Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2016

Supporting Information

for

Palladium(II)-Catalyzed Synthesis of Dibenzothiophene Derivatives via the Cleavage of Carbon-Sulfur and Carbon-Hydrogen Bonds

Mamoru Tobisu*,[†], Yoshihiro Masuya, Katsuaki Baba, and Naoto Chatani*

Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan

[†]Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan

 $to bisu @chem.eng.osaka-u.ac.jp;\ chatani @chem.eng.osaka-u.ac.jp \\$

Contents

Ι	General Information	S2
Π	Materials	S2
III	Synthesis of Starting Materials	S2
IV	Typical Procedures for Palladium-Catalyzed Synthesis of Dibenzothiophenes via C-H/C-S Coupling	S12
V	Spectroscopic Data of Products Listed in Figure 1	S12
VI	Procedures for Experiments Shown in Scheme 2	S21
VII	Experimental Procedures for Scheme 3	S22
VIII	Mechanistic Studies	S29
IX	Copies of ¹ H and ¹³ C NMR Spectra	S37

I. General Information

¹H NMR and ¹³C NMR spectra were recorded on a JEOL JMTC-400/54/ss spectrometer or VARIAN UNITY INOVA-600 spectrometer in CDCl₃ with tetramethylsilane as an internal reference standard. The NMR data have been reported as follows: chemical shift (δ) in ppm, multiplicity (s = singlet, d = doublet, t = triplet, quart = quartet, quint = quintet, m = multiplet and br = broad peak), coupling constant (Hz), and integration. Infrared spectra (IR) were obtained on a JASCO TF/IR-4000; absorptions have been reported in reciprocal centimeters with the following relative intensities: s (strong), m (medium), or w (weak). Mass spectra were recorded on a Shimadzu GCMS-QP 2010 instrument with an ionization voltage of 70 eV. High resolution mass spectra (HRMS) were obtained on a JEOL JMS-700 spectrometer. Analytical gas chromatography (GC) was carried out on Shimadzu GC-2014 gas chromatograph, equipped with a flame ionization detector. Melting points were determined using a Yamato melting point apparatus. Column chromatography was performed with SiO₂ [Merck SilicaGel 60 (230-400 mesh)]. Gel permeation chromatography (GPC) was performed on an LC-9210NEXT HPLC or LC9225NEXT HPLC system.

II. Materials

Unless otherwise noted, all of the reagents used in this study were obtained from commercial suppliers and used as received without further purification. $Pd(OAc)_2$ (CAS: 3375-31-3) was purchased from Wako Pure Chemical Industries, Ltd. 2,6-Dimethylbenzoic acid (3, CAS: 632-46-2) was purchased from Tokyo Chemical Industry Co., Ltd. Toluene was dried on a glass contour solvent-dispensing system (Nikko Hansen & Co., Ltd.). Compounds $1a^1$, 1b,² SM-7,³ and SM-13⁴ were synthesized according to the reported procedures.

III. Synthesis of the Starting Materials

¹ Guo, S.-R.; Yuan, Y.-Q. Journal of Chemical Research. 2009, 12, 745.

² Park, N.; Park, K.; Jang, M.; Lee, S. J. Org. Chem. 2011, 76, 4371.

³ Liu, Y.; Wang, H.; Cao, X.; Fang, Z.; Wan, J.-P. Synthesis **2013**, 45, 2977.

⁴ Asao, N.; Nogami, T.; Lee. S.; Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 10921.

General procedure for the Suzuki-Miyaura coupling of (2-bromophenyl)phenyl sulfide with a series of arylboronic acids.

 $Pd(PPh_3)_4$ (289 mg, 0.25 mmol), phenylboronic acid (914 mg, 7.5 mmol) and a saturated aqueous solution of Na₂CO₃ (12 mL) were added to a stirred solution of (2-bromophenyl)phenyl sulfideate⁵ (1.32 g, 5.0 mmol) in toluene (24 mL), and the resulting mixture was refluxed overnight. The reaction mixture was then cooled to rt and partitioned between EtOAc and brine. The organic layer was collected, dried over Na₂SO₄, filtered and concentrated in vacuo to give a residue, which was purified by flash column chromatography to give [1,1'-biphenyl]-2-yl(phenyl)sulfane as a colorless oil (1.24 g, 95%).

