaV complexes with 1:1 stoichi-
ometry developed by Cox (17) as the natural starting point
for constructing a reduced model for BKCa-CaV complexes
with 1:n stoichiometry to be inserted into a whole-cell
model of electrical activity. Our results give insight into
the simulations of single BKCa-CaV complexes, and clarify
that it is the local effects of ion channel kinetics rather than
stochasticity per se that determine whole-cell activity.
MATERIALS AND METHODS

BKCa channel model

We describe the BKCa channel with a model of single-channel gating with

two states (closed and open). Fig. S1 A shows a schematic representation of

the model, where X corresponds to the closed state and Y to the open state.
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The mathematical description of BKCa voltage- and calcium-dependent

activation is given by the following:

dpY
dt

¼ �k�pY þ kþð1� pYÞ; (1)

where pY represents the open probability for the BKCa channel, and k� and

kþ are the voltage- and calcium-dependent rate constants. As shown in the

Supporting Material, from relatively mild assumptions and experimental

evidence, we can express these rates as the following:

k� ¼ w�ðVÞf �ðCaÞ; (2)

kþ ¼ wþðVÞf þðCaÞ; (3)
where Ca denotes the Ca2þ concentration at the BKCa channels. At fixed

Ca2þ levels, BKCa activation is well described by Boltzmann functions

(6,8,16). Hence, we assume that the voltage-dependent rate constants,

w�, for the transition from the open to closed state, andwþ, for the transition
from the closed to open state, have the following standard forms:

w�ðVÞ ¼ w�
0 e

�wyxV ; (4)

wþðVÞ ¼ wþe�wxyV ; (5)
0

where the parameters w�
0 and wþ

0 are voltage-independent.

There is evidence that at fixed V, Ca2þ stabilizes the open state (4), i.e., f�

should decrease with Ca, and that >1 Ca2þ ion is needed for BKCa activa-

tion, which is a sigmoidal function of the Ca2þ concentration (4,16). The

calcium-dependent relations are therefore modeled by the following:

f �ðCaÞ ¼ 1� Canyx

K
nyx
yx þ Canyx

¼ 1

1þ
�

Ca
Kyx

�nyx ; (6)

þ Canxy 1

f ðCaÞ ¼

K
nxy
xy þ Canxy

¼
1þ

�
Kxy

Ca

�nxy ; (7)

where Kyx and Kxy are the calcium affinities when the channel closes and

opens, respectively, and nyx and nxy are the corresponding Hill coefficients.

By using the relationships in Eqs. 4–7, we get the following formulas for the

equilibrium open fraction of BKCa channel activation, pYN , and the corre-

sponding time constant tpY :

pYN ¼ kþ

k� þ kþ
¼ 1

1� e
�V�V0

S0

; (8)

1 ewxyV
� �

Kxy

�nxy� 1

tpY ¼

k� þ kþ
¼

wþ
0

1þ
Ca

1� e
�V�V0

S0

; (9)

where

V0 ¼
�
log

w�
0

wþ
0

þ log

�
1þ

�
Kxy

Ca

�nxy�
� log

�
1þ

�
Ca

Kyx

�nyx��
S0;

(10)
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S0 ¼

wyx � wxy

: (11)

We use global optimization to estimate the model parameters providing

the best fit to the experimental data (17), consisting of BKCa open probabil-

ities and time constants as functions of voltage, at different Ca2þ concentra-

tions. In particular, we formulate an optimization problem to minimize the

sum of the squared errors between the simulated responses produced by the

model and the corresponding experimental data as follows:

min
q

J ¼
X
j

X
i

�
pYNj

ðViÞ � bpYNj
ðVi; qÞ

�2

þ
�
tpYj ðViÞ � btpYj ðVi; qÞ

�2

; (12)

where q is the set of model parameters, and pYNj
ðViÞ and tpYj ðViÞ are the

experimental BKCa steady-state open fraction and corresponding time con-

stants, respectively, at the given voltage Vi for the jth experiment (corre-

sponding to a given Ca2þ concentration). bpYNj
ðVi; qÞ and btpYj ðVi; qÞ are

the simulated equilibrium open fraction of the BKCa channel and the corre-

sponding time constants of the model, respectively, at the given Vi for the jth

experiment. For the optimization, we use a hybrid genetic algorithm (GA)

(31) that combines the most well-known type of evolutionary algorithm

with a local gradient-based algorithm (32). We use the function ‘‘ga’’

from the software MATLAB (The MathWorks, Natick, MA) Global Opti-

mization Toolbox and fmincon from the MATLAB Optimization Toolbox

as the local algorithm. We repeat the hybrid GA algorithm several times

and select the parameter set that gives the best fitting. Table S1 reports

the optimal model parameters, and Fig. S1, B–G shows the fits to the data.
CaV channel model

We describe the calcium channel dynamics with the following model (27):

dc

dt
¼ bo� ac; (13)

do
dt
¼ acþ gb� ðbþ dÞo; (14)

b ¼ 1� c� o ¼ 1� h; (15)
where c corresponds to the closed state, o to the open state, and b to the in-

activated (blocked) state of the calcium channel; h represents the fraction of

Ca2þchannels not inactivated, d is the rate for channel inactivation, and g is

the reverse reactivation rate; and a and b represent the voltage-dependent

Ca2þ channel opening rate and closing rate, respectively, and have the

following forms:

aðVÞ ¼ a0e
�a1V ; (16)

bðVÞ ¼ r
�
b0e

�b1V þ a0e
�a1V

�
: (17)
As shown in Sherman et al. (27), the processes of activation and inactivation

can be approximately separated in time, because activation is much faster

than inactivation. In particular, we achieve the following model for the acti-

vation variable, mCaV,

dmCaV

dt
¼ mCaV;N � mCaV

tCaV
; (18)
where

mCaV;N ¼ a

aþ b
; tCaV ¼ 1

aþ b
; (19)

and the following equation for inactivation:

db

dt
¼ mCaV;Nd� ðmCaV;Ndþ gÞb: (20)

As for the BKCa channel, we use a global optimization method to optimize

the parameters of Eqs. 16 and 17 to fit the experimental data presented byCox

(17), i.e., peak open probabilities and time constants as functions of voltage.

For the values ofg¼ 0.0020ms�1 and d¼ 0.0025 mM�1 ms�1�[CaCaV], we

use those reported byCox (17).CaCaVis the Ca
2þ concentration at the internal

mouth of the channel and defined by Eq. S1 with r ¼ 7 nm, representing the

distance of the sensor for Ca2þ-dependent inactivation from the channel pore.

Note that the relation given by Eq. 17 allows scaling of the amount of channel

activation at high voltage values according to the experiments (i.e., not all the

calcium channels are open even for high voltages). Table S1 reports the

optimal parameters for the CaVactivation model.
BKCa-CaV complex with 1:1 and 1:n
stoichiometries

Combining the models for BKCa and CaV channels, we obtain the models

of the 1:1 (see Results and Supporting Material, Model of the 1:1 BKCa-

CaV Complex and Timescale Analysis and Model Simplifications) and

1:n BKCa-CaV complexes (see Results and Supporting Material, Model

for BKCa Activation in Complexes with k Noninactivated CaVs and its

Approximation). Ca2þ levels sensed by the BKCa channel were assumed

to reach steady state immediately after CaV opening or closure (17), and

the steady-state Ca2þ concentration Cao resulting from influx through a

single CaV was calculated by an explicit formula (see Eq. S1), assuming

that CaV and BKCa channels are r ¼ 13 nm apart (2,9). At V ¼ 0 mV,

Cao z 19 mM (see Supporting Material, Model of the 1:1 BKCa-CaV Com-

plex and Table S2 for further details). In the case of more than one CaV per

complex, the linear buffer approximation (33) was used to summarize

Ca2þ levels when more than one CaV is open. We note that kþc z 0 (see

Supporting Material, Model of the 1:1 BKCa-CaV Complex and Table

S1) because the background Ca2þ concentration Cac is much below the

levels needed for BKCa activation at physiological voltages (2). Thus, a

BKCa channel opens only when a CaV in the complex is open. This approx-

imation is used widely in our derivations, and is supported by the fact that

Ca2þ influx via CaVs is needed to open BKCa channels (34), and that the

submembrane Ca2þ concentration of some hundreds of nanomolar that a

BKCa in a complex without open CaVs would sense, is too low to activate

BKCa channels at physiological voltages (2,17).

We refer to the Supporting Material for details on mathematical analysis

of the time to first BKCa channel opening using phase-type distributions

(35) (see Supporting Material, Model of the 1:1 BKCa-CaV Complex),

and timescale analysis used for model reduction borrowing ideas from

enzyme kinetics (36) (see Supporting Material, Timescale Analysis and

Model Simplifications and Model for BKCa Activation in Complexes

with k Noninactivated CaVs and its Approximation), as well as for details

on the whole-cell models investigated (see Supporting Material, Whole-

Cell Models).
Availability of models and computer code

MATLAB code containing the files for generating the results presented

in the main text and Supporting Material is provided as an additional

Supporting File S1.
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RESULTS

A simple Markov chain model of the BKCa-CaV
complex

Cox (17) presented a stochastic model of a single CaV2.1
(P/Q-type) controlling a BKCa channel (a-subunits only)
via local Ca2þ. The channels were located 13 nm apart,
corresponding to physical coupling (2,9). The CaV was
described by a seven-state Markov chain, and when the
Ca2þ channel opened or closed, the local Ca2þ level was
assumed to reach equilibrium instantaneously, in accor-
dance with simulations of Ca2þ diffusion (12,13,17). The
calculated local Ca2þ concentration was then assumed to
drive a 10-state Markov chain model of the BKCa channel,
and Monte Carlo simulations were performed.

