Supporting Information

SI Materials and Methods

1 2 3

4

Sampling and Taxonomy. Our species sampling was determined by the species for which 5 6 datasets were currently available or under construction in our labs. We restricted sampling to the mainland New World because New World birds are much better represented in existing genetic 7 resources collections and genetic datasets than Old World species, which are particularly poorly 8 sampled in tropical areas (1). In only a few cases (Anas strepera, Calidris ptilocnemis, Corvus 9 10 corax, Hirundo rustica, and Pinicola enucleator) do study species contain Old World populations, which were not sampled for our analyses. Several of these species (the Anas, 11 *Calidris*, and *Pinicola*) are important as the only or one of few representatives of their clade with 12 phylogeographic data available. The phylogenetic dataset used to estimate speciation rates was 13 worldwide in coverage. This strategy allowed us to maintain consistency between datasets - both 14 the population genetic datasets (with the five exceptions above) and the phylogenetic dataset 15 16 included all subtending lineages rather than a potentially biased subset of daughter lineages. Including all species in the phylogeny, combined with an analytical correction for taxa lacking 17 genetic data, allowed us to estimate absolute speciation rates from each lineage for direct 18 19 comparison with population differentiation rates. 20 Population Differentiation Rate Estimation. Mitochondrial gene trees were time-calibrated 21 22 using an uncorrelated relaxed substitution rate based on published avian mitochondrial rates of 0.0125 substitutions/site/My for ND2 and ATPA6, 7, & 8(2) and 0.0105s s/s/My for CytB (3). 23 For the gene COI we used the same rate as CytB because the loci mutate at similar rates (2). For 24 the clock rate parameter we specified a lognormal distribution on the prior with the mean set to 25 the above-mentioned substitution rates and a standard deviation of 0.1. We note that these 26 substitution rates may differ from the rates represented in the phylogenetic data. Because 27 substitution rates differ between short and long timescales (4), however, using rates that have 28 been widely applied and tested on intraspecific timescales is the best option in this case. We 29 expect any bias in crown and stem ages from the population-level data relative to branching 30 times from the phylogenetic data to be minimal and have minimal impact on population 31 differentiation rate estimates. Moreover, because we apply the same calibrations for all study 32 species, this bias would be equivalent across species and therefore would not impact correlations 33 between population differentiation and speciation rates. 34 35 We estimated time-calibrated gene trees in BEAST using a coalescent-constant-size tree prior and the best-fit nucleotide substitution model as determined in MEGA6 (5). We ran each 36 analysis for 50 million generations sampling every 2,500 generations, performed multiple 37 independent runs for validation, and assessed Markov chain Monte Carlo (MCMC) convergence 38 and determined burn-in by examining ESS values and likelihood plots in Tracer v.1.5 (6). For 39 some datasets that did not achieve high ESS values after 50 million generations, we included 40 additional generations until the results were stable. Maximum clade credibility (MCC) trees were 41 estimated from the posterior distribution of trees for each species using TreeAnnotator (7). 42 bGMYC determines the number of genetic species by estimating the number of clusters 43

44 within which splits in the gene tree fit a coalescent model rather than a model of interspecific 45 diversification (Vula model) in a Devesion framework. We can the program for 250,000

diversification (Yule model) in a Bayesian framework. We ran the program for 250,000

generations using the single.phy function and discarded the first 15,000 generations as burn-in. 46

47 We ran each analysis multiple times for validation, and assessed MCMC diagnostics by

examining likelihood plots in Tracer. Units delimited using the GMYC model are typically 48

49 regarded as species. In birds, however, more stringent criteria, involving metrics of reproductive

isolation or phenotypic divergence, are typically applied for species delimitation (8, 9). Non-50

interbreeding populations failing to meet this criteria, such as many of the units delimited in this 51 study, are often assigned subspecies status. Many of the units in this study may even fail to meet 52

53 some researchers' criteria for subspecies status, indeed many have not been elevated to

subspecies despite prior publications based on the same genetic data examined here. As a result, 54

55 GMYC units in birds are perhaps better treated as genetically differentiated populations, and we

follow this philosophy here. A similar perspective, treating delimited groups as populations, has 56

recently been advocated for the multispecies coalescent more generally (10). Regardless of their 57

taxonomic status, however, GMYC clusters represent more finely resolved and more recently 58

diverged groups relative to the terminal taxa in the avian phylogeny we examined, and thus are 59

appropriate for comparing divergence rates between recent and deep timescales, the fundamental 60

goal of this study. An alternate method for identifying geographic variants would have been to 61

62 use named subspecies, a strategy we examine below.

We corrected for differences in the age of species by calculating the rate at which bGMYC 63 clusters formed since the species' crown age. All rates were calculated using a starting diversity 64 of one despite the use of crown age. Crown age in our study corresponds to the first divergence 65 between mitochondrial haplotypes rather than the first divergence between bGMYC clusters, and 66 thus represents a time point when only one bGMYC cluster was present. The area across which a 67

species is distributed might also predict its level of differentiation, but we found area was not 68

strongly correlated with the number of differentiated populations ($R^2 = 0.029$, P = 0.025). 69

certainly much less so than age ($R^2 = 0.285$, P < 0.001). This suggests that population 70

differentiation has similar evolutionary potential regardless of the size of the area across which it 71 occurs, and we therefore do not control for area in any subsequent analyses. 72

Because we examined differentiation at shallow time scales, we might assume that extinction 73 is infrequent and pure-birth (Yule) models provide reasonable estimates of differentiation rate, 74

and these were used for primary analyses. Jointly estimating speciation and extinction is possible 75

using birth-death models and taking advantage of branch length information in population 76

77 phylogenies. However, the majority of our population trees contained so few tips that the

likelihood surface for parameter estimation was flat and confidence intervals were very large (T. 78 J. Stadler, pers. comm.). Instead, we examined models that estimated speciation provided 79

different fixed extinction rates. We examined differentiation rates using models with moderate

80

(epsilon = 0.45) and high (eps. = 0.9) constant rates of extinction, in addition to the pure-birth 81 model. 82

83

84 **Speciation Rate Estimation.** The software program BAMM uses reversible-jump MCMC to examine models differing in the number of time-varying diversification processes present across 85 86 the phylogeny. Each process includes a time-varying speciation term and a time-invariant extinction rate. In the BAMM run using the primary taxonomy, multiple tips from within the 87 same species were collapsed so as to avoid overlap in the data used for estimation of speciation 88 and population differentiation rates. We ran BAMM using a model allowing for variable rates for 89 90 at least 350 million generations in both the split and primary analyses, completing multiple runs with the same settings for validation. We sampled every 200,000 generations and discarded 10% 91

of the sample as burn-in. Marginal distributions of speciation rates at the tips of the tree represent
 estimates of present-day speciation rates for those taxa.

