Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2015

#### **Supplementary Results**

#### Designed Multi-stranded Heme Binding $\beta$ -Sheet Peptides in Membrane

Areetha D'Souza, Mukesh Mahajan and Surajit Bhattacharjya\*

School of Biological Sciences, Structural Biology and Biochemistry, Nanyang Technological University,

Singapore 637551.

\*Address correspondence to: Surajit Bhattacharjya, School of Biological Sciences, 60 Nanyang Drive, Singapore, 637551, e-mail: <u>surajit@ntu.edu.sg</u>, Fax: 65-6791-3856



**Supplementary Figure 1:**  $\alpha$ H chemical shift deviation from random coil values of peptide-1. The positive deviation of residues I1, F2, W3, H6, F7, V8, V11, M12, H13, Y16, I17 and I18 indicates four stranded  $\beta$ -sheet structure



**Supplementary Figure 2:** (A) Absorption changes of heme (2  $\mu$ M) on titrating peptide-1(0-30  $\mu$ M) in 50 mM sodium phosphate buffer, pH 7.2 containing 2 mM DPC. (B) Absorption spectra of heme alone (black), peptide1-heme oxidized (blue) and peptide1-heme reduced (red). Concentration of peptide and heme was 10  $\mu$ M in 2 mM DPC, 50 mM sodium phosphate buffer, pH 7.2 (C) Jobs plot of peptide-1. The shift in Soret band of heme at 412 nm upon binding to peptide-1 and further shift to 428 nm after reduction by sodium dithionite and low intense peaks at 530 and 560 nm indicated bis-histidine coordination. The job plot shows peptide:heme stoichiometry 2:1



**Supplementary Figure 3:** (A)  $\alpha$ H chemical shift deviation from random coil of peptide-2 (B) Section of two-dimensional <sup>1</sup>H-<sup>1</sup>H NOESY spectra showing NOE connectivity between amide protons. Long range NOEs are underlined and boldfaced. (C) Superimposed twenty low energy structures of peptide-2. (D) A selected structure of peptide-2 showing side chain packing within  $\beta$ -sheets.





**Supplementary Figure 4:** Absorption spectra of heme alone (black), peptide 3-heme oxidized (blue) and peptide 3-heme reduced (red). Concentration of peptide and heme was 10  $\mu$ M in 2 mM DPC, 50 mM sodium phosphate buffer, pH 7.2. Job's plot of peptide-3 (onset). The shift in Soret band of heme at 412 nm upon binding to peptide-3 and further shift to 428 nm after reduction by sodium dithionite and low intense peaks at 530 and 560 nm indicated bis-histidine coordination. The job plot shows peptide:heme stoichiometry 1:1.



**Supplementary Figure 5:** (A)  $\alpha$ H chemical shift deviation of peptide-3 (B) Section of two-dimensional <sup>1</sup>H-<sup>1</sup>H NOESY spectra showing NOE connectivity between amide protons. Long range NOEs are underlined and boldfaced. (C) Superimposed twenty low energy conformers of peptide-3. (D) A selected structure of peptide-3 showing side chain packing within  $\beta$ -sheets.

### Figure S5



**Supplementary Figure 6:** (A) Absorption changes of heme (2  $\mu$ M) on titrating peptide-7 (0-7  $\mu$ M) in 50 mM sodium phosphate buffer, pH 7.2 containing 2 mM DPC. (B) Absorption spectra of heme alone (black), peptide7-heme oxidized (blue) and peptide7-heme reduced (red). Concentration of peptide and heme was 10  $\mu$ M in 2 mM DPC, 50 mM sodium phosphate buffer, pH 7.2 (C) Jobs plot of peptide-7. The shift in Soret band of heme at 412 nm upon binding to peptide-3 and further shift to 428 nm after reduction by sodium dithionite and low intense peaks at 530 and 560 nm indicated bis-histidine coordination. The job plot shows peptide:heme stoichiometry 1:1.