We set out to simplify the description of the 7 � 10-
state Markov chain model of the BKCa-CaV complex.
This was achieved by assuming a three-state model for
CaV (27) with states closed (C), open (O), or inactivated
(B, for blocked) (see Materials and Methods). Parameters
were adjusted to reproduce traces from Cox (17). The
BKCa channel was represented by a model with only
two states, closed (X) or open (Y) (see Materials and
Methods). The transitions between states were supposed
to depend on voltage and local Ca2þ, which was assumed
to reach equilibrium instantaneously, and depend on
voltage via the single-channel Ca2þcurrent (17). Parame-
ters describing BKCa kinetics were fitted to data from
Cox (17). Combining these two models, we obtain a six-
state model of the BKCa-CaV complex (Fig. 1 A) that
shows behavior similar to the 70-state model used by
Cox (17) (Fig. 1, B and C). Our simplified BKCa model
does not describe details of single-channel kinetics, which
is not our scope here, but reproduces satisfactorily activa-
tion curves and times (Fig. S1), as well as whole-cell
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currents (Figs. S4 and S5), thus making it appropriate
for analysis of whole-cell BKCa activity.
Time to first opening

Interestingly, Cox (17) found that not all simulated BKCa

channels open during 20 ms depolarizations or imposed
action potentials. We now study the time to the first opening
of the BKCa channel during a depolarization, which mathe-
matically corresponds to the first time the Markov chain Z
corresponding to Fig. 1 A visits one of the states CY, OY,
or BY starting from state CX. We denote the time to first
opening TCX,Y, which is a random variable. Simulations
show that eventually all BKCa channels open, and that the
probability of channel opening before a given time t,
P(TCX,Y < t), shows biphasic behavior (Fig. S2). Taking
advantage of the fact that transitions from CX to CY, and
from BX to BY have virtually zero probability (BKCa chan-
nels open only if the CaV is open), we obtain explicit for-
mulas for the average time to first opening E(TCX,Y) and,
more generally, for the distribution function P(TCX,Y < t)
using phase-type distribution results for Markov chains
(35) (see Supporting Material, Time to First Opening and
Phase-Type Distributions), as follows:

EðTCX;YÞ ¼ 1

a
þ 1

kþo
þ 1

kþo

�
b

a
þ d

g

�
; (21)

PðT < tÞ ¼ 1�
X �

exp
�
tQ

��
; (22)
CX;Y

j˛fC;O;Bg
CX;jX

where Q is the subtransition rate matrix of Z corresponding
to states {CX, OX, BX}. Thus, the average time to first open-
ing is inversely related to the opening rates of the CaV and
10 20
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BKCa, and to the rate of reactivation after inactivation of the
CaV. The involvement of these two processes explains the
biphasic behavior, because escape from inactivation is
much slower than channel opening. Eq. 22 states that
P(TCX,Y < t) is 1 minus the probability of not having left
{CX, OX, BX} before t, and makes it explicit that �15%
of BKCa channels do not open during a 20 ms depolarization
(17), because P(TCX,Y< 20 ms)z 85% with our parameters
(Fig. S2).
A concise deterministic model of cellular BKCa

activity derived from multiscale principles

1:1 stoichiometry

For Hodgkin-Huxley-type whole-cell simulations, we do not
need to know the state of each single BKCa channel, but it
suffices to follow the BKCa open probability pY over time,
because in the presence of many channels the whole-cell
BKCa current is IBK ¼ gBK pY(V � VK), where gBK is the
maximal whole-cell BKCa conductance and VK is the Kþ

reversal potential.
The time evolution of the probability distribution of the

Markov chain Z corresponding to the six-state model in
Fig. 1 A can be described by a system of five ordinary dif-
ferential equations (ODEs) because the probabilities sum
to 1. Denote, for j ˛ {C, O, B} and x ˛ {X, Y}, the state
probabilities pjx(t) ¼ P(Z(t) ¼ jx). Then pY(t) ¼ pCY(t) þ
pOY(t) þ pBY(t). As shown in Fig. 1 C, the average fraction
of open channels calculated from Monte Carlo simulations
of the Markov chain is well approximated by pY obtained
from the ODE system.

Although the reduction to five ODEs for the description
of the BKCa-CaV complexes is already a substantial reduc-
tion compared to Monte Carlo simulations, we wish to
obtain an expression for the BKCa current of Hodgkin-
Huxley form. Such a simplification provides further insight
into the regulation of BKCa activity by CaVs, and provides
the base for concise handling of BKCa-CaV complexes with
1:n stoichiometry.

We performed detailed timescale analysis (see Supporting
Material, Timescale Analysis and Model Simplifications)
based on the fact that re- and inactivation of CaVs are slower
than (de-)activation. Thus, on a fast timescale, the average
fraction of noninactivated CaVs, h ¼ 1 –(pBX þ pBY), is
assumed to be constant, and the model splits into two sub-
models with, respectively, four and two states (Fig. 1 A, green
and blue).

In the system of ODEs describing the state probabilities
of the corresponding reduced four-state Markov chain
(Fig. 1 A, green), it turns out that the dynamics of state
CY is the fastest because CaV kinetics and BKCa-channel
closure, when the CaV is closed, are faster reactions than
BKCa gating in the presence of an open CaV (see Fig. S3).
Assuming quasi-steady state for CY, we derive a single
ODE describing the gating variable mBK, which models
the fraction of open BKCa channels in complexes with non-
inactivated CaV (see Supporting Material, Model Simplifi-
cations), as follows:

dmBK

dt
¼ mBK;N � mBK

tBK
; (23)

with steady state and time constant given by the following:

mBK;N ¼ mCaV kþo
�
aþ bþ k�c

��
kþo þ k�o

��
k�c þ a

�þ bk�c
;

tBK ¼ aþ bþ k�c�
kþo þ k�o

��
k�c þ a

�þ bk�c
:

(24)

Here, mCaV is defined by Eq. 18 and denotes the activation
variable for the CaV in the complex, which is routinely char-
acterized in patch-clamp experiments and included in
models of electrical activity via the time-constant, tCaV,
and the steady-state activation function, mCaV,N (see Eq.
19). From these quantities, a ¼ mCaV,N/tCaV and b ¼ 1/
tCaV � a can be calculated. Note that Eq. 24 makes it
explicit how mBK,N inherits properties of the associated
Ca2þ channel type, as has been found experimentally
(10,37).

Now, because BKCa channels close rapidly in complexes
with inactivated CaVs (blue in Fig. 1 A), we have pY z
mBKh. Thus, the BKCa current is approximated by the stan-
dard Hodgkin-Huxley expression

IBK ¼ gBKmBKhðV � VKÞ; (25)

where mBK is given by Eq. 23, and h is the inactivation func-
tion of the CaVs (see Eqs. 15 and 20). As shown in Fig. 1 C,
the open-probability expression mBKh approximates the
Monte Carlo simulations very well. From Eq. 25 it is evident
that the BKCa channels in BKCa-CaV complexes exhibit
inactivation because of inactivation of the associated
CaVs, and with approximately identical dynamics, as found
in experiments (8) and Monte Carlo simulations (Fig. 1;
(17)).

In many whole-cell models (e.g., (20–23)), the Ca2þ

currents are assumed to activate instantaneously, which
precludes calculation of a and b. Implicitly, such models
assume that CaV gating is infinitely faster than the
kinetics of other channels in the model. In our setting, this
assumption corresponds to investigating the BKCa-CaV
model defined by Eqs. 23–25 in the limit a, b / N.
This leads to tBKz1=½k�c � mCaV;Nðk�c � kþo � k�o Þ� and
mBK;N ¼ kþo mCaV;NtBK , which are completely defined
from BKCa kinetics and mCaV,N. In combination with Eqs.
23 and 25, this model approximates the full system decently,
except for the initial phase before CaV activation reaches
equilibrium (Fig. 1 C, green). For whole-cell models
Biophysical Journal 112, 2387–2396, June 6, 2017 2391
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neglecting CaV activation kinetics, this initial-phase error
should be of no more concern that the error in the Ca2þ cur-
rent resulting from the steady-state assumption for CaVacti-
vation (Fig. 1 B, green).
Complexes with multiple Ca2D channels

As mentioned, a BKCa channel can bind up to four CaVs
(2,11). We extend our model to incorporate such cases,
assuming that the n CaVs are all located 13 nm from the
BKCa channel (2,9,17). Near the CaVs, the linear buffer
approximation (33) holds, and the Ca2þ profile from n chan-
nels can be calculated by superimposing n nanodomains
found for single, isolated CaVs.

One could in principle extend the Markov chain model in
Fig. 1 A to a model with 3 � n � 2 states. We take another
approach to keep the model tractable. As discussed in the
previous section, CaV inactivation is slow compared to other
processes. We therefore assume that on a fast timescale, the
fraction h of noninactivated CaVs is constant, and note that
the BKCa channel closes rapidly when all CaVs in the com-
plex are inactivated.

Consider a BKCa-CaV complex with k ˛ {1,..., n} non-
inactivated CaVs. Neglecting inactivated CaVs, because
they do not contribute to BKCa activation, such a complex
can be described on the fast timescale by a Markov chain
model with 2 � (k þ 1) states (Fig. 2 A). As for the case
of 1:1 stoichiometry, we can approximate the dynamics of
the BKCa open probability by a single ODE (see Supporting
Material, Model for BKCa Activation in Complexes with
k Noninactivated CaVs and its Approximation). Denote
this open probability by m

ðkÞ
BK, and note that m

ð1Þ
BK ¼ mBK in

Eq. 23. Then, we have the following:

dm
ðkÞ
BK

dt
¼ m

ðkÞ
BK;N � m

ðkÞ
BK

t
ðkÞ
BK

; (26)

where m
ðkÞ
BK;N and t

ðkÞ
BK are explicit functions of V, directly or

via the local Ca2þ concentration (see Eq. S36). The proba-
A B C

simulations of the Markov model of n inactivating independent CaVs controllin

to CaV inactivation (Eq. 27; Eqs. S19–S25; solid blue), from the reduced ODE m

from the simplification assuming mCaV ¼ mCaV,N (Eqs. 29 and 27; dash-dotted
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bility that k noninactivated CaVs are present in a complex

with n CaVs is

�
n
k

�
hkð1� hÞn�k, and the whole-cell

BKCa current, is approximated by the following:

IBK ¼ gBK
Xn

k¼ 1

�
n
k

�
hkð1� hÞn�k

m
ðkÞ
BKðV � VKÞ; (27)
which involves nODEs (Eq. 26) for the activations variables
m

ðkÞ
BK , and one ODE for h (h ¼ 1 – b, where b is given by

Eq. 20). As shown in Fig. 2 C, this expression provides a
good approximation to the results from Monte Carlo simu-
lations of the full Markov Chain. Note that if the CaVs do
not inactivate, Eq. 27 reduces to the following:

IBK ¼ gBKm
ðnÞ
BKðV � VKÞ: (28)
We can now easily investigate how different stoichiome-
tries of the BKCa-CaV complexes influence, e.g., activa-
tion of the BKCa channels. As expected, we find that the
activation curve is shifted upwards as the number of CaVs
per complex increase (Fig. 2 B, upper). Interestingly, a
left shift of the activation curve is seen when n increases.
For example, with n ¼ 4 CaVs per BKCa channel, BKCa

activation is half-maximal at V z �14 mV, compared to
V z �5 mV when n ¼ 1, and half-maximal CaV activation
at V z �12 mV. This result is due to the fact that the prob-
ability of at least one CaV being open is greater with more
channels in the complex. For higher voltages, the single
channel current decreases and the CaVopen probability in-
creases, with the result that, at strongly positive voltages,
BKCa activation decays more gradually at n ¼ 1 than for
higher n. This difference is because the local Ca2þ level ob-
tained with a single open CaV is insufficient for complete
BKCa activation, and therefore the presence of more CaVs
per complex becomes advantageous, because the CaVs
may open simultaneously, leading to higher local Ca2þ

levels. This interpretation also underlies the finding that
FIGURE 2 Multiple CaVs per BKCa-CaV com-

plex. (A) Shown here is the Markov chain model

for complexes with k noninactivated CaVs. (B)

Shown here are steady-state BKCa activation func-

tions (upper) and time constants (lower) for BKCa

channels in complexes with 1 (cyan), 2 (green), or

4 (red) CaVs given from Eq. 26 (see Eq. S36 for

the details; solid) or from the approximation

defined by Eq. 29 (dashed). The gray dashed curve

shows the CaV activation function mCaV,N, for

comparison. (C) Shown here are simulated BKCa

open probabilities in response to a voltage step

from �80 to 0 mV, obtained from Monte Carlo

g a BKCa channel (black), from the ODE model of all states in (A) coupled

odel considering CaVactivation kinetics (Eqs. 26 and 27; dashed red), and

green). To see this figure in color, go online.
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BKCa activation is faster with higher n at positive voltages
(Fig. 2 B, lower).