94

95 **Comparative Analyses.** We first used STRAPP, which computes the correlation between character states at the tips of the tree and their corresponding diversification rates, and assesses 96 97 significance by permuting speciation rates among regimes estimated in BAMM. Parametric uncertainty in diversification rates is accommodated by conducting tests across the posterior 98 99 distribution of rates inferred using BAMM. The permutation test is used to control for the covariance among species from the same macroevolutionary rate regime, thereby explicitly 100 incorporating covariance among replicates with shared history and macroevolutionary dynamics. 101 All tests presented are two-tailed tests, examining the alternative hypothesis that there is a 102 correlation between population differentiation and speciation rates. One-tailed tests, in which the 103 alternative hypothesis is the presence of a positive correlation between population differentiation 104 and speciation rates, resulted in greater significance values than the two-tailed tests presented. 105 The primary two-tailed test presented in the main text, for example, resulted in a significance 106 level of P = 0.018, whereas the equivalent one-tailed test resulted in a level of P = 0.010. We 107 used the two-tailed test as a more conservative index of trait-dependent diversification. 108 We also conducted comparative analyses of the number of splits summary statistic of 109 speciation rate using phylogenetic generalized least squares (PGLS) in the caper package (11) in 110 R. PGLS analysis using the number of splits summary statistic produced similar results to 111 STRAPP overall. We log-transformed rate values to reduce heteroscedasticity in the residuals of 112 PGLS models. In addition to the results presented in the main text, PGLS analysis using the split 113 taxonomy (PGLS slope = 0.239, P < 0.001) and time threshold (PGLS slope = 0.141, P = 0.021) 114 resulted in a correlation similar to that using the primary taxonomy. The relationship with PGLS 115 was also robust to the use of lower (0.7; PGLS slope = 0.217, P < 0.001) and higher (0.9; PGLS 116 slope = 0.227, P < 0.001) posterior probability thresholds for assigning individuals to population 117 clusters, to whether the population differentiation rate was measured using the stem age rather 118 than crown age of a species (PGLS slope = 0.349, P < 0.001), to the random removal of 20% 119 (PGLS slope = 0.211, P < 0.001) and 40% (PGLS slope = 0.209, P < 0.001) of samples from the 120 dataset, to the removal of populations containing a single individual (PGLS slope = 0.210, P < 0.210121 (0.001), and to models of population differentiation incorporating moderate (*eps* = 0.45; PGLS) 122 slope = 0.182, P < 0.001) or high (eps = 0.9; PGLS slope = 0.134, P = 0.002) extinction rates. 123 Multivariate analyses were conducted to evaluate whether predictors aside from population 124 differentiation might better explain speciation rate variation. Although STRAPP does not 125 accommodate multi-predictor tests, multivariate tests can be easily accomplished in a PGLS 126 framework. We therefore conducted multivariate tests using the DR statistic and PGLS models. 127 We gathered data on a set of alternative predictor variables that have been hypothesized to 128 impact avian diversification rates (see Main Text). We gathered range information for each 129 species from existing digital range maps (12). We estimated range size and midpoint latitude, 130 and calculated migratory distance as the distance between the breeding and wintering latitudinal 131 midpoints for migratory species (for non-migratory species, migratory distance was zero). We 132 gathered georeferenced observational data from the eBird database (May 2013 release)(13). We 133 filtered erroneous records based on the digital distributional maps and selected 1000 records 134 from unique localities 1 km or more apart. We extracted elevation and 19 current climatic 135 136 variables at a spatial resolution of 2.5 arc seconds from the WorldClim database (14) and also measured the per-cell difference between the 19 current climate variables and the corresponding 137

paleoclimate layers from the last glacial maximum (MIROC: Model for Interdisciplinary 138 139 Research on Climate) in ArcGIS (ESRI Inc., Redlands, CA) as a metric for climate stability through time. We reduced the dimensionality of the current climate, elevation, and climate 140 141 stability variables (n = 39 total) using principal components analysis and selected PC1 (explained 49.2% of variable variance) and PC2 (explained 18.1% of variance) for further analysis. We used 142 museum specimens of each species to measure tarsus length (a common proxy for body size in 143 birds) and a morphological metric of dispersal ability called Kipp's index that represents a ratio 144 of wing length to breadth (15,16). We measured at least five male specimens in adult plumage 145 per species. Spectral information on sexual dichromatism is available for only a subset (37%) of 146 our study species (17), which was insufficient for use in multi-predictor PGLS models. We 147 therefore scored simple presence/absence of dichromatism in each species based on visual 148 inspection of museum specimens. We log-transformed positive right-skewed variables (DR 149 statistic, population differentiation rate, environmental PC1, range size, tarsus length, and Kipp's 150 index) to reduce residual heteroscedasticity and ran multi-predictor PGLS models containing all 151 nine variables (all as additive predictors), including population differentiation. We then removed 152 each variable one-by-one and evaluated the resulting models. We compared the full model and 153 the nine models with a variable removed using the sequential sums of squares with the 154 anova.pgls function in caper (11) and performed AIC model comparison. 155 We evaluated the robustness of the difference between tropical and temperate species in the 156 strength of the association between population differentiation and speciation rates. The larger 157 sample size of the tropical species may underlie the more significant result in that group, but 158 resampling the tropical dataset 1000 times to the same sample size as the temperate group 159 consistently produced stronger correlations (results in Main Text) in analysis using the BAMM 160 speciation rates, albeit not with the DR speciation rates. We also evaluated the possibility of a 161 null hypothesis in which species were randomly assigned to two groups the same size as the 162 temperate and tropical positions. Again, this permutation test suggested that the correlations were 163 more different than expected in when using BAMM speciation rates (P = 0.026), but was not 164 significant for the DR speciation rates (P = 0.283). Overall, these results suggest the stronger 165 correlation in tropical relative to temperate species reflects real differences among the species in 166

- 167 the two regions. P = 0.026, P = 0.283.
- 168

Comparison to Analysis of Taxonomic Subspecies. Prior studies of the association between 169 intraspecific diversity and species diversification have relied on the number of taxonomic 170 subspecies within a species as a proxy of intraspecific diversity (see Main Text). Taxonomic 171 subspecies in birds typically correspond to morphologically distinguishable groups that are 172 geographically separated, but criteria for subspecies status have been variably applied and there 173 is limited intersection between currently recognized subspecies and intraspecific diversity based 174 on genetic data (18). The use of genetic structure within species may sufficiently reduce 175 subjectivity and improve comparability in estimates of intraspecific diversity, such that the 176 reflect a quantity that more accurately predicts the diversification potential of a lineage. It also 177 provides explicit timing information on the crown age of populations and population splitting 178 events for estimation of rates of population differentiation. We compared our estimates of 179 genetic differentiation in our study species to currently recognized subspecies diversity based on 180 the Clements/eBird taxonomy (19) because the AOS taxonomies do not treat subspecies. 181 Subspecies richness was correlated with number of genetically differentiated populations (R^2 = 182 0.228, P < 0.001), but we found no association between speciation rate and either the number of 183

- taxonomic subspecies within a species (BAMM r = 0.021, P = 0.716) or the rate of formation of
- subspecies since the crown age of a species (BAMM r = 0.148, P = 0.210). These results suggest
- 186 metrics of genetic differentiation capture intraspecific diversity that better reflects diversification
- 187 dynamics in evolutionary lineages than taxonomic proxies.
- 188