Methyl 2'-(Phenylthio)-[1,1'-biphenyl]-4-carboxylate (SM-4).

General procedure was followed on a 4 mmol scale except that

4-(methoxycarbonyl)phenylboronic acid was used instead of phenylboronic acid and

1,2-dimethoxyethane was used instead of toluene.

White solid (416 mg, 32%). Mp = 80 °C. Rf 0.40 (hexane/EtOAc = 10/1).

¹H NMR (CDCl₃, 399.78 MHz) δ: 3.93 (s, 3H), 7.23-7.31 (m, 9H), 7.47 (d, *J* = 8.7 Hz, 2H),

8.05 (d, J = 8.2 Hz, 2H).

¹³C NMR (CDCl₃, 100.53 MHz) δ: 52.3, 127.2, 127.3, 128.7, 129.2, 129.3, 129.4, 129.6, 130.5,

131.7, 131.9, 134.8, 135.5, 142.3, 145.4, 167.1.

IR(ATR): 3056 w, 2949 w, 1718 s, 1462 w, 1435 m, 1275 s, 1180 w. 1102 m, 1071 w, 1005 w. 856 w, 827 w, 748 s, 705 m, 689 m.

MS, m/z (relative intensity, %): 320 (M^+ , 100), 289 (M^+ -31, 14), 152 (M^+ -136, 17).

HRMS (EI): Calcd for $C_{20}H_{16}O_2S$ 320.0871, Found 320.0875.

2-Phenylthio-4'-acetylbiphenyl (SM-5).

⁵ Wang, H.; Jiang, L.; Chen, T.; Li, Y. Eur. J. Org. Chem. 2010, 2324.

General procedure was followed on a 4 mmol scale except that 4-acetylphenylboronic acid was used instead of phenylboronic acid and DMAc used instead of toluene.

White solid (991 mg, 81%). Mp = 92 °C. Rf 0.30 (hexane/EtOAc = 20/1).

¹H NMR (CDCl₃, 399.78 MHz) δ : 2.63 (s, 3H), 7.22-7.31 (m, 9H), 7.50 (d, J = 8.0 Hz, 2H),

7.98 (d, J = 8.4 Hz, 2H).

¹³C NMR (CDCl₃, 100.53 MHz) δ: 26.8, 127.2, 127.4, 128.2, 128.8, 129.3, 129.8, 130.5, 131.8, 131.9, 134.8, 135.4, 136.1, 142.2, 145.6, 198.0.

IR(ATR): 3055 w, 1681 s, 1605 m, 1581 w, 1462 m, 1436 m, 1400 m, 1357 m, 1263 s, 1038 w, 1023 w, 956 w, 837 m, 752 s, 691 s.

MS, m/z (relative intensity, %): 304 (M⁺, 100), 289 (M⁺-15, 52), 184 (M⁺-120, 9).

HRMS (EI): Calcd for C₂₀H₁₆OS 304.0922, Found 304.0923.

2-Phenylthio-4'-nitrobiphenyl (SM-6).

General procedure was followed on a 3 mmol scale except that 4-nitrophenylboronic acid,

K₂CO₃ and 1,2-dimethoxyethane were used instead of phenylboronic acid, Na₂CO₃ and toluene, respectively.

Yellow solid (783 mg, 85%). Mp = 90 °C. Rf 0.29 (hexane/EtOAc = 20/1).

¹H NMR (CDCl₃, 399.78 MHz) δ: 7.16-7.36 (m, 9H), 7.53 (d, *J* = 8.7 Hz, 2H), 8.19-8.21 (m, 2H).

¹³C NMR (CDCl₃, 150.9 MHz) δ: 123.1, 127.3, 127.5, 129.2, 129.3, 130.4 (two overlapping peaks), 131.3, 132.4, 134.5, 135.1, 141.1, 147.1, 147.3.

IR(ATR): 3058 w, 1598 m, 1514 s, 1476 w, 1461 m, 1437 w, 1400 w, 1345 s, 1178 w, 1161 w, 1107 w, 1024 w, 1005 w, 853 s, 744 s, 691 s.

MS, m/z (relative intensity, %): 307 (M⁺, 100), 260 (M⁺-47, 14), 184 (M⁺-123, 11).