As mentioned above, many whole-cell models
assume instantaneous activation of CaVs. This
assumption implies that vertical transitions in Fig. 2 A
are in quasi-equilibrium, and hence that, e.g.,

pCiOk�iY ¼
�
k
i

�
ð1� mCaV;NÞk�imi

CaV;NpY , with notation as

for the case of 1:1 stoichiometry. Then, m
ðkÞ
BK follows Eq. 26

with
t
ðkÞ
BK ¼

"Xk

i¼ 1

�
k
i

�
ð1� mCaV;NÞk�i mi

CaV;N

�
kþoi þ k�oi

�
þ ð1� mCaV;NÞk k�c

#�1

;

m
ðkÞ
BK;N ¼

"Xk

i¼ 1

�
k
i

�
ð1� mCaV;NÞk�i

mi
CaV;Nk

þ
oi

#
t
ðkÞ
BK:

(29)
This simplified expression provides decent fits to activation
functions (Fig. 2 B, upper) and simulated currents (Fig. 2
C), and—in our experience—yields reliable results in
whole-cell simulations for cells with relatively slow action
potential dynamics, as shown below, despite a slight underes-

timation of t
ðkÞ
BK at negative voltages (Fig. 2 B, lower).
Whole-cell simulations of electrical activity
shaped by BKCa-CaV complexes

We now illustrate the type of whole-cell modeling that can
be performed readily with our Hodgkin-Huxley-type model
of the BKCa current controlled locally by CaVs in BKCa-
CaV complexes.
BKCa-CaV stoichiometry controls fAHP in a
neuronal model

It is well established that in many neurons, BKCa channels
play an important role in action potential (AP) repolariza-
tion and fast after-hyperpolarization (fAHP), i.e., the un-
dershoot seen after an AP (2,38), which is important,
e.g., for controlling firing frequency and transmitter
release. We here adapt a model of AP generation and
fAHP in hypothalamic neurosecretory cells (20) to inves-
tigate how BKCa-CaV complexes influence fAHP. In the
original model, CaVs are assumed not to inactivate, and
to activate instantaneously. We modified the model to
include CaV activation dynamics with time constant
tCaV ¼ 1.25 ms (37,39), and inserted our whole-cell
BKCa model (Eq. 28) in place of the original representa-
tion of BKCa currents.
Our results suggest that more than one CaV channel is
needed in the BKCa-CaV complex to develop fAHP that is
reduced by BKCa-channel blockers (Fig. 3 A). The differ-
ence between 1:1 and 1:n BKCa-CaV stoichiometry is not
a simple result of more BKCa conductance. Increasing the
BKCa conductance fourfold in the case of 1:1 stoichiometry,
much more than the difference between the activation func-
tions m

ð1Þ
BK;N and m

ð4Þ
BK;N (Fig. 2 B), leads to less fAHP than

for 1:4 stoichiometry (Fig. 3 A, inset). Thus, differences in
BKCa activation kinetics and the shapes of activation func-
tions (Fig. 2 B) play a nontrivial role in shaping APs.
Different CaV types affect electrical activity
differently in a model of human b-cell
electrophysiology

In our recent model of electrical activity in human b-cells
(22,23), we modeled the BKCa-current heuristically. The
BKCa open probability was proportional to the whole-cell
Ca2þ current, and this expression was found to reasonably
reproduce published data (40) regarding the BKCa activation
function and the effects of BKCa block on AP firing (22).

We now assume that the BKCa channels form complexes
with either T-, L-, or P/Q-type CaVs (22,40), and vary the
BKCa-CaV stoichiometry. As explained in greater detail in
the Supporting Material, the different types of CaV differ
with respect to activation and inactivation properties, and
whole-cell conductance (22,23). The resulting BKCa model
is then fit to experimental I-V data (40) (Fig. S7), and in-
serted in the whole-cell model. T-type CaVs inactivate
rapidly (22,40), and do not activate much BKCa current dur-
ing the relatively broad action potentials. For this reason,
simulated BKCa block results in almost no increase in AP
height (Fig. 3 B), in contrast to experiments (40).

In human b-cells, L-type Ca2þ channels show inactiva-
tion on a timescale comparable to the duration of an AP
(22,40). When coupled to BKCa channels in the model,
good fits to the BKCa I-V activation curve are obtained,
but for different values of the maximal whole-cell BKCa

conductance gBK (Fig. S7). In simulations of electrical activ-
ity, BKCa currents controlled by L-type CaVs reduce AP
height, independently of the number of CaVs per complex
(Fig. 3 C).

BKCa-CaV complexes with P/Q-type Ca2þ channels,
which activate at very depolarized potentials and show
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FIGURE 3 Whole-cell simulations. (A) Shown

here is a simulated AP in a neuronal model (20)

with 1:n stoichiometry BKCa-CaV complexes with

n ¼ 1 (cyan), n ¼ 2 (green), or n ¼ 4 (red). The

whole-cell BKCa current is described by Eq. 28

(i.e., BKCa coupled with noninactivating CaVs),

where the BKCa activation, m
ðnÞ
BK , is modeled by

Eq. 26 (see Eq. S36 for the details) and

gBK ¼ 1 mS cm�2. The blue curve shows the case

of BKCa block (gBK ¼ 0 mS cm�2), and the trace

in black displays the result with n ¼ 1, gBK ¼
4 mS cm�2. The inset shows a zoom-in on the

fAHP. (B–D) Shown here are simulated APs in a

model of human b-cells (22) with BKCa channels

located in complexes with n T-type (B), L-type

(C), or P/Q-type (D) CaVs, with n ¼ 1, 2, or 4.

The whole-cell BKCa current is described by

Eq. 27 (with inactivating T- and L-type CaVs) or

Eq. 28 (with noninactivatingP/Q-typeCaVs),where

m
ðnÞ
BK is modeled by Eq. 29. Color coding as in (A).

(E–G) Shown here is simulated activity in a model

of lactotrophs (21) with 1:n BKCa-CaV complexes

with n ¼ 1 (E), n ¼ 2 (F), or n ¼ 4 (G). The

whole-cell BKCa current is described by Eq. 28,

wherem
ðnÞ
BK is modeled by the complete BKCamodel

with 2 � (n þ 1) states (Fig. 2 A) described using

Eqs. S19–S25 (upper traces), by Eq. 26 (middle

traces), and by Eq. 29 (lower traces). To see this

figure in color, go online.
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very slow inactivation in human b-cells (22,40), lead to
BKCa currents that activate at slightly more depolarized
potentials than in experiments, except for the case of 1:4
BKCa-CaV stoichiometry (Fig. S7). Simulated application
of a BKCa channel antagonist increases AP height
�15 mV, in good correspondence with experiments.
Assuming fewer CaVs per complex, leads to poorer fit of
the I-V curve and to less difference between APs obtained
with operating and blocked BKCa channels (Fig. 3 D).

We conclude that AP firing is affected differently by
BKCa currents depending on the CaV type controlling
BKCa activity, due to differences in activation and inactiva-
tion properties. Because BKCa block stimulates insulin
secretion in human (40) and mouse (41) b-cells, a better
understanding of the interaction between different types
of CaVs and BKCa channels may provide novel insight
into insulin release in health and disease.
Bursting behavior depends on BKCa-CaV
stoichiometry in a model of pituitary cells

In pituitary cells, BKCa channels have been found to be
intimately involved in the genesis of so-called plateau
bursting, which consists of a few small oscillations riding
on a depolarized plateau, and is important for secretion
(42,43). We now investigate how BKCa-CaV properties
affect such bursting activity in a model of electrical activity
in pituitary lactotrophs (21). In this model a single Ca2þ-
channel type is present, which is assumed to activate
2394 Biophysical Journal 112, 2387–2396, June 6, 2017
instantaneously and not to inactivate. The BKCa current
was modeled as a purely voltage-dependent current, ne-
glecting Ca2þ dependency (21). In place of this simplified
representation, we substitute our concise BKCa model
controlled by CaVs in complexes.

With 1:1 stoichiometry, spiking electrical activity is
observed, because insufficient BKCa current is generated
(Fig. 3 E). In contrast, with more than one CaV per complex,
plateau bursting appears with the number of small oscilla-
tions per burst depending on the number of CaVs per
BKCa-CaV complex (Fig. 3, F and G). Although the quanti-
tative behavior is independent of the approximation form

ðnÞ
BK,

minor qualitative differences are present. The approxima-
tion given by Eq. 26 reproduces very well the behavior
obtained from the complete model for the BKCa-CaV com-
plex (Fig. 3, F andG, upper andmiddle panels), whereas the
further simplification given by Eq. 29 produces smaller and
more spikes per burst. Nonetheless, considering parameter
uncertainties and experimental variations, even Eq. 29 pro-
duces reliable results.
DISCUSSION

Models of cellular electrical activity typically do not con-
sider local control in ion channel complexes. This fact is
probably to a large extent because of the large computa-
tional costs of detailed simulations of Markov chain models
(17) or reaction-diffusion models (10) that consider single
complexes. In contrast, in the field of Ca2þmodeling, global
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procedures that respect local mechanisms have been pre-
sented (28–30).

We here applied similar methods to the BKCa-CaV com-
plex to obtain Hodgkin-Huxley representations of the BKCa

current that correctly take local control into account. Impor-
tantly, in our approach the effects of ion channel colocaliza-
tion are handled via a deterministic model representation by
averaging the stochastic dynamics in single ion channel
complexes appropriately. Our timescale analysis allowed
us to handle scenarios with more than one CaV per BKCa-
CaV complex, thus providing important insight into the
role of channel stoichiometry. Treating such cases via direct
stochastic simulations of the BKCa and CaV simulations
would be computationally cumbersome, and would not
provide the same kind of analytical understanding. For
example, we found explicit expressions for the time to first
opening of a BKCa channel, thus providing theoretical
insight into simulation results (17). Our findings also high-
lighted that n> 1 CaV per complex left shifts the BKCa acti-
vation curve, because the presence of more CaVs increase
the probability that at least one CaV is open and activates
the associated BKCa channel.