189 SI Figures

190

191

- **Fig. S1.** A phylorate plot showing speciation rates and macroevolutionary regime shifts (black
- circles) from the maximum shift credibility sample from the BAMM posterior. The tree contains all 6,617 species from the phylogeny with genetic data (after collapsing species from the original
- 195 phylogeny that were in the same species in our primary taxonomy).
- 196

197

Fig. S2. A phylorate plot of the study species similar to that from Fig. 2 in the main text. Colors on the phylogeny in the center indicate mean posterior speciation rates along branches. The black

- 200 circles represent rate regime shifts in the maximum shift credibility sample from the posterior.
- 201 Triangles encircling the phylogeny depict population differentiation rates and are colored
- according to whether a species is tropical (orange) or temperate (gray). Species names are listed
- adjacent to the circle representing their differentiation rate. For species containing multiple AOS
- species names, the name shown was selected randomly from the name set.
- 205
- 206
- 207
- 208

209

Fig. S3. Plots showing differences in relative population differentiation and speciation rates 210 between temperate and tropical species using the DR statistic. (A) Tropical species show a 211 relationship between population differentiation rates and speciation rates (0.229, P < 0.001), 212 whereas tropical species do not (PGLS slope = 0.160, P = 0.086). Kernel density plots showing 213 the relative distributions of rates between tropical and temperate species are plotted opposite the 214 axis of the rate to which they correspond and show that neither differentiation or speciation rates 215 differ noticeably between temperate and tropical species. The ratio of population differentiation 216 rate to speciation rate, however, is more variable in temperate species (B) than tropical species 217 218 (C). 219

SI Table

221

Table S1. Change in AICc weights in multivariate PGLS models of speciation rate variation.

223

Variable	ΔAICc*
Population differentiation rate	5.536
Range size	-0.223
Range midpoint latitude	-2.050
Migratory distance	2.202
Environmental PC1	-1.929
Environmental PC2	0.752
Tarsus length (body size proxy)	3.164
Kipp's Index (dispersal ability proxy)	-1.917
Sexual dichromatism	-2.019

* difference between model with variable removed and full model

			<u> </u>	
225	SI An	nendix:	Study	species
223		poliaixi	ocaaj	000000

Species	AOS Species	Locus	References
1	Adelomyia melanogenys	CR-ATP8-ATP6	21, 22
2	Agelaius phoeniceus		22
2	Agelaius tricolor	ND2	23
3	Amazilia tzacatl	ND2	24
4	Amazona farinosa	CytB	25
5	Amazona ochrocephala		26.27
5	Amazona aestiva	ND2	20, 27
6	Anabacerthia striaticollis	ND2	28
7	Anas fulvigula	CR	29
8	Anas strepera	CR	30
	Aphelocoma caerulescens		
9	Aphelocoma californica	ND2	31
	Aphelocoma insularis		
10	Aphelocoma ultramarina		21.22
10	Aphelocoma wollweberi	ND2	51, 52
11	Aphelocoma unicolor	ND2	31, 32
	Aratinga solstitialis		
12	Aratinga jandaya	CytB	33
	Aratinga auricapillus		
13	Arremon brunneinucha	COII	34
	Arremon torquatus		
	Arremon assimilis		
	Arremon atricapillus		
14	Arremon basilicus		20 25
14	Arremon costaricensis	ND2	28, 55
	Arremon perijanus		
	Arremon phaeopleurus		
	Arremon phygas		
15	Artemisiospiza belli	CritD	26
15	Artemisiospiza nevadensis	Суів	50
16	Attila spadiceus	CytB	37
17	Aulacorhynchus prasinus	ND2	38
18	Automolus ochrolaemus	CytB	37
19	Basileuterus belli	ND2	39
20	Basileuterus culicivorus	CytB	40
21	Basileuterus tristriatus		<u> </u>
21	Basileuterus trifasciatus	ND2	41

Species	AOS Species	Locus	References
22	Calidris ptilocnemis	CytB	42
23	Campylorhynchus brunneicapillus	ND2	43
24	Campylorhynchus rufinucha	ND2	44
25	Cantorchilus nigricapillus	ATP8-ATP6	45
26	Capito wallacei	CytB	46
27	Cardellina pusilla	CytB	47
20	Cardellina rubra	ND2	40
28	Cardellina versicolor	ND2	48
29	Cardinalis cardinalis	ND2	49
30	Catharus fuscater	ND2	28
31	Catharus occidentalis	ND2	50
	Ceratopipra chloromeros		
22	Ceratopipra mentalis		50
32	Ceratopipra erythrocephala	ND2	50
	Ceratopipra rubrocapilla		
33	Certhia americana	ND2	51
34	Chamaea fasciata	CytB	52
35	Charadrius montanus	CR	53, 54
36	Charadrius nivosus	CR	54
37	Chlorophanes spiza	CytB	37
	Chlorospingus flavopectus		
20	Chlorospingus semifuscus		55, 56, 57
58	Chlorospingus inornatus	AIP8-AIP0	
	Chlorospingus tacarcunae		
39	Chrysomus icterocephalus	ND2	58
	Cinclodes fuscus		
	Cinclodes olrogi		
	Cinclodes oustaleti		
40	Cinclodes comechingonus	ND3	59, 60
	Cinclodes antarcticus		
	Cinclodes albidiventris		
	Cinclodes albiventris		
41	Colonia colonus	CytB	37
40	Corvus corax	C (D	(1
42	Corvus cryptoleucus	CytB	61
42	Cranioleuca antisiensis		50
43	Cranioleuca baroni	ND2	50
44	Cyanerpes caeruleus	CytB	37

Species	AOS Species	Locus	References
45	Cyanocitta stelleri	ND2	50
46	Cyanocompsa cyanoides	CytB	62
	Cyanolyca viridicyanus		
47	Cyanolyca turcosa	ND2	28
	Cyanolyca armillata		
10	Cyclarhis gujanensis	ND2	50 62
48	Cyclarhis nigrirostris	ND2	50, 65
49	Cymbilaimus lineatus	CytB	37
50	Dendragapus fuliginosus	CP	61
30	Dendragapus obscurus	CK	04
51	Dendrocincla fuliginosa	CritD	27
51	Dendrocincla anabatina	Суів	57
52	Dendrocolaptes platyrostris	CytB	65
53	Diglossa caerulescens	ND2	28
54	Diglossa cyanea	ND2	28
	Drymophila caudata		
	Drymophila klagesi	ND2	28, 66
55	Drymophila hellmayri	ND2	
	Drymophila striaticeps		
56	Drymophila devillei	ND2	67
57	Dubusia taeniata	ND2	28
58	Empidonax difficilis		50
58	Empidonax occidentalis	IND2	
59	Empidonax flavescens	ND2	50
60	Empidonax traillii	CytB	68
	Forpus coelestis		
	Forpus conspicillatus		
61	Forpus xanthops	ND2-CytB	69
	Forpus passerinus		
	Forpus xanthopterygius		
62	Geothlypis tolmiei	ND2	50
	Geothlypis trichas		
63	Geothlypis beldingi		50
05	Geothlypis nelsoni	ND2	50
	Geothlypis flavovelata		
64	Glyphorynchus spirurus	CytB	37
65	Habia fuscicauda	ND2	50
66	Habia rubica	ND2	50