HRMS (EI): Calcd for C₁₈H₁₃NO₂S 307.0667, Found 307.0668.

All of other substrates bearing an electron-withdrawing group reacted smoothly to give the desired products in high yields. It was therefore considered that the low yield obtained in the NO₂-containing substrate could be attributed to the poisoning of the catalyst by the NO₂ group, most likely through the coordination of this group to the Pd(II) species. In this way, the NO₂ group would inhibit the binding of the substrate to the catalyst, thereby inhibiting the reaction, which would explain the low yield. To test this hypothesis, we investigated the impact of adding a single equivalent of nitrobenzene to the reaction of another substrate. The result of this reaction showed that there was a 3-fold decrease in the yield of the cyclized product (please see below). These results therefore clearly show that the presence of a nitro group in the reaction was detrimental to the catalytic process.

2-Phenylthio-4'-hydroxybiphenyl (SM-8).

General procedure was followed on a 4 mmol scale except that 4-hydroxyphenylboronic acid was used instead of phenylboronic acid and 1,4-dioxane was used instead of toluene.

White solid (735 mg, 66%). Mp = 83 °C. Rf 0.23 (hexane/EtOAc = 5/2).

¹H NMR (CDCl₃, 399.78 MHz) δ: 4.83 (s, 1H), 6.84-6.87 (m, 2H), 7.19-7.31 (m, 11H).

¹³C NMR (CDCl₃, 100.53 MHz) δ: 115.0, 126.9, 127.3, 127.9, 129.3, 130.7, 130.8, 131.2,

132.0, 133.3, 135.2, 135.6, 142.6, 155.1.

IR(ATR): 3379 w, 3053 w, 1612 m, 1590 w, 1517 m, 1442 m, 1258 m, 1205 m, 1173 m, 1125 w, 1099 w, 1038 w, 1021 w, 828 s, 752 s, 689 s.

MS, m/z (relative intensity, %): 278 (M⁺, 100).

HRMS (EI): Calcd for C₁₈H₁₄OS 278.0765, Found 278.0766.

2-Phenylthio-4'-tert-butylbiphenyl (SM-9).

General procedure was followed on a 2 mmol scale except that 4-*tert*-butylphenylboronic acid was used instead of phenylboronic acid.

Colorless oil (548 mg, 86%). Rf 0.17 (hexane/EtOAc = 100/1).

¹H NMR (CDCl₃, 399.78 MHz) δ: 1.36 (s, 9H), 7.19-7.43 (m, 13H).

¹³C NMR (CDCl₃, 100.53 MHz) δ: 31.5, 34.6, 125.0, 126.7, 127.2, 127.9, 129.1, 129.2, 130.7, 131.0, 132.1, 135.3, 135.7, 137.7, 142.8, 150.2.

IR(ATR): 3055 w, 2961 m, 2902 w, 2867 w, 1582 w, 1438 w, 1396 w, 1363 w, 1268 w, 1070 w, 1024 w, 834 w, 739 w, 690 w.

MS, m/z (relative intensity, %): 318 (M⁺, 100), 303 (M⁺-15, 43), 185 (M⁺-133, 20). HRMS (EI): Calcd for C₂₂H₂₂S 318.1442, Found 318.1443.

2-Phenylthio-4'-fluorobiphenyl (SM-10).

General procedure was followed on a 4 mmol scale except that 4-fluorophenylboronic acid was used instead of phenylboronic acid and K₃PO₄ was used instead of Na₂CO₃.

Colorless oil (821 mg, 75%). Rf 0.29 (hexane/EtOAc = 20/1).

¹H NMR (CDCl₃, 399.78 MHz) δ: 7.04-7.08 (m, 2H), 7.22-7.28 (m, 9H), 7.33-7.37 (m, 2H).

¹³C NMR (CDCl₃, 100.53 MHz) δ: 115.3, 115.5, 127.6 (d, *J* = 20.1 Hz), 128.7, 129.7, 131.1,

131.5 (d, *J* = 7.6 Hz), 132.0, 132.2, 135.5, 136.0, 137.1 (d, *J* = 2.8 Hz), 142.6, 162.8 (d, *J* = 247.3 Hz).

IR(ATR): 3056 w, 1605 w, 1582 w, 1511 s, 1461 m, 1438 w, 1222 s, 1158 m, 1092 w, 1070 w, 1023 w, 834 s, 752 s, 736 s, 690 s.