We illustrated the usefulness of our theoretical results by
applying the concise representations of BKCa currents to
previously published whole-cell models of electrical activ-
ity. We chose a model of neuronal APs that has previously
been used to investigate how BKCa channels contribute to
fAHP (20). The simulations based on our BKCa-CaV model
suggest that the kinetics of BKCa activation, which depends
on the number of associated CaVs (Fig. 2), influence fAHP
generation. It would be interesting to investigate experimen-
tally whether defective BKCa-CaV coupling underlies dis-
turbances in fAHP generation, as predicted by the model.
In Xenopus motor nerve terminals, BKCa-CaV coupling dif-
fers between the release face and the nonsynaptic surface of
varicosities (44), which, in the light of our simulations, may
indicate spatial heterogeneity with respect to, e.g., fAHP.

We went on to investigate how the activation and
inactivation properties of specific types of Ca2þ channels
assumed to be present in BKCa-CaV complexes influence
whole-cell electrical activity in a model of human b-cells
(22). Because both the coupling of BKCa channels to L-
and P/Q-type CaVs and the different stoichiometries of
the complexes allow for simulations comparable to experi-
ments, our findings do not allow us to conclude on the struc-
ture of BKCa-CaV complexes in human b-cells. Further
insight into the control by CaVs of BKCa channels, which
are involved in regulation of insulin release (40,41), may
lead to a better understanding of b-cell function and how
it becomes disturbed in diabetes.

Finally, a model of pituitary cells (21) was used to study
the role of BKCa channels in the generation of plateau
bursting, which is important for secretion of pituitary hor-
mones (42). We found that a reduced number of CaVs per
complex, for example because of disturbed BKCa-CaV
coupling, may abolish bursting activity. Our simulations
showed that even the simplification given by Eq. 29 pro-
vided reliable results (Fig. 3, E–G). Similar conclusions
hold for the b-cell model (see Fig. S7). Interestingly, this
was not the case in the neuronal model (20) (Fig. S6), likely
because of the shorter neuronal AP being more sensitive to
the kinetics of BKCa activation.

A general strategy to distinguish between different
configurations of the BKCa-CaV complex could be to first
estimate the maximal whole-cell BKCa conductance, for
example by depolarizations to highly positive voltages to
activate BKCa channels independently of CaV activity
(16), and then to fit I-V curves obtained from voltage-clamp
depolarizations (37,40) using the expressions presented
here.

In summary, we have presented a concise Hodgkin-Hux-
ley-type model of BKCa currents that take into account local
control in BKCa-CaV complexes with different stoichiome-
tries. Our model should be useful for whole-cell simulations
of electrical activity in neurons and other excitable cells.
The approach should be relatively straightforward to
apply to other ion channel complexes, e.g., the Cav3-Kv4
complex (45).
SUPPORTING MATERIAL

Supporting Materials and Methods, seven figures, three tables, and one data

file are available at http://www.biophysj.org/biophysj/supplemental/

S0006-3495(17)30451-4.
AUTHOR CONTRIBUTIONS

All authors performed research, prepared Supporting Material, revised the

article, and approved the final version. F.M., A.T., and M.G.P. prepared fig-

ures. F.M. developed methods. M.G.P. conceived research and wrote the

article.
ACKNOWLEDGMENTS

We thank Carles Rovira, University of Barcelona, for useful discussions

during early phases of the work.
REFERENCES

1. Hodgkin, A. L., and A. F. Huxley. 1952. A quantitative description of
membrane current and its application to conduction and excitation in
nerve. J. Physiol. 117:500–544.

2. Berkefeld, H., B. Fakler, and U. Schulte. 2010. Ca2þ-activated Kþ

channels: from protein complexes to function. Physiol. Rev.
90:1437–1459.

3. Pallotta, B. S., K. L. Magleby, and J. N. Barrett. 1981. Single channel
recordings of Ca2þ-activated Kþ currents in rat muscle cell culture.
Nature. 293:471–474.

4. Barrett, J. N., K. L. Magleby, and B. S. Pallotta. 1982. Properties of
single calcium-activated potassium channels in cultured rat muscle.
J. Physiol. 331:211–230.
Biophysical Journal 112, 2387–2396, June 6, 2017 2395

http://www.biophysj.org/biophysj/supplemental/S0006-3495(17)30451-4
http://www.biophysj.org/biophysj/supplemental/S0006-3495(17)30451-4
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref1
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref1
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref1
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref2
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref2
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref2
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref2
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref3
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref3
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref3
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref3
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref3
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref4
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref4
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref4


Montefusco et al.
5. Cox, D. H., J. Cui, and R. W. Aldrich. 1997. Allosteric gating of a large
conductance Ca-activated Kþ channel. J. Gen. Physiol. 110:257–281.

6. Latorre,R., and S.Brauchi. 2006.Large conductanceCa2þ-activatedKþ

(BK) channel: activation by Ca2þ and voltage. Biol. Res. 39:385–401.

7. Grunnet, M., and W. A. Kaufmann. 2004. Coassembly of big conduc-
tance Ca2þ-activated Kþ channels and L-type voltage-gated Ca2þ

channels in rat brain. J. Biol. Chem. 279:36445–36453.

8. Berkefeld, H., C. A. Sailer, ., B. Fakler. 2006. BKCa-Cav channel
complexes mediate rapid and localized Ca2þ-activated Kþ signaling.
Science. 314:615–620.

9. M€uller, A., M. Kukley, ., D. Dietrich. 2007. Nanodomains of single
Ca2þ channels contribute to action potential repolarization in cortical
neurons. J. Neurosci. 27:483–495.

10. Rehak, R., T. M. Bartoletti, ., G. W. Zamponi. 2013. Low voltage
activation of KCa1.1 current by Cav3-KCa1.1 complexes. PLoS One.
8:e61844.

11. Suzuki, Y., H. Yamamura,., Y. Imaizumi. 2013. Caveolin-1 facilitates
the direct coupling between large conductance Ca2þ-activated
Kþ (BKCa) and Cav1.2 Ca2þ channels and their clustering to
regulate membrane excitability in vascular myocytes. J. Biol. Chem.
288:36750–36761.

12. Chad, J. E., and R. Eckert. 1984. Calcium domains associated with
individual channels can account for anomalous voltage relations of
CA-dependent responses. Biophys. J. 45:993–999.

13. Simon, S. M., and R. R. Llinás. 1985. Compartmentalization of the sub-
membrane calcium activity during calcium influx and its significance
in transmitter release. Biophys. J. 48:485–498.

14. Neher, E. 1998. Vesicle pools and Ca2þ microdomains: new tools for
understanding their roles in neurotransmitter release. Neuron.
20:389–399.

15. Fakler, B., and J. P. Adelman. 2008. Control of KCa channels by
calcium nano/microdomains. Neuron. 59:873–881.

16. Berkefeld, H., and B. Fakler. 2013. Ligand-gating by Ca2þ is rate
limiting for physiological operation of BKCa channels. J. Neurosci.
33:7358–7367.

17. Cox, D. H. 2014. Modeling a Ca2þ channel/BKCa channel complex at
the single-complex level. Biophys. J. 107:2797–2814.

18. Stanley, D. A., B. L. Bardakjian, ., W. L. Ditto. 2011. Stochastic
amplification of calcium-activated potassium currents in Ca2þ micro-
domains. J. Comput. Neurosci. 31:647–666.

19. Anwar, H., I. Hepburn, ., E. De Schutter. 2013. Stochastic calcium
mechanisms cause dendritic calcium spike variability. J. Neurosci.
33:15848–15867.

20. Roper, P., J. Callaway, ., W. Armstrong. 2003. AHP’s, HAP’s and
DAP’s: how potassium currents regulate the excitability of rat supraop-
tic neurones. J. Comput. Neurosci. 15:367–389.

21. Tabak, J., N. Toporikova,., R. Bertram. 2007. Low dose of dopamine
may stimulate prolactin secretion by increasing fast potassium currents.
J. Comput. Neurosci. 22:211–222.

22. Pedersen, M. G. 2010. A biophysical model of electrical activity in
human b-cells. Biophys. J. 99:3200–3207.

23. Riz, M., M. Braun, and M. G. Pedersen. 2014. Mathematical modeling
of heterogeneous electrophysiological responses in human b-cells.
PLOS Comput. Biol. 10:e1003389.

24. Khaliq, Z. M., N. W. Gouwens, and I. M. Raman. 2003. The contribu-
tion of resurgent sodium current to high-frequency firing in Purkinje
neurons: an experimental and modeling study. J. Neurosci. 23:4899–
4912.

25. Jaffe, D. B., B. Wang, and R. Brenner. 2011. Shaping of action poten-
tials by type I and type II large-conductance Ca2þ-activated Kþ

channels. Neuroscience. 192:205–218.
2396 Biophysical Journal 112, 2387–2396, June 6, 2017
26. Anwar, H., S. Hong, and E. De Schutter. 2012. Controlling Ca2þ-acti-
vated Kþ channels with models of Ca2þ buffering in Purkinje cells.
Cerebellum. 11:681–693.

27. Sherman, A., J. Keizer, and J. Rinzel. 1990. Domain model for Ca2þ-
inactivation of Ca2þ channels at low channel density. Biophys. J.
58:985–995.

28. Hinch, R., J. L. Greenstein,., R. L. Winslow. 2004. A simplified local
control model of calcium-induced calcium release in cardiac ventricu-
lar myocytes. Biophys. J. 87:3723–3736.

29. Greenstein, J. L., R. Hinch, and R. L. Winslow. 2006. Mechanisms of
excitation-contraction coupling in an integrative model of the cardiac
ventricular myocyte. Biophys. J. 90:77–91.

30. Williams, G. S. B., M. A. Huertas,., G. D. Smith. 2007. A probability
density approach to modeling local control of calcium-induced calcium
release in cardiac myocytes. Biophys. J. 92:2311–2328.

31. Lobo, F. G., and D. E. Goldberg. 1997. Decision making in a hybrid
genetic algorithm. In IEEE International Conference on Evolutionary
Computation. Institute of Electrical and Electronics Engineers, Indian-
apolis, IN, pp. 121–125.

32. Fleming, P. J., and R. C. Purshouse. 2002. Evolutionary algorithms in
control systems engineering: a survey. Control Eng. Pract. 10:1223–
1241.

33. Neher, E. 1998. Usefulness and limitations of linear approximations to
the understanding of Caþþ signals. Cell Calcium. 24:345–357.

34. Marcantoni, A., D. H. F. Vandael,., E. Carbone. 2010. Loss of Cav1.3
channels reveals the critical role of L-type and BK channel coupling in
pacemaking mouse adrenal chromaffin cells. J. Neurosci. 30:491–504.