Species	AOS Species	Locus	References
67	Hellmayrea gularis	ND2	28
68	Henicorhina leucoptera	ATP8-ATP6	50
69	Henicorhina leucosticta	CytB	37
70	Hirundo rustica	ND2	70
71	Hylophilus ochraceiceps	ND2	63
70	Hylophylax naevioides	ND2	71
12	Hylophylax naevius	ND2	/1
	Hypocnemis cantator		
	Hypocnemis flavescens		
	Hypocnemis peruviana		
73	Hypocnemis subflava	ND2	67, 72, 73
	Hypocnemis ochrogyna		
	Hypocnemis striata		
	Hypocnemis rondoni		
74	Icterus galbula	CritD	74
/4	Icterus abeillei	CytB	/4
75	Icterus pustulatus	CytB	75
76	Lampornis amethystinus	CR	76
77	Lepidocolaptes affinis	ND2	77
78	Lepidocolaptes lacrymiger	ND2	28
79	Lepidothrix coronata	CytB	37
80	Margarornis squamiger	ND2	28
81	Mecocerculus leucophrys	ND2	28
82	Melanerpes formicivorus	CytB	78
83	Melozone fusca	CR	35
0.4	Microbates cinereiventris	ND2	50 62 72
04	Microbates collaris	ND2	30, 03, 73
85	Microcerculus marginatus	CytB	37
	Mionectes oleagineus		
86	Mionectes rufiventris	ND2	79
	Mionectes macconnelli		
87	Mionectes striaticollis	ND2	28
88	Momotus mexicanus	ND2	80
89	Myadestes occidentalis	ND2	39
90	Myioborus miniatus	ND2	50, 81, 82
91	Myiothlypis coronata	ND2	28

Species	AOS Species	Locus	References
02	Myiothlypis fulvicauda		82
92	Myiothlypis rivularis	AIPo-AIP/	83
93	Myiothlypis leucoblephara	CytB	84
94	Myiothlypis luteoviridis	ND2	28
95	Myrmeciza exsul	ND2	85
96	Myrmeciza hemimelaena	CytB	86
07	Myrmeciza loricata	ND2	97
97	Myrmeciza squamosa	ND2	87
98	Myrmotherula axillaris	CytB	37
99	Myrmotherula schisticolor	ND2	28
100	Nucifraga columbiana	ND2	88
101	Ochthoeca cinnamomeiventris	ND2	28
102	Passerculus sandwichensis	ND2	89
103	Passerina ciris	ND2	90
104	Passerina leclancherii	ND2	80
105	Perisoreus canadensis	ND2	91
106	Petrochelidon fulva	CytB	92
107	Phaethornis guy	ND2	28
108	Pheucticus melanocephalus	ND2	93
109	Phrygilus fruticeti	COI	94
110	Piaya cayana	CytB	37
111	Picoides pubescens	CR-ATP8-ATP6	95
112	Picoides villosus	ND2	96
113	Pinicola enucleator	ND2	97
114	Pipilo erythrophthalmus	ND2	50
114	Pipilo maculatus	ND2	30
115	Pipreola riefferii	ND2	20
115	Pipreola intermedia	ND2	28
116	Piranga flava	ND2	50
117	Piranga ludoviciana	CytB	50
118	Poecile atricapillus	ND6	98
119	Poecile gambeli	ND2	99

Species	AOS Species	Locus	References
	Polioptila albiloris		
	Polioptila nigriceps		
	Polioptila melanura		
120	Polioptila californica		50 62 100
120	Polioptila plumbea	IND2	50, 65, 100
	Polioptila caerulea		
	Polioptila dumicola		
	Polioptila lactea		
101	Premnoplex tatei	ND2	101
121	Premnoplex brunnescens	ND2	101
122	Psaltriparus minimus	ND2	50
102	Pyriglena leucoptera	ND2	102
125	Pyriglena atra	IND2	102
124	Pyrrhomyias cinnamomeus	ND2	28
125	Querula purpurata	CytB	37
126	Quiscalus mexicanus	ND2	102
120	Quiscalus major	IND2	103
127	Rallus longirostris	ND2	104
	Rallus elegans	IND2	
128	Ramphocaenus melanurus	ND2	50, 63
129	Regulus calendula	ATP8-ATP6	50
130	Regulus satrapa	ATP8-ATP6	50
	Saltator coerulescens		
131	Saltator similis	ND2	105
	Saltator striatipectus		
	Saltator grossus		
132	Saltator cinctus	ND2	105
	Saltator aurantiirostris		
133	Saltator maximus	ND2	105
134	Schiffornis turdina	CytB	37
135	Schiffornis virescens	CR	106
126	Sclerurus mexicanus	CytP	27
150	Sclerurus rufigularis	Суів	57
137	Sclerurus scansor	ND2	107
138	Selasphorus platycercus	CR	108
139	Setophaga coronata	ATP8-ATP6	50
140	Setophaga dominica	CR	109

Species	AOS Species	Locus	References
141	Setophaga graciae	ND2	50
142	Setophaga petechia	CR	110
143	Setophaga ruticilla	CR	111
144	Setophaga striata	CR	112
	Sialia mexicana		
145	Sialia currucoides	ATP8-ATP6	50
	Sialia sialis		
146	Sitta carolinensis	ND2	113
147	Spizella passerina	CR	114
148	Strix occidentalis	CR	115
149	Strix varia	CR	115
150	Sturnella magna	NDO	116
150	Sturnella neglecta	ND2	116
1.5.1	Synallaxis azarae	NDO	20
151	Synallaxis courseni	ND2	28
152	Tachycineta bicolor	ND2	117
153	Tangara cyanicollis	CytB	37
154	Tangara gyrola	CytB	37
155	Tangara vassorii	ND2	28
156	Tersina viridis	CytB	37
157	Tityra semifasciata	CytB	37
158	Toxostoma curvirostre	ND2	118
159	Toxostoma redivivum	CytB	119
160	Troglodytes aedon	ND2	50
1.61	Troglodytes hiemalis		100
161	Troglodytes pacificus	ND2	120
162	Trogon rufus	CytB	37
163	Vireo atricapilla	ND2	121
164	Vireo gilvus	ND2	50
165	Vireo huttoni	ND2	50
	Vireo solitarius		
166	Vireo plumbeous	ND2	50
	Vireo cassinii		
167	Xenopipo atronitens	ND2	122
168	Xenops minutus	CytB	37
1.00	Xiphorhynchus elegans		100
169	Xiphorhynchus spixii	CytB	123
170	Xiphorhynchus fuscus	ND2	124

Species	AOS Species	Locus	References
171	Xiphorhynchus ocellatus	ND2	125
	Xiphorhynchus pardalotus	ND2	123
172	Xiphorhynchus triangularis	ND2	28
173	Zonotrichia capensis	CR	126