**Supplementary Figure 7:** Secondary chemical shift of  $\alpha$ H peptide 4 to 7.



**Supplementary Figure 8:** Superimposed twenty low energy structures and one selected structure of each peptide showing side chain packing within  $\beta$ -sheets. (A) Peptide-4, (B) Peptide-5 and (C) Peptide-6





**Supplementary Figure 9:** Far-UV CD spectra of peptide-7 alone (black) and heme-bound (red). Concentration of peptide and heme was 100  $\mu$ M in 2 mM DPC, 50 mM sodium phosphate buffer, pH 7.2. CD studies were performed using a 0.01cm path length cuvette with a 1nm bandwidth and a step size of 0.5 nm at 0.5 seconds per data set. Near-UV CD spectra of peptide-7-heme and heme alone (in blue) (onset) were acquired in a 1 cm path length cuvette to monitor the changes in heme environment. 8  $\mu$ M of peptide along with 8  $\mu$ M heme dissolved in 2 mM DPC, sodium phosphate buffer pH 7.2 was used for the experiment.



**Supplementary Figure 10:** The bar diagram showing ratio of intensity of C $\alpha$ H/NH cross-peaks obtained from two-dimensional TOCSY spectra of peptide-7 before addition of 16-DSA and in the presence of 16-DSA (2 mM). Residues experiencing perturbation by paramagnetic 16-DSA showed intensity ratio <1.

Figure S10



**Supplementary Figure 11:** Sections of two-dimensional <sup>1</sup>H-<sup>1</sup>H NOESY spectra of peptide-8 showing NOE connectivity in the  $\alpha$ H-NH region (top left), NH-NH region (bottom left) and aromatic region (right). Long range NOEs are underlined and boldfaced.





**Supplementary Figure 12:** (A) Absorption changes of heme (2  $\mu$ M) on titrating peptide-8 (0-10  $\mu$ M) in 50 mM sodium phosphate buffer, pH 7.2 containing 2 mM DPC. (B) Jobs plot of peptide-8. (C) Absorption spectra of heme alone (black), peptide 8-heme oxidized (blue) and peptide 8-heme reduced (red) Concentration of peptide and heme was 10  $\mu$ M and 2  $\mu$ M respectively in 2 mM DPC, 50 mM sodium phosphate buffer, pH 7.2. The shift in Soret band of heme at 412 nm upon binding to peptide-8 and further shift to 428 nm after reduction by sodium dithionite and low intense peaks at 530 and 560 nm indicated bis-histidine coordination. The job plot shows peptide:heme stoichiometry 1:2.

|                                      | 1            | 2    | 3    | 4    | 5    | 6    | 7    | 8    |
|--------------------------------------|--------------|------|------|------|------|------|------|------|
| Distance constraints:                |              |      |      |      |      |      |      |      |
| Sequential $[ i-j  = 1]$             | 46           | 38   | 49   | 61   | 65   | 62   | 58   | 84   |
| Medium range $[1 <  i-j  < 4]$       | 12           | 6    | 12   | 13   | 19   | 10   | 16   | 26   |
| Long range $[ i-j  \ge 4]$           | 14           | 19   | 20   | 28   | 21   | 25   | 32   | 38   |
| PRE driven distance restraints       |              |      |      |      |      |      | 18   |      |
| Total                                | 156          | 131  | 159  | 200  | 183  | 185  | 206  | 278  |
| Dihedral-angle constraints           | 22           | 22   | 22   | 22   | 22   | 22   | 22   | 36   |
| Deviation from mean structure (Å)    |              |      |      |      |      |      |      |      |
| All backbone atoms                   | 0.30         | 0.37 | 0.20 | 0.45 | 0.35 | 0.44 | 0.14 | 1.32 |
| All heavy atoms                      | 0.57         | 0.65 | 0.42 | 0.84 | 0.81 | 0.93 | 0.50 | 1.49 |
| Ramachandran plot for the mean struc | ture (%resid | ues) |      |      |      |      |      |      |
| Most favoured region                 | 92.3         | 75.0 | 92.3 | 92.3 | 92.3 | 92.3 | 92.3 | 72.6 |
| Additionally allowed region          | 7.7          | 25.0 | 7.7  | 7.7  | 7.7  | 7.7  | 7.7  | 27.3 |
| Generously allowed region            | 0            | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Disallowed region                    | 0            | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

# Supplementary Table 1: Summary of structural statistics of the designed peptides