35. Buchholz, P., J. Kriege, and I. Felko. 2014. Input modeling with
phase-type distributions and Markov models. In Springer Briefs in
Mathematics. Springer, Berlin, Germany http://dx.doi.org/10.1007/
978-3-319-06674-5.

36. Segel, L. A., andM. Slemrod. 1989. The quasi steady-state assumption:
a case study in perturbation. SIAM Rev. 31:446–477.

37. Berkefeld, H., and B. Fakler. 2008. Repolarizing responses of
BKCa-Cav complexes are distinctly shaped by their Cav subunits.
J. Neurosci. 28:8238–8245.

38. Storm, J. F. 1987.Action potential repolarization and a fast after-hyperpo-
larization in rat hippocampal pyramidal cells. J. Physiol. 385:733–759.

39. Joux, N., V. Chevaleyre, ., N. Hussy. 2001. High voltage-activated
Ca2þ currents in rat supraoptic neurones: biophysical properties and
expression of the various channel a1 subunits. J. Neuroendocrinol.
13:638–649.

40. Braun, M., R. Ramracheya, ., P. Rorsman. 2008. Voltage-gated ion
channels in human pancreatic b-cells: electrophysiological character-
ization and role in insulin secretion. Diabetes. 57:1618–1628.

41. Houamed, K. M., I. R. Sweet, and L. S. Satin. 2010. BK channels
mediate a novel ionic mechanism that regulates glucose-dependent
electrical activity and insulin secretion in mouse pancreatic b-cells.
J. Physiol. 588:3511–3523.

42. Stojilkovic, S. S., H. Zemkova, and F. Van Goor. 2005. Biophysical
basis of pituitary cell type-specific Ca2þ signaling-secretion coupling.
Trends Endocrinol. Metab. 16:152–159.

43. Tagliavini, A., J. Tabak, ., M. G. Pedersen. 2016. Is bursting more
effective than spiking in evoking pituitary hormone secretion? A
spatiotemporal simulation study of calcium and granule dynamics.
Am. J. Physiol. Endocrinol. Metab. 310:E515–E525.

44. Sun, X.-P., B. Yazejian, and A. D. Grinnell. 2004. Electrophysiological
properties of BK channels in Xenopus motor nerve terminals.
J. Physiol. 557:207–228.

45. Anderson, D., W. H. Mehaffey, ., R. W. Turner. 2010. Regulation
of neuronal activity by Cav3-Kv4 channel signaling complexes. Nat.
Neurosci. 13:333–337.

http://refhub.elsevier.com/S0006-3495(17)30451-4/sref5
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref5
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref5
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref6
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref6
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref6
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref6
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref7
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref7
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref7
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref7
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref7
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref8
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref8
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref8
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref8
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref8
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref8
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref9
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref9
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref9
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref9
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref9
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref10
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref10
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref10
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref11
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref11
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref11
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref11
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref11
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref11
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref11
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref11
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref11
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref12
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref12
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref12
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref13
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref13
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref13
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref14
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref14
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref14
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref14
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref15
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref15
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref15
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref16
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref16
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref16
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref16
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref16
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref17
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref17
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref17
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref17
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref18
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref18
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref18
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref18
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref19
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref19
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref19
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref20
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref20
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref20
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref21
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref21
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref21
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref22
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref22
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref23
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref23
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref23
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref24
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref24
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref24
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref24
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref25
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref25
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref25
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref25
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref26
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref26
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref26
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref26
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref26
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref26
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref27
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref27
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref27
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref27
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref27
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref28
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref28
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref28
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref29
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref29
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref29
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref30
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref30
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref30
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref31
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref31
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref31
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref31
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref32
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref32
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref32
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref33
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref33
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref33
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref34
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref34
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref34
http://dx.doi.org/10.1007/978-3-319-06674-5
http://dx.doi.org/10.1007/978-3-319-06674-5
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref36
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref36
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref37
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref37
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref37
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref37
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref38
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref38
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref39
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref39
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref39
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref39
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref39
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref40
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref40
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref40
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref41
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref41
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref41
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref41
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref42
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref42
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref42
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref42
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref43
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref43
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref43
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref43
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref44
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref44
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref44
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref45
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref45
http://refhub.elsevier.com/S0006-3495(17)30451-4/sref45


Biophysical Journal, Volume 112
Supplemental Information
Concise Whole-Cell Modeling of BKCa-CaV Activity Controlled by Local

Coupling and Stoichiometry

Francesco Montefusco, Alessia Tagliavini, Marco Ferrante, and Morten Gram Pedersen



Supporting Material

Concise whole-cell modeling of BKCaCaV activity controlled by
local coupling and stoichiometry

F Montefusco, A Tagliavini, M Ferrante, M Pedersen

List of contents

1. Model of the 1:1 BKCa-CaV complex

1.1. Monte Carlo Simulations

1.2. Time to first opening and phase-type distributions

2. Time-scale analysis and model simplifications

2.1. ODE model of the 1:1 BKCa-CaV complex

2.2. Model simplification

2.3. Time scale analysis

2.4. Responses of the 1:1 BKCa-CaV complex to voltage steps and AP

3. Model for BKCa activation in complexes with k non-inactivated CaVs and its approximation

4. Whole-cell models

4.1. Hypothalamic neuronal model

4.2. Human β-cell model

4.3. Pituitary lactotroph model

• Supporting Figures

– Figure S1 . . . . . . p. 3

– Figure S2 . . . . . . p. 6

– Figure S3 . . . . . . p. 8

– Figure S4 . . . . . . p. 9

– Figure S5 . . . . . . p. 10

– Figure S6 . . . . . . p. 15

– Figure S7 . . . . . . p. 17

• Supporting Tables

– Table S1 . . . . . . p. 4

– Table S2 . . . . . . p. 4

– Table S3 . . . . . . p. 19

• Supporting References

1



1 Model of the 1:1 BKCa-CaV complex

First, we justify the product formulation for the voltage and Ca2+-dependent rate constants k−

and k+ (Eqs. 2 and 3 in the main text). We assume (i) that, for fixed Ca2+ concentration
(Ca), BKCa activity is described by a Boltzmann function, and (ii) that the slope parameter of
the Boltzmann function is independent of Ca, a reasonable assumption for Ca2+ concentrations
above 1 µM (1–3) as expected in BKCa-CaV complexes (2, 4). Based on assumption (i), we
express the rate constants by the standard expressions

k−(V,Ca) = w̃−(Ca)e−wyx(Ca)V , k+(V,Ca) = w̃+(Ca)e−wxy(Ca)V .

The open fraction of BKCa channels is then

pY∞ =
k+(V,Ca)

k−(V,Ca) + k+(V,Ca)
=

1

1− e−
V−V0(Ca)
S0(Ca)

,

where we have highlighted that in principal V0 and S0 depend on Ca. In particular the slope
parameter is given by

S0(Ca) =
1

wyx(Ca)− wxy(Ca)
,

and from assumption (ii) we obtain that wxy(Ca) is equal to wyx(Ca) except from a constant
independent of Ca. We make the simplifying assumption that also wyx and wxy are independent
of Ca. Finally, writing

w̃−(Ca) = w−0 f
−(Ca), w̃+(Ca) = w+

0 f
+(Ca)

we obtain Eqs. 2-5 in the main text.
We couple the two state (closed and open) model for the BKCa channel (see Methods, Table S1

reporting the optimal model parameters, and Figure S1 showing a representation of the model
and the fits to the data) with the three state (closed, open and inactivated or blocked) model for
the CaV channel (see Methods and Table S1). Figure 1A in the main text shows a cartoon of the
model of the 1:1 BKCa-CaV complex, where CX, OX and BX correspond to the closed state
for the BKCa channel (X) coupled with the closed (C), open (O) and inactivated (B) states for
the CaV, respectively, and CY , OY and BY correspond to the open state for the BKCa channel
(Y ) coupled with the closed (C), open (O) and inactivated (B) states for the CaV, respectively.

The parameters k−c and k−o (k+c and k+o ) are defined by Eq. 2 (Eq. 3) of the main text with
Ca equal to Cac and Cao, respectively. Cac is the concentration at the BKCa channel when the
associated CaV is closed (or inactivated, i.e. Cac = Cab) and is set equal to 0.2 µM (background
Ca2+ concentration). Cao is the concentration at the BKCa channel when the CaV is open and
is given by

Cao =
iCa

8πrDCaF
exp

 −r√
DCa

k+B [Btotal]

, (S1)

where iCa = ḡCa(V − VCa) is the single-channel Ca2+ current, and r = 13 nm the distance
between CaV and BKCa channels (2, 4). At V = 0 mV, Cao ≈ 19 µM. Other parameters are
given in Table S2 (2). Note that for the parameters used here (Table S1), k+c ≈ 0 (i.e., the
probability of BKCa opening when the CaV is closed is practically zero).
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Figure S1: BKCa channel model: fit to the data. (A) Schematic representation of the
model, where X and Y indicate the closed and open states of the BKCa channel. (B) Steady-
state BKCa open probabilities vs. voltage at different Ca2+concentrations (different markers for
different Ca2+ levels as indicated in the legend) and the corresponding fit obtained by the model
(dashed lines). (C)-(G) Time constants (in ms) vs. voltage data at given Ca2+concentrations
(see legend in panel B), and the corresponding model fits (dashed lines).
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Table S1: Optimal model parameters for the BKCa-CaV complex.
BKCa channel model described by Eq. 1 of the main text

Parameter Value Unit

w−0 3.32 ms−1

w+
0 1.11 ms−1

wyx 0.022 mV−1

wxy −0.036 mV−1

Kyx 0.1 µM
Kxy 16.6 µM
nyx 0.46 -
nxy 2.33 -

CaV activation described by Eqs. 16 and 17 of the main text
Parameter Value Unit

α0 1.2979 ms−1

α1 −0.0639 mV−1

β0 1.0665 ms−1

β1 0.0703 mV−1

ρ 0.309 -

Table S2: Parameters for calculating Ca2+ at the BKCa channel taken from (2).
Parameter Value Unit

r 13 nm
DCa 250 µm2 s−1

F 9.6485 C mol−1

kB 500 µM−1 s−1

Btotal 30 µM
VCa 60 mV
ḡCa 2.8 pS

4



1.1 Monte Carlo Simulations

We perform Monte Carlo simulations for the devised complex in order to model its stochastic
gating. Initially the CaV and BKCa channels are closed. Then, for both the channels, the
transitions from one state (closed, open or inactivated for CaV, closed or open for BKCa) to the
others are given by the procedure explained below. First, we define the transition matrices for
the CaV,

QCaV =

P [C, t+ ∆t|C, t] P [C, t+ ∆t|O, t] 0
P [O, t+ ∆t|C, t] P [O, t+ ∆t|O, t] P [O, t+ ∆t|B, t]

0 P [B, t+ ∆t|O, t] P [B, t+ ∆t|B, t]


=

1− α∆t β∆t 0
α∆t 1− β∆t− δ∆t γ∆t

0 δ∆t 1− γ∆t

 ,

(S2)

and for the BK channel,

QBKCa
=

[
P [X, t+ ∆t|X, t] P [X, t+ ∆t|Y, t]
P [Y, t+ ∆t|X, t] P [Y, t+ ∆t|Y, t]

]
=

[
1− k+∆t k−∆t
k+∆t 1− k−∆t

] (S3)

where the elements correspond to the transition probabilities between the indicated states in the
time interval [t, t+ ∆t], provided that ∆t is small.