MS, m/z (relative intensity, %): 280 (M⁺, 100), 202 (M⁺-78, 17), 170 (M⁺-110, 14). HRMS (EI): Calcd for C₁₈H₁₃FS 280.0722, Found 280.0720.

2-Phenylthio-4'-chlorobiphenyl (SM-11).

General procedure was followed on a 4 mmol scale except that 4-chlorophenylboronic acid, K₂CO₃ and 1,4-dioxane were used instead of phenylboronic acid, Na₂CO₃, and toluene,

respectively.

White solid (553 mg, 47%). Mp = 63 °C. Rf 0.31 (hexane).

¹H NMR (CDCl₃, 399.78 MHz) δ: 7.20-7.36 (m, 13H).

¹³C NMR (CDCl₃, 100.53 MHz) δ: 127.1, 127.3, 128.2, 128.4, 129.2, 130.5, 130.8, 131.6,

131.7, 133.5, 134.9, 135.4, 139.0, 141.9.

IR(ATR): 3048 w, 1581 w, 1460 m, 1437 w, 1394 w, 1090 m, 1021 w, 1003 m, 828 s, 751 s, 688 s.

MS, m/z (relative intensity, %): 296 (M⁺, 100), 260 (M⁺-36, 22), 184 (M⁺-112, 22). HRMS (EI): Calcd for C₁₈H₁₃ClS 296.0426, Found 296.0425.

2-Phenylthio-3'-methylbiphenyl (SM-12).

General procedure was followed on a 4 mmol scale except that 3-tolylboronic acid was used instead of phenylboronic acid.

Colorless oil (652 mg, 59%). Rf 0.20 (hexane).

¹H NMR (CDCl₃, 399.78 MHz) δ: 2.38 (s, 3H), 7.18-7.28 (m, 13H).

¹³C NMR (CDCl₃, 100.53 MHz) δ: 21.6, 126.5, 126.7, 127.3, 127.9, 128.0, 128.3, 129.2, 130.2,

130.6, 131.0, 132.2, 135.2, 135.7, 137.6, 140.6, 143.1.

IR(ATR): 3054 w, 2919 w, 1605 w, 1581 w, 1461 m, 1438 m, 1073 w, 1039 w, 1024 w, 1000 w, 884 w, 788 m, 749 s, 702 s, 690 s.

MS, m/z (relative intensity, %): 276 (M⁺, 100), 261 (M⁺-15, 12), 184 (M⁺-92, 20).

HRMS (EI): Calcd for C₁₉H₁₆S 276.0973, Found 276.0971.

Methyl 6-(phenylthio)-[1,1'-biphenyl]3-carboxylate (SM-14).

General procedure was followed on a 2.8 mmol scale except that methyl

3-bromo-4-(phenylthio)benzoate⁶ was used instead of (2-bromophenyl)phenyl sulfide.

White solid (658 mg, 75%). Mp = 101 °C. Rf 0.29 (hexane/EtOAc = 10/1).

¹H NMR (CDCl₃, 399.78 MHz) δ : 3.89 (s, 3H), 6.98 (d, J = 8.7 Hz, 1H), 7.36-7.48 (m, 10H),

7.78-7.81 (m, 1H), 7.91-7.92 (m, 1H)

¹³C NMR (CDCl₃, 100.53 MHz) δ: 52.3, 127.3, 127.6, 128.1, 128.4, 128.86, 128.89, 129.4,

129.8, 131.3, 132.6, 134.5, 139.6, 140.7, 143.7, 166.9.

IR(ATR): 2947 w, 1710 s, 1593 m, 1434 m, 1400 w, 1301 m, 1276 m, 1236 s, 1190 w, 1118 m, 1070 w, 1021 m, 973 w, 923 w, 850 w, 750 s, 704 s.

MS, m/z (relative intensity, %): 320 (M⁺, 100), 289 (M⁺-31, 22), 152 (M⁺-168, 18). HRMS (EI): Calcd for C₂₀H₁₆O₂S 320.0871, Found 320.0869.

5-Chloro-2-phenylthiobiphenyl (SM-15).