226

227 SI References

- 228
- Reddy S (2014) What's missing from avian global diversification analyses? *Mol. Phylo. Evol.* 77:159-165.
- Smith BT, Klicka J (2010) The profound influence of the Late Pliocene Panamanian uplift
 on the exchange, diversification, and distribution of New World birds. *Ecography* 33:333 342.
- Weir JT, Schluter D (2008) Calibrating the avian molecular clock. *Molecular Ecology* 17:2321-2328.
- 4. Ho SYW, et al. (2011) Time-dependent rates of molecular evolution. *Mol. Ecol.* 20:30873101.
- Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular
 Evolutionary Genetics Analysis Version 6.0. *Mol. Biol. Evol.* 30:2725-2729.
- 6. Rambaut A, Drummond AJ (2007) Tracer v.1.5. http://tree.bio.ed.ac.uk/software/tracer.
- Rambaut A, Drummond A (2008) TreeAnnotator v1.4.8.
 http://beast.bio.ed.ac.uk/TreeAnnotator.
- 8. McKitrick MC, Zink RM (1988) Species concepts in ornithology. *Condor* 90:1-14.
- 9. Gill FB (2014) Species taxonomy of birds: Which null hypothesis? Auk 131:150-161.
- Sukumaran J, Knowles LL (2017) Multispecies coalescent delimits structure, not species.
 Proc. Nat. Acad. Sci. 114:1607-1612.
- 247 11. Orme D, et al. (2013) caper: Comparative analyses of phylogenetics and evolution in R. R
 248 package version 0.5.2. http://CRAN.R-project.org/package=caper.
- 249 12. Birdlife International (2014) IUCN Red List for Birds. Downloaded from 250 http://www.birdlife.org.
- Sullivan BL, et al. (2009) eBird: A citizen-based bird observation network in the
 biological sciences. *Biol. Cons.* 142:2282-2292.
- 14. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. (2005) Very high resolution
 interpolated climate surfaces for global land areas. *Int. J. Climatol.* 25:1965-1978.
- 15. Kipp, FA (1959) Der Handflügel-Index als flugbiologisches Maβ. Vogelwarte 20:77-86.
- Claramunt S, Derryberry EP, Remsen JV, Brumfield RT (2012) High dispersal ability
 inhibits speciation in a continental radiation of passerine birds. *Proc. R. Soc. B* 279:1567 1574.
- Dunn PO, Armenta JK, Whittingham LA (2015) Natural and sexual selection act on
 different axes of variation in avian plumage color. *Sci. Adv.* 1:e1400155.
- 26118.Zink RM (2004) The role of subspecies in obscuring avian biological diversity and262misleading conservation policy. *Proc. R. Soc. B* 271:561-564.
- 19. Clements JF, et al. (2016) The eBird/Clements checklist of birds of the world v2016.
- 264 Downloaded from http://www.birds.cornell.edu/clementscheckist/download/

- 265 20. Chavez JA, Pollinger JP, Smith TB, LeBuhn G (2007) The role of geography and ecology
 266 in shaping the phylogeography of the Speckled Hummingbird (*Adelomyia melanogenys*)
 267 in Ecuador. *Mol. Phylo. Evol.* 43:795-807.
- 268 21. Chavez JA, Pollinger JP, Smith TB, LeBuhn G (2007) The role of geography and ecology
 269 in shaping the phylogeography of the Speckled Hummingbird (*Adelomyia melanogenys*)
 270 in Ecuador. *Mol. Phylo. Evol.* 43:795-807.
- 271 22. Chavez JA, Weir JT, Smith TB (2011) Diversification in *Adelomyia* hummingbirds
 272 follows Andean uplift. *Mol. Ecol.* 20: 4564-4576.
- 273 23. Barker FK, Benesh MK, Vandergon AJ, Lanyon SM (2012) Contrasting evolutionary
 274 dynamics and information content of the avian mitochondrial control region and ND2
 275 gene. *PLoS One* 7:e46403.
- 276 24. Lelevier MJ (2011) Phylogeography of three widespread Neotropical avian taxa: Rufous 277 tailed Hummingbird, White-breasted Wood-Wren, and Anthracothorax mangos. M.S.
 278 Thesis. University of Alaska.
- Wenner TJ, Russello MA, Wright TF (2012) Cryptic species in a Neotropical parrot:
 Genetic variation within the *Amazona farinosa* complex and its conservation implications.
 Cons. Genet. 13:1427-1432.
- 282 26. Eberhard JR, Bermingham E (2004) Phylogeny and biogeography of the *Amazona* 283 ochrocephala (Aves: Psittacidae) complex. *Auk* 121:318-332.
- 284 27. Ribas CC, Tavares ES, Yoshihara C, Miyaki CY (2007) Phylogeny and biogeography of
 285 Yellow-headed and Blue-fronted parrots (*Amazona ochrocephala* and *Amazona aestiva*)
 286 with special reference to the South American taxa. *Ibis* 149:564-574.
- 287 28. Cuervo AM (2013) Evolutionary assembly of the Neotropical montane avifauna. Ph.D.
 288 Dissertation. Louisiana State University.
- 289
 29. McCracken KG, Johnson WP, Sheldon FH (2001) Molecular population genetics,
 290 phylogeography, and conservation biology of the Mottled Duck (*Anas fulvigula*). Cons.
 291 Genet. 2:87-102.
- Peters JL, Omland KE (2007) Population structure and mitochondrial polyphyly in North
 American Gadwalls (*Anas strepera*). Auk 124:444-462.
- McCormack JE, Heled J, Delaney KS, Peterson AT, Knowles LL (2011) Calibrating
 divergence times on species trees versus gene trees: Implications for speciation history of
 Aphelocoma jays. *Evolution* 65:184-202.
- McCormack JE, Peterson AT, Bonaccorso E, Smith TB (2008) Speciation in the highlands
 of Mexico: Genetic and phenotypic divergence in the Mexican jay (*Aphelocoma ultramarina*). *Mol. Ecol.* 17:2505-2521.
- 300 33. Ribas CC, Miyaki CY (2004) Molecular systematics in *Aratinga* parakeets: Species limits
 and historical biogeography in the 'solstitialis' group and the systematic position of
 302 Nandayus nenday. Mol. Phylo. Evol. 30:663-675.
- 303 34. Navarro-Sigüenza AG, Peterson AT, Nyari A, García-Deras GM, García-Moreno J (2008)
 304 Phylogeography of the *Buarremon* brush-finch complex (Aves, Emberizidae) in
 305 Mesoamerica. *Mol. Phylo. Evol.* 47:21-35.
- 306 35. Cadena CD, Cuervo AM (2010) Molecules, ecology, morphology, and songs in concert:
 307 how many species is *Arremon torquatus* (Aves: Emberizidae)? *Biol. J. Linn. Soc.* 99:152 308 176.