At any time point, we compute the state of the BKCa-CaV complex according the following
procedure. We choose a random number ξ uniformly distributed on the interval [0, 1] for the
CaV channel, and make a transition based upon the subinterval in which ξ falls. For example, if
the CaV channel is open (O) (see the second column of QCaV defined by Eq. S2), it remains open
if ξ < 1− β∆t− δ∆t, while a transition to the inactivated (B) state occurs if ξ ≥ 1− β∆t− δ∆t
and ξ < 1− β∆t, otherwise (ξ ≥ 1− β∆t and ξ ≤ 1) a transition to the closed (C) state occurs.
Similarly, we choose a random number η uniformly distributed on the interval [0, 1] for the BKCa

channel, and make a transition based upon the subinterval in which η falls. Note that the Ca2+

concentration for the BKCa channel at any time point is determined by the state of the CaV
channel. This procedure is repeated for every time point to achieve the Monte Carlo simulations.
We used ∆t = 0.01 ms. Smaller time steps were checked and gave identical results.

1.2 Time to first opening and phase-type distributions

The continuous-time Markov chain Z in Figure 1A in the main text takes values in the state space
S = {CX,OX,BX, BY,CY,OY }. We denote its initial distribution by λ and its generating
matrix by Q, where

Q =



−α− k+c α 0 0 k+c 0
β −β − δ − k+o δ 0 0 k+o
0 γ −γ − k+c k+c 0 0
0 0 k−c −γ − k−c 0 γ
k−c 0 0 0 −α− k−c α
0 k−o 0 δ β −β − δ − k−o

 .
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Figure S2: Time to first opening for the 1:1 BKCa-CaV complex. Left: Three Markov
chain realizations for the 1:1 BKCa-CaV complex. Right: The empirical fraction of BKCa channels
that exhibit the first channel opening before t (red) and the theoretical expression P (TCX,Y < t)
(black) from Eq. 22 of the main text. Note that in the second and third examples of Markov
chain realizations, the CaV inactivates early before the BKCa channel opens, and only later when
the CaV reactivates (at ∼50 ms and ∼70 ms) does the BKCa open for the first time. Such cases
cause the late, slowly rising phase in the right panel, whereas the more typical case where the
BKCa channel opens early (as in the first example shown on the left) creates the rapid early rise
in the right panel.

Assuming that k+c = 0, the generating matrix Q become

Q =



−α α 0 0 0 0
β −β − δ − k+o δ 0 0 k+o
0 γ −γ 0 0 0
0 0 k−c −γ − k−c 0 γ
k−c 0 0 0 −α− k−c α
0 k−o 0 δ β −β − δ − k−o

 . (S4)

Define the random variable

H = inf{t ≥ 0 : Zt ∈ {CY,OY,BY }}, (S5)

i.e., the (random) time to first opening, which can be described with phase-type distribu-
tion theory (5). We are interested in evaluating its conditional distribution and expectation,
given that Z0 = CX, i.e., with the initial distribution λ = (1, 0, 0, 0, 0, 0). Defined S0 =
{CX,OX,BX,BY,CY } and the matrix Q = (qi,j)i,j∈S0 , a simple application of phase-type
distribution theory yields Eqs. 21 and 22 of the main text, as shown in “Time to first opening”
in the Results section. Figure S2 shows that the simulated first opening times are well described
by Eq. 22 of the main text.
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2 Time-scale analysis and model simplifications

2.1 ODE model of the 1:1 BKCa-CaV complex

The deterministic description of the complex, corresponding to the Markov Chain described
above, is given by the following ODE system

dpCX

dt
= k−c pCY + βpOX − (k+c + α)pCX , (S6)

dpCY

dt
= k+c pCX + βpOY − (k−c + α)pCY , (S7)

dpOX

dt
= k−o pOY + αpCX + γpBX − (k+o + β + δ)pOX ,

(S8)

dpOY

dt
= k+o pOX + αpCY + γpBY − (k−o + β + δ)pOY ,

(S9)

dpBX

dt
= k−c pBY + δpOX − (k+c + γ)pBX , (S10)

dpBY

dt
= k+c pBX + δpOY − (k−c + γ)pBY , (S11)

where pZ , with Z ∈ {CX,CY,OX,OY,BX,BY }, represents the probability of the complex to
be in one of the six states of the model. Then pY = pCY + pOY + pBY . In the following, we
assume k+c = 0.

2.2 Model simplification

As explained in the Results section, since re- and inactivation of CaVs are slower than (de-
)activation, the ODE model defined by Eqs. S6–S11 can be split into two submodels with re-
spectively 4 and 2 states (the green and blue boxes in Figure 1A in the main text). Then, by
considering only the activation of the BKCa-CaV complexes with non-inactivated CaV, and ex-
ploiting the relations pCY +pOY = mBK , pOX +pOY = mCaV , and pCX +pCY = 1−mCaV , where
mBK and mCaV are the BKCa and the CaV activation variables, respectively, BKCa activation
can be modeled by the two following ODEs,

dpCY

dt
= βmBK − (k−c + α+ β)pCY , (S12)

dmBK

dt
= mCaV k

+
o +

(
k+o + k−o + α+ β

)
pCY − (k+o + k−o + β)mBK , (S13)

with mCaV modeled by Eq. 18 of the main text. Assuming quasi-steady state for pCY (dpCY
dt ≈ 0)

then yields

pCY =
β

k−c + α+ β
mBK . (S14)

By substituting Eq. S14 into Eq. S13, we achieve a single ODE describing the dynamics of BKCa

activation in complexes with non-inactivated CaV,

dmBK

dt
= mCaV k

+
o −

(k+o + k−o )(k−c + α) + βk−c
α+ β + k−c

mBK . (S15)
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Figure S3: Time scale analysis for the 1:1 BKCa-CaV complex. Model parameters as
function of voltage, showing that the transitions described by α, β and k−c are the fastest. This
fact leads to a separation of time scales, as shown by the black curve illustrating tpCY /tmBK in
Eq. S18, which is always less than 0.33, and for most voltages considerably smaller.

Therefore, the equilibrium open fraction of the BKCa channels in complexes with non-inactivated
CaV, mBK,∞, and the corresponding time constant, τBK , are given as in Eq. 24 of the main text.

Coupling the one state model for the BKCa activation (Eq. S15) with the inactivation of
the CaV channel allows us to reproduce the dynamics of the BKCa-CaV complex described by
Eqs. S6–S11 and the corresponding Monte Carlo simulations (see Figure 1 in the main text). In
particular, the open probability of the BKCa channel, pY = pCY + pOY + pBY , can be described
by

pY ≈ mBKh, (S16)

where h is the fraction of non-inactivated CaV (see Eqs. 15 and 20 of the main text).

2.3 Time scale analysis

For a more formal analysis, we follow (6). The quasi-steady state approximation for pCY is valid
when the time scales of the two variables in question differ, i.e., tpCY � tmBK , where tmBK is
the time scale of changes mBK after an initial (fast) transient, i.e., when the approximation
is consistent (6). The (fast) time scale for pCY is given from Eq. S12, assuming that mBK is
constant, as

tpCY =
1

α+ β + k−c
. (S17)

The (slow) time scale for mBK is given as the time scale of mBK assuming that the quasi-steady
state approximation holds, i.e., tmBK = τBK in Eq. 24 of the main text. Then

tpCY

tmBK

=
(k−o + k+o )(k−c + α) + βk−c

(α+ β + k−c )2
, (S18)

which is small (Figure S3).
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Figure S4: Model responses to different voltage steps for the 1:1 BKCa-CaV complex.
(A) Voltage steps from -80 mV to from -40 mV to 40 mV in 20 mV increments for 20 ms and then
back to -80 mV. Simulated CaV currents in response to the different voltage steps obtained from
(B) the 7-state Markov chain model (see (2); gray), (C) the ODE model corresponding to the 3-
state Markov chain model (Eqs. 13-15 of the main text; blue), and (D) the corresponding model
assuming instantaneous activation mCaV = mCaV,∞ (Eq. 20 of the main text; green). Simulated
BKCa currents in response to the different voltage steps obtained from (E) the original 70-state
Markov chain model (see (2); gray), (F) the ODE model corresponding to the 6-state Markov
chain model (Eqs. S19–S24; blue), (G) the simplified Hodgkin-Huxley-type model (Eq. 25 of the
main text; red), and (H) the corresponding model assuming instantaneous activation mCaV =
mCaV,∞ (green; see main text). Each trace is the sum of 1000 single complex responses.
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Figure S5: Model responses to a simulated AP generated by a model of hypothalamic
neurosecretory cells (7). (A) Simulated AP. (B) Simulated CaV currents in response to the
simulated AP obtained from the 7-state Markov chain model ((2); dotted gray), the ODE model
corresponding to the 3-state Markov chain model (Eqs. 13-15 of the main text; solid blue), and
the corresponding model assuming instantaneous activation mCaV = mCaV,∞ (Eq. 20 of the main
text; dash-dotted green). (C) Simulated BKCa currents in response to the simulated AP obtained
from the original 70-state Markov chain model ((2); gray), the ODE model corresponding to the 6-
state Markov chain model (Eqs. S19–S24; solid blue), the simplified Hodgkin-Huxley-type model
(Eq. 25 of the main text; dashed red), and the corresponding model assuming instantaneous
activation mCaV = mCaV,∞ (dash-dotted green; see main text). Each trace is the sum of 1000
single complex responses.