General procedure was followed on a 7.1 mmol scale except that

2-bromo-4-chloro-1-(phenylthio)benzene⁶ was used instead of (2-bromophenyl)phenyl sulfide. Colorless oil (938 mg, 44%). Rf 0.36 (hexane).

¹H NMR (CDCl₃, 399.78 MHz) δ: 7.10-7.13 (m, 1H), 7.18-7.21 (m, 1H), 7.24-7.31 (m, 6H),

7.37-7.42 (m, 5H).

¹³C NMR (CDCl₃, 100.53 MHz) δ: 127.6, 128.0, 128.1, 128.2, 129.3, 129.4, 130.4, 132.1,

132.3, 132.6, 134.0, 135.0, 139.4, 144.3.

IR(ATR):3057 w, 1577 w, 1546 w, 1474 w, 1440 m, 1381 w, 1245 w, 1139 w, 1101 m, 1016 m, 883 w, 813 m, 764 m, 741 m, 695 s.

MS, m/z (relative intensity, %): 296 (M⁺, 100), 260 (M⁺-36, 21), 184 (M⁺-112, 24).

HRMS (EI): Calcd for C₁₈H₁₃ClS 296.0426, Found 296.0424.

(3',4'-dichloro-[1,1'-biphenyl]-2-yl)(phenyl)sulfane (SM-16).

General procedure was followed on a 4 mmol scale except that 3,4-dichlorophenylboronic acid,

and 1,2-dimethoxyethane were used instead of phenylboronic acid and toluene, respectively.

Colorless oil (595 mg, 45%). Rf 0.29(hexane).

¹H NMR (CDCl₃, 399.78 MHz) δ: 7.21-7.31 (m, 10H), 7.42-7.45 (m, 2H).

¹³C NMR (CDCl₃, 100.53 MHz) δ: 127.3, 127.4, 128.8, 128.9, 129.3, 129.9, 130.5, 131.4,

131.7, 131.8, 131.9, 132.1, 135.0, 135.2, 140.6, 140.7.

IR(ATR):3058 w, 1581 w, 1475 m, 1454 s, 1373 m, 1325 m, 1131 m, 1074 w, 1027 m, 886 w, 822 m, 751 s, 690 s.

⁶ Su, K.; Qiu, Y.; Yao, Y.; Zhang, D.; Jiang, S. *Synlett* **2012**, *23*, 2853.

MS, m/z (relative intensity, %): 330 (M⁺, 100), 294 (M⁺-36, 19), 260 (M⁺-70, 14), 218 (M⁺-112, 22).

HRMS (EI): Calcd for C₁₈H₁₂Cl₂S 330.0037, Found 330.0038.

Phenyl(3',4',5-trichloro-[1,1'-biphenyl]-2-yl)sulfane (SM-17).

General procedure was followed on a 4 mmol scale except that

2-bromo-4-chloro-1-(phenylthio)benzene⁶, 3,4-dichlorophenylboronic acid, and

1,2-dimethoxyethane were used instead of (2-bromophenyl)phenyl sulfide, phenylboronic acid and toluene, respectively.

Colorless oil (1.04 g, 71%). Rf 0.34(hexane).

¹H NMR (CDCl₃, 399.78 MHz) δ: 7.16-7.31 (m, 9H), 7.43-7.45 (m, 2H).

¹³C NMR (CDCl₃, 100.53 MHz) δ: 127.8, 128.7, 128.8, 129.4, 130.1, 130.3, 131.2, 132.0,

132.2, 132.3, 132.9, 133.0, 133.9, 134.5, 139.2, 141.9.

IR(ATR):3060 w, 2926 w, 1579 w, 1544 w, 1475 m, 1450 s, 1368 m, 1252 m, 1134 m, 1102 m, 1030 s, 878 m, 856 m, 819 s, 744 s, 690 s.

MS, m/z (relative intensity, %): 366 (M⁺+2, 100), 364 (M⁺, 97), 330 (M⁺-34, 13), 328 (M⁺-36,

13), 298 (M⁺-66, 17), 296 (M⁺-68, 16), 294 (M⁺-70, 18).

HRMS (EI): Calcd for C₁₈H₁₁Cl₃S 363.9647, Found 363.9647.

(5-chloro-4'-methoxy-[1,1'-biphenyl]-2-yl)(phenyl)sulfane (SM-18).