309 36. Cicero C, Koo MS (2012) The role of niche divergence and phenotypic adaptation in 310 promoting lineage diversification in the Sage Sparrow (Artemisiospiza belli, Aves: Emberizidae). Biol. J. Linn. Soc. 107:332-354. 311 312 37. Smith BT, et al. (2014) The drivers of tropical speciation. *Nature* 515:406-409. Puebla-Olivares F, et al. (2008) Speciation in the Emerald Toucanet (Aulacorhynchus 38. 313 prasinus) complex. Auk 125:39-50. 314 39. Barber BR, Klicka J (2010) Two pulses of diversification across the Isthmus of 315 Tehuantepec in a montane Mexican bird fauna. Proc. R. Soc. B 282:2675-2681. 316 Vilaça ST, Santos FR (2010) Biogeographic history of the species complex Basileuterus 40. 317 culicivorus (Aves, Parulidae) in the Neotropics. Mol. Phylo. Evol. 57:585-597. 318 41. Gutiérrez-Pinto N, et al. (2012) Non-monophyly and deep genetic differentiation across 319 low-elevation barriers in a Neotropical montane bird (Basileuterus tristriatus; Aves: 320 Parulidae). Mol. Phylo. Evol. 64:156-165. 321 42. Pruett CL, Winker K (2005) Biological impacts of climatic change on a Beringian 322 endemic: Cryptic refugia in the establishment and differentiation of the Rock Sandpiper 323 (Calidris ptilocnemis). Climatic Change 68:219-240. 324 Zink RM, Kessen AE, Line TV, Blackwell-Rago RC (2001) Comparative phylogeography 325 43. of some aridland bird species. Condor 103:1-10. 326 Vásquez-Miranda H, Navarro-Sigüenza AG, Omland KE (2009) Phylogeography of the 44. 327 Rufous-naped Wren (Campylorhynchus rufinucha): Speciation and hybridization in 328 Mesoamerica. Auk 126:765-778. 329 45. González MA, Eberhard JR, Lovette IJ, Olson SL, Bermingham E (2003) Mitochondrial 330 DNA phylogeography of the Bay Wren (Troglodytidae: *Thryothorus nigricapillus*) 331 complex. Condor 105:228-238. 332 Seeholzer GF, Winger BM, Harvey MG, Weckstein JD (2011) A new species of barbet 333 46. (Capitonidae: Capito) from the Cerros del Sira, Ucayali, Peru. Auk 129:551-559. 334 Kimura M, et al. (2002) Phylogeographical approaches to assessing demographic 47. 335 connectivity between breeding and overwintering regions in a Nearctic-Neotropical 336 warbler (Wilsonia pusilla). Mol. Ecol. 11:1605-1616. 337 48. Barrera-Guzmán AO, Milá B, Sánchez-González LA, Navarro-Sigüenza AG (2012) 338 Speciation in an avian complex endemic to the mountains of Middle America (*Ergaticus*, 339 Aves: Parulidae). Mol. Phylo. Evol. 62:907-920. 340 49. Smith BT, et al. (2011) The role of historical and contemporary processes on 341 phylogeographic structure and genetic diversity in the Northern Cardinal, Cardinalis 342 cardinalis. BMC Evol. Biol. 11:136. 343 Smith BT, Seeholzer GF, Harvey MG, Cuervo AM, Brumfield RT (In press) A latitudinal 50. 344 intraspecific diversity gradient in birds. PLoS Biol. (doi Pending). 345 51. Manthey JD, Klicka J, Spellman GM (2011) Cryptic diversity in a widespread North 346 American songbird: Phylogeography of the Brown Creeper (Certhia americana). Mol. 347 Phylo. Evol. 58:502-512. 348 Burns KJ, Barhoum DN (2006) Population-level history of the Wrentit (Chamaea 52. 349 fasciata): Implications for comparative phylogeography in the California Floristic 350 Province. Mol. Phylo. Evol. 38:117-129. 351 Oyler-McCance SJ, St. John J, Knopf FL, Quinn TW (2005) Population genetic analysis 53. 352 353 of Mountain Plover using mitochondrial DNA sequence data. Condor 107:353-362.

354 54. Funk WC, Mullins TD, Haig SM (2007) Conservation genetics of Snowy Plovers (Charadrius alexandrinus) in the Western Hemisphere: Population genetic structure and 355 delineation of a new subspecies. Cons. Genet. 8:1287-1309. 356 55. García-Moreno J, Navarro-Sigüenza AG, Peterson AT, Sánchez-González LA (2004) 357 Genetic variation coincides with geographic structure in the Common Bush-Tanager 358 (Chlorospingus ophthalmicus) complex from Mexico. Mol. Phylo. Evol. 33:186-196. 359 56. Weir JT, Bermingham E, Miller MJ, Klicka J, González MA (2008) Phylogeography of a 360 morphologically diverse Neotropical montane species, the Common Bush-Tanager 361 (Chlorospingus ophthalmicus). Mol. Phylo. Evol. 47:650-664. 362 57. Bonaccorso E, Navarro-Sigüenza AG, Sánchez-González LA, Peterson AT, García-363 Moreno J (2008) Genetic differentiation of the Chlorospingus ophthalmicus complex in 364 Mexico and Central America. J. Avian. Biol. 39:311-321. 365 Cadena CD, Gutiérrez-Pinto N, Dávila N, Chesser RT (2011) No population genetic 58. 366 structure in a widespread aquatic songbird from the Neotropics. Mol. Phylo. Evol. 58:540-367 545. 368 59. Chesser RT (2004) Systematics, evolution, and biogeography of the South American 369 ovenbird genus Cinclodes. Auk 121:752-766. 370 Sanín S, et al. (2009) Paraphyly of Cinclodes fuscus (Aves: Passeriformes: Furnariidae): 60. 371 Implications for taxonomy and biogeography. Mol. Phylo. Evol. 53:547-555. 372 Omland KE, Tarr CL, Boarman WI, Marzluff JM, Fleischer RC (2000) Cryptic genetic 373 61. 374 variation and paraphyly in ravens. Proc. R. Soc. B 1461:2475-2482. 62. Bryson RW, et al. (2014) Diversification across the New World within the "blue" 375 Cardinalids (Aves: Cardinalidae). J. Biogeogr. 41:587-599. 376 Smith BT, Amei A, Klicka J (2012) Evaluating the role of contracting and expanding 377 63. rainforest in initiating cycles of speciation across the Isthmus of Panama, Proc. R. Soc. B 378 379 279:3520-3526. Barrowclough GF, Groth JG, Mertz LA, Gutiérrez RJ (2004) Phylogeographic structure, 64. 380 gene flow, and species status in Blue Grouse (Dendragapus obscurus). Mol. Ecol. 7:1911-381 1922. 382 Cabanne GS, D'Horta FM, Meyer D, Silva J, Miyaki CY (2011) Evolution of 65. 383 Dendrocolaptes platyrostris (Aves: Furnariidae) between the South American open 384 vegetation corridor and the Atlantic Forest. Biol. J. Linn. Soc. 103:801-820. 385 Isler ML, Cuervo AM, Bravo GA, Brumfield RT (2012) An integrative approach to 386 66. species-level systematics reveals the depth of diversification in an Andean Thamnophilid, 387 the Long-tailed Antbird. Auk 114:571-583. 388 Bates JM, Hackett SJ, Goerck JM (1999) High levels of mitochondrial DNA 67. 389 differentiation in two lineages of antbirds (Drymophila and Hypocnemis). Auk 116:1093-390 1106. 391 Paxton EH (2000) Molecular genetic structuring and demographic history of the Willow 392 68. Flycatcher (Empidonax traillii). M.S. Thesis. Northern Arizona University. 393 Smith BT, Ribas CC, Whitney BM, Hernández-Baños BE, Klicka J (2013) Identifying 69. 394 biases at different spatial and temporal scales of diversification: A case study in the 395 Neotropical parrotlet genus Forpus. Mol. Ecol. 22:483-494. 396 70. Dor R, Safran RJ, Sheldon FH, Winkler DW, Lovette IJ (2010) Phylogeny of the genus 397 398 Hirundo and the Barn Swallow subspecies complex. Mol. Phylo. Evol. 56:409-418.