2.4 Responses of the 1:1 BKCa-CaV complex to voltage steps and AP

Figure S4 shows the current response of the 1:1 BKCa-CaV complex to different step voltages
(Figure S4A). The whole-cell CaV current for the 3-state ODE model (ICaV = NCaV ḡCamCaV h,
where NCaV = 1000 is the number of CaV channels, ḡCa is defined in Table S2 and mCaV and h
are given by Eqs. 13-18 of the main text) approximates the 7-state Markov chain model (2) current
very well for each step voltage (Figure S4BC). Also, the further simplification for the 3-state ODE
model assuming instantaneous activation of the CaV currents (mCaV = mCaV,∞, green plots in
Figure S4D) provides a good approximation of the Monte Carlo simulations. The whole-cell BKCa

current for our simplified 6-state Markov chain model (IBK = NBK ḡBKpY , where NBK = 1000
is the number of BKCa channels, ḡBK = 100 pF is the single BKCa channel conductance (8)
and pY is given by Eqs. S19-S24) approximates the 70-state Markov chain model (2) current
very well for each step voltage (Figure S4EF). Moreover, our simplified Hodgkin-Huxley-type
model current for the BKCa channel (Eq. 25 of the main text; red plots in Figure S4G), and
the corresponding model assuming instantaneous activation of the CaV currents (green plots in
Figure S4H) also works very well.

Figure S5 shows the current response of the 1:1 BKCa-CaV complex to a simulated action
potential (AP) generated by a model of hypothalamic neurosecretory cells (7) (Figure S5A).
As for the voltage step response case, the whole-cell CaV current for the 3-state ODE model
approximates the 7-state Markov chain model current very well (see solid blue and dotted gray
plots in Figure S5B). However, the further simplification for the 3-state ODE model assuming
instantaneous activation of the CaV currents (dash-dotted green plot in Figure S5B) determines
an additional early peak of current and a faster decay. For the whole-cell BKCa current, the peak
obtained from the 70-state Markov chain model is lower than that obtained from our simplified
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models (Figure S5C). This discrepancy is likely due to an overestimation of the BKCa activation
time constant of BKCa model devised by Cox (2) at specific Cao (compare the left lower panel
of Figure 2D in (2) with Figure S1D, where Cao = 22 µM). The slower time constant prevents
complete activation of the BKCa channels for Cox’ 70-state Markov chain model during the
imposed AP.

3 Model for BKCa activation in complexes with k non-inactivated
CaVs and its approximation

For the case of 1:n BKCa-CaV stoichiometry, we split the system according to the number k of
non-inactivated CaV channels. Then the equivalent 1:k BKCa-CaV complex can be described by
the following ODE system:

dpCkX

dt
= βpCk−1OX + k−c pCkY − (kα+ k+c )pCkX (S19)

dpCkY

dt
= βpCn−1OY + k+c pCnX − (kα+ k−c )pCnY (S20)

dpCk−iOiX

dt
= (i+ 1)βpCk−(i+1)Oi+1X + (k − (i− 1))αpCk−(i−1)Oi−1X

+ k−oipCk−iOiY − ((k − i)α+ iβ + k+oi)pCk−iOiX , i = 1, . . . , k − 1 (S21)

dpCk−iOiY

dt
= (i+ 1)βpCn−(i+1)Oi+1Y + (k − (i− 1))αpCk−(i−1)Oi−1Y

+ k+oipCk−iOiX − ((k − i)α+ iβ + k−oi)pCk−iOiY , i = 1, . . . , k − 1 (S22)

dpOkX

dt
= αpCOk−1X + k−okpOkY − (kβ + k+ok)pOkX (S23)

dpOkY

dt
= αpCOk−1Y + k+okpOkX − (kβ + k−ok)pOkY (S24)

where, e.g., pCk−iOiX and pCk−iOiY correspond to the probability of having k−i closed and i open
CaVs coupled with the closed (X) and open (Y ) BKCa channel, respectively. The activation of

the BKCa surrounded by k non-inactivated CaVs, m
(k)
BK , is then

m
(k)
BK = pCkY +

k−1∑
i=1

pCk−iOiY + pOkY . (S25)

By taking into account that

pCkX = (1−mCaV )k − pCkY (S26)

pCk−iOiX =

(
k

i

)
(1−mCaV )k−imi

CaV − pCk−iOiY , i = 1, . . . , k − 1

(S27)

pOkX = mk
CaV − pOkY (S28)
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and renaming the state variables as follows

pY0 = pCkY (S29)

pY1 = pCk−1OY
+ pY0 (S30)

...

pYi = pCk−iOiY + pYi−1 (S31)

...

m
(k)
BK = pYk

= pOkY + pYk−1
(S32)

we can reduce the ODE system from 2(k + 1) to (k + 1) equations.
Moreover, assuming the quasi-steady state approximation for pYi , with i = 0, . . . , k − 1,

dpYi

dt
= 0,

then

pY0 = A1pY1 +D1 (S33)

...

pYi = Ai+1pYi+1 +Di+1 (S34)

...

pYk−1
= Akm

(k)
BK +Dn (S35)

where (for brevity, m = mCaV )

A1 =
β

kα+ β + k−c + k+c
∼=

β

kα+ β + k−c

D1 =
k+c (1−m)k

kα+ β + k−c + k+c
∼= 0

Ai =
iβ

Bi
, i = 2, . . . , k

Di =

 i−1∑
j=1

(
k

j

)
(1−m)k−jmj − k−c

D1 +
i−1∑
j=2

Dj

(
j−1∏
l=1

Al

) /Bi− i−2∑
j=1

(
k+oj + k−oj

)(1−Aj)

Dj+1 +
i−1∑

l=j+2

Dl

 l−1∏
m=j+1

Am

−Dj

 /Bi(
+
(

(k − (i− 1))α+ k+o(i−1) + k−o(i−1)

)
Di−1

)
/Bi, i = 2, . . . , k

with

Bi =
(

(k − (i− 1))α+ k+o(i−1) + k−o(i−1)

)
(1−Ai−1) + iβ + k−c

i−1∏
j=1

Aj


+

i−2∑
j=1

(
k+oj + k−oj

)
(1−Aj)

 i−1∏
l=j+1

Al

 , i = 2, . . . , k.
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Then

pYi =

 k∏
j=1

Aj

m
(k)
BK +Di+1 +

k∑
j=i+2

Dj

(
j−1∏
l=i

Al

)
, i = 0, . . . , k − 1

pCkY =

 k∏
j=1

Aj

m
(k)
BK +D1 +

k∑
j=2

Dj

(
j−1∏
l=1

Al

)

pCk−iOiY = (1−Ai)

 k∏
j=i+1

Aj

m
(k)
BK + (1−Ai)

Di+1 +
k∑

j=i+2

Dj

(
j−1∏

l=i+1

Al

)
−Di, i = 1, . . . , k − 1

pOkY = (1−Ak)m
(k)
BK −Dk.

Finally, we achieve one ODE for describing the dynamics of the BKCa activation with k non-
inactivated CaVs:

dm
(k)
BK

dt
=

k∑
i=1

(
k

i

)
(1−m)k−imik+oi − k

−
c pCkY −

k∑
i=1

(
k+oj + k−oj

)
pCk−iOiY

=

{
k∑

i=1

(
k

i

)
(1−m)k−imik+oi − k

−
c

D1 +
k∑

j=2

Dj

(
j−1∏
l=1

Al

)
−

k−1∑
i=1

(
k+oj + k−oj

)(1−Ai)

Di+1 +
k∑

j=i+2

Dj

(
j−1∏

l=i+1

Al

)−Di


+
(
k+ok + k−ok

)
Dn

}
(S36)

−

(k+ok + k−ok
)

(1−Ak) + k−c

k∏
j=1

Aj +

k−1∑
i=1

(
k+oj + k−oj

)
(1−Ai)

k∏
j=i+1

Aj

m(k)
BK .

Therefore, the activation time constant of the BKCa channels in complexes with k non-inactivated

CaVs, τ
(k)
BK , is the inverse of the expression in square brackets in Eq. S36, whereas the BKCa

equilibrium open fraction, m
(k)
BK,∞, is equal to the product of τ

(k)
BK and the expression in curly

brackets. Note that τ
(k)
BK depends only on parameters, whereas m

(k)
BK depends also on mCaV via

Di.
If assuming instantaneous activation of CaVs, we have

pCk−iOiY =

(
k

i

)
(1−mCaV,∞)k−imi

CaV,∞pY , i = 0, . . . , k,
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and (cf. Eq. 29 of the main text)

dm
(k)
BK

dt
=

k∑
i=1

(
k

i

)
(1−mCaV,∞)n−imi

CaV,∞k
+
io − k

−
c pCkY −

k∑
i=1

(
k+oj + k−oj

)
pCk−iOiY

=

k∑
i=1

(
k

i

)
(1−mCaV,∞)k−imi

CaV,∞k
+
oi (S37)

−

(
(1−mCaV,∞)kk−c +

k∑
i=1

(
k

i

)
(1−mCaV,∞)k−imi

CaV,∞
(
k+oi + k−oi

))
mBK .

4 Whole-cell models

4.1 Hypothalamic neuronal model

We extended a model of electrical activity in hypothalamic neurosecretory cells (7) with our
devised BKCa-CaV model. The model is described by

dV

dt
= − 1

C
(IBK + ISK + IK + IA + INa + ICa + Ileak) . (S38)

where IBK and ISK represent the calcium- and voltage-dependent K+ currents carried by BK and
SK channels, respectively; IK and IA denote the delayed rectifier and the A-current respectively;
INa represents the sodium current and ICa the calcium current. C is the membrane capacitance
and is equal to 1 µF cm−2.

We modified the calcium current and inserted our whole-cell BKCa model in place of the
original representation of BKCa currents. In particular, according to experimental data (9, 10),
we introduced CaV activation dynamics, whereas the original model assumed instantaneous
activation of CaVs, and modified the equilibrium voltage-dependent activation. Then

ICa = gCamCaV (V − VCa) (S39)

where gCa and VCa are the maximal whole-cell conductance and the Ca2+ reverse potential,
respectively (7). mCaV is defined by Eq. 18 of the main text, with τCaV = 1.25 ms. For the equi-

librium voltage-dependent activation, given in (7) and defined by mCaV,∞ =
(

1 + e
−V−Vm

km

)−1
,

we modified the Vm parameter of the Boltzmann function (Vm = 15 mV).

The IBK current is modeled by Eq. 28 of the main text, where the BKCa activation, m
(n)
BK , is

given by Eq. 26. Moreover, we also considered the case where the activation of the BKCa channel
is given by the complete ODE model described by Eqs. S19–S25, and the case where the BKCa

activation is simplified by assuming instantaneous activation of CaVs (see Eq. S37 and Eq. 29 of
the main text).

The other currents are expressed as (7)

ISK = gSKq
2
∞(V − VK), (S40)

IK = gKm
3
K(V − VK), (S41)

IA = gAm
4
AhA(V − VK), (S42)

INa = gNa[mNa,∞(V )]3 hNa (V − VNa), (S43)

Ileak = gleak(V − Vleak), (S44)
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Figure S6: Whole-cell simulations for the neuronal model (7) with the devised BKCa-
CaV model. Simulated APs with the BKCa channels coupled in complexes with n non-
inactivating CaVs (n = 1, left panel; n = 2, middle; n = 4, right). In each panel, the whole-cell
BKCa current is described by Eq. 28 of the main text (i.e. BKCa coupled with non-inactivating

CaVs), where the BKCa activation, m
(n)
BK , is modeled by the full ODE model described by

Eqs. S19–S25 (blue curve), by Eq. 26 (see Eq. S36 for the details) (red curve), and by Eq. 29
(green curve), and gBK = 1 mS cm−2. The black curve shows the case of BKCa block (gBK = 0
mS cm−2).

where the voltage-dependent activation variables, mX (and similarly inactivation variabels, hX ,
where X denotes the type of current), follow

dmX

dt
=
mX,∞(V )−mX

τmX
, (S45)

where τmX (respectively τhX) is the time-constant of activation (respectively inactivation for
hX), and mX,∞(V ) (respectively hX,∞(V )) is the steady-state voltage-dependent activation (re-
spectively inactivation) of the current, described with Boltzmann function. gX represents the
whole-cell conductance of the channel X and VX the reverse potential. q∞ is the calcium-
dependent activation function for ISK (see Appendix in (7) for parameter values).

Figure S6 shows the simulated AP in this neuronal model with 1:n stoichiometry BKCa-CaV
complexes, where n = 1, 2 or 4. The BKCa activation is modeled by the complete ODE system
described by Eqs. S19–S25, by Eq. 26 of the main text, or by Eq. 29. The simplified model
(Eq. 29) is not able to reproduce the fast after-hyperpolarization (fAHP), whereas the other two
models, which take CaV activation dynamics into account, show how increasing the number of
CaVs coupled with BKCa helps to generate fAHP. The difference associated with the choice of
the BKCa model suggests that the neuronal model is sensitive to the kinetics of BKCa activation.
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4.2 Human β-cell model

The human β-cell model (11) is as follows. The membrane potential is described by

dV

dt
= −(IBK + IKv + IHERG + INa + ICaL + ICaPQ + ICaT + IKATP + Ileak), (S46)

where the BKCa current IBK is modeled assuming that BKCa channels are located in com-
plexes with either T-type, L-type or P/Q-type Ca2+ channels. In particular, IBK is described by
Eq. 27 of the main text (with inactivating T- and L-type CaVs) or Eq. 28 (with non-inactivating

P/Q-type CaVs), where the BKCa activation, m
(n)
BK , is modeled by Eqs. S19–S25 (full model),

Eq. 26, or Eq. 29 (instantaneous CaV activation). As shown in Figure S7, the model is quite
robust to the choice of BKCa-CaV model.

The other currents are

IKv = gKvmKv(V − VK), (S47)

IHERG = gHERGmHERGhHERG(V − VK), (S48)

INa = gNamNa,∞(V )hNa(V − VNa), (S49)

ICaL = gCaLmCaL,∞(V )hCaL(V − VCa), (S50)

ICaPQ = gCaPQmCaPQ,∞(V )(V − VCa), (S51)

ICaT = gCaTmCaT,∞(V )hCaT (V − VCa), (S52)

IK(ATP ) = gK(ATP )(V − VK), (S53)

Ileak = gleak(V − Vleak), (S54)

where activation variables (and similarly inactivations variabels, hX , where X denotes the type
of current) follow

dmX

dt
=
mX,∞(V )−mX

τmX
, (S55)

where τmX (respectively τhX) is the time-constant of activation (respectively inactivation for
hX), and mX,∞(V ) (respectively hX,∞(V )) is the steady-state voltage-dependent activation (re-
spectively inactivation) of the current. The steady-state activation (and inactivation) functions
are described with Boltzmann functions,

mX,∞(V ) =
1

1 + exp((V − VmX)/nmX)
, (S56)

except
hCaL,∞(V ) = max

(
0,min {1, 1 + [mCaL,∞(V )(V − VCa)]/57mV}

)
, (S57)

for Ca2+-dependent inactivation of L-type Ca2+ channels. The time-constant for activation of
Kv-channes is assumed to be voltage-dependent (11, 12),

τmKv =

{
τmKv,0 + 10 exp

(−20 mV−V
6mV

)
ms, for V ≥ 26.6 mV,

τmKv,0 + 30 ms, for V < 26.6 mV.
(S58)

We refer to the original paper (11) for details regarding modeling of the different currents.
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Figure S7: Whole-cell simulations for the human β-cell model (11) with the devised
BKCa-CaV model. Simulated APs with BKCa channels located in complexes with n T-type
(left panels), L-type (middle), or P/Q-type (right) CaVs (n = 1, upper panels; n = 2, middle;
n = 4, lower). The β-cell model shows little sensitivity to the choice of BKCa-CaV model. In each
panel, the whole-cell BKCa current is described by Eq. 27 of the main text (with inactivating T-
and L-type CaVs) or Eq. 28 (with non-inactivating P/Q-type CaVs), where the BKCa activation,

m
(n)
BK , is modeled by the full ODE model described by Eqs. S19–S25 (blue curve), by Eq. 26 (see

Eq. S36 for the details) (red curve), and by Eq. 29 (green curve). Left subpanels show fit to data
from (12), right subpanels report model simulations. The black traces show simulations with
BKCa block.
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4.3 Pituitary lactotroph model

We extended a pituitary lactotroph model (13) with our concise Hodgkin-Huxley-type model
of the BKCa-CaV complex (Eq. 28 of the main text). The original model includes a single
Ca2+ current (ICa), a delayed-rectifier K+ current (IK), a Ca2+-gated SK current (ISK), and a
leak current (Ileak), in addition to the BK current. The membrane potential V evolves in time
according to

C
dV

dt
= −(ICa + IK + ISK + IBK + Ileak), (S59)

where C is the membrane capacitance. The currents are modeled as

ICa = gCamCaV,∞(V )(V − VCa), (S60)

IK = gKn(V − VK), (S61)

ISK = gSKs∞([Ca])(V − VK), (S62)

Ileak = gl(V − Vl), (S63)

IBK = gBKm
(n)
BK(V − VK), (S64)

where the activation variable of the delayed rectifier is given by

dn

dt
=
n∞(V )− n

τn
. (S65)

The equilibrium functions are described as

mCaV,∞(V ) = [1 + exp((vm − V )/sm)]−1, (S66)

n∞(V ) = [1 + exp((vn − V )/sn)]−1, (S67)

s∞([Ca]) =
[Ca]2

[Ca]2 + k2s
. (S68)

The differential equation for the cytosolic Ca2+ concentration is

d[Ca]

dt
= −fc(αICa + kc[Ca]). (S69)

Table S3 reports the parameter values of the pituitary model (13).
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Table S3: Parameter values of the pituitary model (13).
Parameter Value Unit

C 10 pF
gCa 2 nS
VCa 60 mV
vm -20 mV
sm 12 mV
gk 3 nS
Vk -75 mV
vn -5 mV
sn 10 mV
gSK 1.2 nS
ks 0.4 µM
gBK 1 nS
gl 0.2 nS
Vl -50 mV
fc 0.01 -
α 0.0015 µM fC−1

kc 0.12 ms−1

19



Supporting References

1. Cox, D. H., J. Cui, and R. W. Aldrich, 1997. Allosteric gating of a large conductance
Ca-activated K+ channel. J Gen Physiol 110:257–81.

2. Cox, D. H., 2014. Modeling a Ca(2+) channel/BKCa channel complex at the single-complex
level. Biophys J 107:2797–814.

3. Latorre, R., and S. Brauchi, 2006. Large conductance Ca2+-activated K+ (BK) channel:
activation by Ca2+ and voltage. Biol Res 39:385–401.

4. Berkefeld, H., B. Fakler, and U. Schulte, 2010. Ca2+-activated K+ channels: from protein
complexes to function. Physiol Rev 90:1437–59.

5. Buchholz, P., J. Kriege, and I. Felko, 2014. Input modeling with phase-
type distributions and Markov models. Springer Briefs in Mathematics. Springer.
http://dx.doi.org/10.1007/978-3-319-06674-5.

6. Segel, L. A., and M. Slemrod, 1989. The quasi steady-state assumption: a case study in
perturbation. SIAM Rev. 31:446–477.

7. Roper, P., J. Callaway, T. Shevchenko, R. Teruyama, and W. Armstrong, 2003. AHP’s,
HAP’s and DAP’s: how potassium currents regulate the excitability of rat supraoptic neu-
rones. J Comput Neurosci 15:367–89.

8. Pallotta, B. S., K. L. Magleby, and J. N. Barrett, 1981. Single channel recordings of Ca2+-
activated K+ currents in rat muscle cell culture. Nature 293:471–4.

9. Joux, N., V. Chevaleyre, G. Alonso, L. Boissin-Agasse, F. C. Moos, M. G. Desarménien, and
N. Hussy, 2001. High voltage-activated Ca2+ currents in rat supraoptic neurones: biophysical
properties and expression of the various channel alpha1 subunits. J Neuroendocrinol 13:638–
49.

10. Berkefeld, H., and B. Fakler, 2008. Repolarizing responses of BKCa-Cav complexes are
distinctly shaped by their Cav subunits. J Neurosci 28:8238–45.

11. Pedersen, M. G., 2010. A biophysical model of electrical activity in human β-cells. Biophys
J 99:3200–3207. http://dx.doi.org/10.1016/j.bpj.2010.09.004.

12. Braun, M., R. Ramracheya, M. Bengtsson, Q. Zhang, J. Karanauskaite, C. Partridge, P. R.
Johnson, and P. Rorsman, 2008. Voltage-gated ion channels in human pancreatic beta-cells:
electrophysiological characterization and role in insulin secretion. Diabetes 57:1618–1628.
http://dx.doi.org/10.2337/db07-0991.

13. Tabak, J., N. Toporikova, M. E. Freeman, and R. Bertram, 2007. Low dose of dopamine
may stimulate prolactin secretion by increasing fast potassium currents. J Comput Neurosci
22:211–22.

20


	Concise Whole-Cell Modeling of BKCa-CaV Activity Controlled by Local Coupling and Stoichiometry
	Introduction
	Materials and Methods
	BKCa channel model
	CaV channel model
	BKCa-CaV complex with 1:1 and 1:n stoichiometries
	Availability of models and computer code

	Results
	A simple Markov chain model of the BKCa-CaV complex
	Time to first opening
	A concise deterministic model of cellular BKCa activity derived from multiscale principles
	1:1 stoichiometry

	Complexes with multiple Ca2+ channels
	Whole-cell simulations of electrical activity shaped by BKCa-CaV complexes
	BKCa-CaV stoichiometry controls fAHP in a neuronal model
	Different CaV types affect electrical activity differently in a model of human β-cell electrophysiology
	Bursting behavior depends on BKCa-CaV stoichiometry in a model of pituitary cells

	Discussion
	Supporting Material
	Author Contributions
	Acknowledgments
	References