399	71.	Fernandes AM, Wink M, Sardelli CH, Aleixo A (2014) Multiple speciation across the
400		Andes and throughout Amazonia: The case of the Spot-backed Antbird species complex
401		(Hylophylas naevius/Hylophylax naevioides). J. Biogeogr. 41:1094-1104.
402	72.	Tobias JA, Bates JM, Hackett SJ, Seddon N (2008) Comment on "The latitudinal gradient
403		in recent speciation and extinction rates of birds and mammals". Science 319:901c.
404	73.	Naka LN, Bechtoldt CL, Henriques LMP, Brumfield RT (2012) The role of physical
405		barriers in the location of avian suture zones in the Guiana Shield, northern Amazonia.
406		Am. Nat. 179:E115-E132.
407	74	Kondo B Baker JM Omland KE (2004) Recent speciation between the Baltimore Oriole
408		and the Black-backed Oriole. <i>Condor</i> 106:674-680.
409	75.	Cortes-Rodríguez N. Hernández-Baños BE, Navarro-Sigüenza AG, Omland KE (2008)
410		Geographic variation and genetic structure in the Streak-backed Oriole: Low
411		mitochondrial DNA differentiation reveals recent divergence <i>Condor</i> 110.729-739
412	76	Cortes-Rodríguez N Hernández-Baños BE Navarro-Sigüenza AG Peterson AT García-
413	,	Moreno J (2008) Phylogeography and population genetics of the Amethyst-throated
414		Hummingbird (<i>Lampornis amethystinus</i>). <i>Mol. Phylo. Evol.</i> 48:1-11.
415	77	Arbeláez-Cortés E Nyári ÁS Navarro-Sigüenza AG (2010) The differential effect of
416		lowlands on the phylogeographic pattern of a Mesoamerican montane species
417		(Lenidocolantes affinis Aves: Furnariidae) Mol. Phylo. Evol. 57:658-668
418	78	Honey-Escandón M Hernández-Baños BE Navarro-Sigüenza AG Benítez-Díaz H
419		Peterson AT (2008) Phylogeographic patterns of differentiation in the Acorn Woodpecker.
420		Wilson J. Ornith. 120:478-493.
421	79.	Miller MJ. et al. (2008) Out of Amazonia again and again: Episodic crossing of the Andes
422		promotes diversification in a lowland forest flycatcher. <i>Proc. R. Soc. B</i> 275:1133-1142.
423	80.	Arbeláez-Cortés E, Milá B, Navarro-Sigüenza AG (2014) Multilocus analysis of
424		intraspecific differentiation in three endemic bird species from northern Neotropical dry
425		forest. Mol. Phylo. Evol. 70:362-377.
426	81.	Pérez-Emán JL (2005) Molecular phylogenetics and biogeography of the Neotropical
427		redstarts (Myioborus; Aves, Parulinae). Mol. Phylo. Evol. 37:511-528.
428	82.	Pérez-Emán JL, Mumme RL, Jablonski PG (2010) Phylogeography and adaptive plumage
429		evolution in Central American subspecies of the Slate-throated Redstart (Myioborus
430		miniatus). Ornith. Monogr. 1:90-102.
431	83.	Lovette IJ (2004) Molecular phylogeny and plumage signal evolution in a trans Andean
432		and circum Amazonian avian species complex. Mol. Phylo. Evol. 32:512-523.
433	84.	Batalha-Filho H, Cabanne GS, Miyaki CY (2012) Phylogeography of an Atlantic forest
434		passerine reveals demographic stability through the last glacial maximum. Mol. Phylo.
435		<i>Evol.</i> 65:892-902.
436	85.	Miller MJ, Bermingham E, Klicka J, Escalante P, Winker K (2010) Neotropical birds
437		show a humped distribution of within-population genetic diversity along a latitudinal
438		transect. Ecology Letters 13:576-586.
439	86.	Fernandes AM, Wink M, Aleixo A (2012) Phylogeography of the Chestnut-tailed Antbird
440		(Myrmeciza hemimelaena) clarifies the role of rivers in Amazonian biogeography. J.
441		Biogeogr. 39:1524-1535.
442	87.	Raposo do Amaral F, Albers PK, Edwards SV, Miyaki CY (2013) Multilocus tests of
443		Pleistocene refugia and ancient divergence in a pair of Atlantic Forest antbirds
444		(<i>Myrmeciza</i>). <i>Mol. Ecol.</i> 22:3996-4013.

88. Dohms KM, Burg TM (2013) Molecular markers reveal limited population genetic 445 structure in a North American Corvid, Clark's Nutcracker (Nucifraga columbiana). PLoS 446 One 8:e79621. 447 89. Zink RM, et al. (2005) Mitochondrial DNA variation, species limits, and rapid evolution 448 of plumage coloration and size in the Savannah Sparrow. Condor 107:21-28. 449 90. Herr CA, Sykes Jr. PW, Klicka J (2011) Phylogeography of a vanishing North American 450 songbird: the Painted Bunting (Passerina ciris). Conserv. Genet. 12:1395-1410. 451 91. van Els P, Cicero C, Klicka J (2012) High latitudes and high genetic diversity: 452 Phylogeography of a widespread boreal bird, the Gray Jay (Perisoreus canadensis). Mol. 453 Phylo. Evol. 63:456-465. 454 92. Kirchman JJ, Whittingham LA, Sheldon FH (2000) Relationships among Cave Swallow 455 populations (Petrochelidon fulva) determined by comparisons of microsatellite and 456 cvtochrome b data. Mol. Phylo. Evol. 14:107-121. 457 93. van Els P, Spellman GM, Smith BT, Klicka J (2014) Extensive gene flow characterizes 458 the phylogeography of a North American migrant bird: Black-headed Grosbeak 459 (Pheucticus melanocephalus). Mol. Phylo. Evol. 78:148-159. 460 94. Campagna L, et al. (2011) A molecular phylogeny of the Sierra-Finches (Phrygilus, 461 Passeriformes): Extreme polyphyly in a group of Andean specialists. Mol. Phylo. Evol. 462 61:521-533. 463 95. Pulgarín-R. PC, Burg TM (2012) Genetic signals of demographic expansion in Downy 464 Woodpecker (Picoides pubescens) after the last North American glacial maximum. PLoS 465 One 7:e40412. 466 96. Klicka J, Spellman GM, Winker K, Chua V, Smith BT (2011) A phylogeographic and 467 population genetic analysis of a widespread, sedentary North American bird: The Hairy 468 Woodpecker (Picoides villosus). Auk 128:346-362. 469 Drovetski SV, Zink RM, Ericson PGP, Fadeev IV (2010) A multilocus study of Pine 470 97. Grosbeak phylogeography supports the pattern of greater intercontinental divergence in 471 Holarctic boreal forest birds than in birds inhabiting other high-latitude habitats. J. 472 Biogeogr. 37:696-706. 473 98. Pravosudov VV, et al. (2012) Population genetic structure and its implications for 474 adaptive variation in memory and the hippocampus on a continental scale in food-caching 475 Black-capped Chickadees. Mol. Ecol. 21:4486-4497. 476 99. Spellman GM, Riddle B, Klicka J (2007) Phylogeography of the Mountain Chickadee 477 (*Poecile gambeli*): Diversification, introgression, and expansion in response to Quaternary 478 climate change. Mol. Ecol. 16:1055-1068. 479 Zink R, Groth JG, Vásquez-Miranda H, Barrowclough GF (2013) Phylogeography of the 100. 480 California Gnatcatcher (Polioptila californica) using multilocus DNA sequences and 481 ecological niche modeling: Implications for conservation. Auk 130:449-458. 482 Valderrama E, Pérez-Emán JL, Brumfield RT, Cuervo AM, Cadena CD (2014) The 483 101. influence of the complex topography and dynamic history of the montane Neotropics on 484 the evolutionary differentiation of a cloud forest bird (Premnoplex brunnescens, 485 Furnariidae). J. Biogeogr. 41:1533-1546. 486 Maldonado-Coelho M, Blake JG, Silveira LF, Batalha-Filho H, Ricklefs RE (2013) 487 102. Rivers, refuges, and population divergence of fire-eye antbirds (*Pyriglena*) in the Amazon 488 489 Basin. J. Evol. Biol. 26:1090-1107.

490	103.	DaCosta JM, Wehtje W, Klicka J (2008) Historic genetic structuring and paraphyly within
491		the Great-tailed Grackle. Condor 110:170-177.
492	104.	Maley JM, Brumfield RT (2013) Mitochondrial and next-generation sequence data used to
493		infer phylogenetic relationships and species limits in the Clapper/King rail complex.
494		Condor 115:316-329.
495	105.	Chaves JA, Hidalgo JR, Klicka J (2013) Biogeography and evolutionary history of the
496		Neotropical genus Saltator (Aves: Thraupini). J. Biogeogr. 40:2180-2190.
497	106.	Cabanne GS, Sari EHR, Meyer D, Santos FR, Miyaki CY (2013) Matrilineal evidence for
498		demographic range expansion, low diversity, and lack of phylogeographic structure in the
499		Atlantic forest endemic Greenish Schiffornis Schiffornis virescens (Aves: Tityridaae). J.
500		Ornith. 154:371-384.
501	107.	d'Horta FM, Cuervo AM, Ribas CC, Brumfield RT, Miyaki CY (2013) Phylogeny and
502		comparative phylogeography of <i>Sclerurus</i> (Aves: Furnariidae) reveal constant and cryptic
503		diversification in an old radiation of rain forest understory specialists. J. Biogeogr. 40:37-
504		49.
505	108.	Malpica A, Ornelas JF (2014) Postglacial northward expansion and genetic differentiation
506		between migratory and sedentary populations of the Broad-tailed Hummingbird
507		(Selasphorus platycercus). Mol. Ecol. 23:435-452.
508	109.	McKay BD (2009) Evolutionary history suggests rapid differentiation in the Yellow-
509		throated Warbler (Dendroica dominica). J. Avian Biol. 40:181-190.
510	110.	Milot EH, Gibbs HL, Hobson KA (2000) Phylogeography and genetic structure of
511		northern populations of the Yellow Warbler (Dendroica petechia). Mol. Ecol. 9:667-681.
512	111.	Colbeck GJ, Gibbs HL, Marra PP, Hobson KA, Webster MS (2008) Phylogeography of a
513		widespread North American migratory songbird (Setophaga ruticilla). J. Hered. 99:453-
514		463.
515	112.	Ralston J, Kirchman JJ (2012) Continent-scale genetic structure in a boreal forest migrant,
516		the Blackpoll Warbler (Setophaga striata). Auk 129:467-478.
517	113.	Spellman GM, Klicka J (2007) Phylogeography of the White-breasted Nuthatch (Sitta
518		carolinensis): Diversification in North American pine and oak woodlands. Mol. Ecol.
519		16:1729-1740.
520	114.	Milá B, Smith TB, Wayne RK (2006) Postglacial population expansion drives the
521		evolution of long-distance migration in a songbird. Evolution 60:2403-2409.
522	115.	Barrowclough GF, Groth JG, Odom KJ, Lai JE (2011) Phylogeography of Spotted Owl
523		(Strix occidentalis): Species limits, multiple refugia, and range expansion. Auk 28:696-
524		706.
525	116.	Barker FK, Vandergon AJ, Lanyon SM (2008) Assessment of species limits among
526		yellow-breasted meadowlarks (Sturnella spp.) using mitochondrial and sex-linked
527		markers. Auk 4:869-879.
528	117.	Stenzler LM, et al. (2009) Subtle edge-of-range genetic structuring in transcontinentally
529		distributed North American Tree Swallows. Condor 111:470-478.
530	118.	Rojas-Soto OR, Espinosa de los Monteros A, Zink RM (2007) Phylogeography and
531		patterns of differentiation in the Curve-billed Thrasher. Condor 109:456-463.
532	119.	Sgariglia EA, Burns KJ (2003) Phylogeography of the California Thrasher (Toxostoma
533		redivivum) based on nested-clade analysis of mitochondrial-DNA variation. Auk 120:346-
534		361.

- 535 120. Drovetski SV, *et al.* (2004) Complex biogeographic history of a Holarctic passerine. *Proc.* 536 *R. Soc. B* 271:545-551.
- 121. Zink RM, Jones AW, Farquhar CC, Westberg MC, Gonzalez Rojas JI (2010) Comparison
 of molecular markers in the endangered Black-capped Vireo (*Vireo atricapilla*) and their
 interpretation in conservation. *Auk* 127:797-806.
- 122. Capurucho JMG, *et al.* (2013) Combining phylogeography and landscape genetics of
 Xenopipo atronitens (Aves: Pipridae), a white sand campina specialist, to understand
 Pleistocene landscape evolution in Amazonia. *Biol. J. Linn. Soc.* 110:60-76.
- Aleixo A (2004) Historical diversification of a terra-firme forest bird superspecies: A
 phylogeographic perspective on the role of different hypotheses of Amazonian
 diversification. *Evolution* 58:1303-1317.
- 546 124. Cabanne GS, Santos FR, Miyaki CY (2007) Phylogeography of *Xiphorhynchus fuscus*547 (Passeriformes, Dendrocolaptidae): Vicariance and recent demographic expansion in
 548 southern Atlantic forest. *Biol. J. Linn. Soc.* 91:73-84.
- Sousa-Neves T, Aleixo A, Sequeira F (2013) Cryptic patterns of diversification of a
 widespread Amazonian woodcreeper species complex (Aves: Dendrocolaptidae) inferred
 from multilocus phylogenetic analysis: Implications for historical biogeography and
 taxonomy. *Mol. Phylo. Evol.* 68:410-424.
- Lougheed SC, *et al.* (2013) Continental phylogeography of an ecologically and
 morphologically diverse Neotropical songbird, *Zonotrichia capensis. BMC Evol. Biol.*13:58.