General procedure was followed on a 4 mmol scale except that

2-bromo-4-chloro-1-(phenylthio)benzene⁶ and 4-methoxyphenylboronic acid were used instead of (2-bromophenyl)phenyl sulfide, phenylboronic acid, respectively.

Colorless oil (836 mg, 64%). Rf 0.46(hexane/EtOAc = 10/1).

¹H NMR (CDCl₃, 399.78 MHz) δ : 3.83 (s, 3H), 6.94 (dd, J = 6.4 Hz, 2.3 Hz, 2H), 7.11 (d, J =

8.7 Hz, 1H), 7.15-7.18 (m, 1H), 7.23-7.35 (m, 8H).

¹³C NMR (CDCl₃, 100.53 MHz) δ: 55.3, 113.6, 114.2, 127.6, 127.8, 129.4, 130.5, 131.8, 132.1, 132.2, 132.5, 134.0, 135.1, 144.0, 159.4.

IR(ATR):3059 w, 2931 w, 2835 w, 1608 m, 1577 w, 1512 m, 1452 m, 1381 w, 1294 m, 1246 s, 1177 m, 1103 m, 1037 m, 1023 m, 885 w, 826 m, 773 m, 747 m, 691 m.

MS, m/z (relative intensity, %): 328 (M⁺+2, 38), 326 (M⁺, 100), 298 (M⁺-28, 19), 214 (M⁺-112, 29).

HRMS (EI): Calcd for C₁₉H₁₅ClOS 326.0532, Found 326.0531.

1-(5'-chloro-2'-(phenylthio)-[1,1'-biphenyl])-4yl)ethane-1-one (SM-19).

General procedure was followed on a 4 mmol scale except that

2-bromo-4-chloro-1-(phenylthio)benzene⁶, 4-acetylphenylboronic acid, and DMA were used

instead of (2-bromophenyl)phenyl sulfide, phenylboronic acid, and toluene, respectively.

Colorless oil (620 mg, 46%). Rf 0.29(hexane/EtOAc = 10/1).

¹H NMR (CDCl₃, 399.78 MHz) δ: 2.64 (s, 3H), 7.17-7.30 (m, 8H), 7.47-7.49 (m, 2H), 7.97-7.99 (m, 2H).

¹³C NMR (CDCl₃, 100.53 MHz) δ: 26.7, 127.6, 128.2, 128.7, 129.4, 129.6, 130.2, 131.8, 132.9, 132.9, 133.6, 134.7, 136.4, 143.3, 144.1, 197.6.

IR(ATR):3057 w, 1683 s, 1605 w, 1579 w, 1453 w, 1405 w, 1358 w, 1264 s, 1103 w, 1024 w, 957 w, 885 w, 821 m, 739 m, 691 m.

MS, m/z (relative intensity, %): 338 (M⁺, 100), 323 (M⁺-15, 49), 260 (M⁺-78, 26).

HRMS (EI): Calcd for C₂₀H₁₅ClOS 338.0532, Found 338.0529.

Ethyl 5'-chloro-2'-(phenylthio)-[1,1'-biphenyl]-4-carboxylate (SM-20).

General procedure was followed on a 4 mmol scale except that

2-bromo-4-chloro-1-(phenylthio)benzene⁶, 4-(ethoxycarbonyl)phenylboronic acid, and

1,2-dimethoxyethane were used instead of (2-bromophenyl)phenyl sulfide, phenylboronic acid, and toluene, respectively.

Colorless oil (1.01 g, 87%). Rf 0.36(hexane/EtOAc = 10/1).

¹H NMR (CDCl₃, 399.78 MHz) δ: 1.41 (s, *J* = 7.3 Hz, 3H), 4.40 (dd, *J* = 14.2 Hz, 6.9 Hz, 2H),

7.17-7.30 (m, 8H), 7.43-7.46 (m, 2H), 8.05-8.08 (m, 2H).

¹³C NMR (CDCl₃, 100.53 MHz) δ: 14.4, 61.0, 127.5, 128.6, 129.3, 129.3, 129.9, 130.2, 131.7, 132.8, 132.9, 133.6, 134.8, 143.5, 143.8, 166.2.

IR(ATR):3059 w, 2980 w, 1714 s, 1609 w, 1579 w, 1453 w, 1367 w, 1271 s, 1178 w, 1101 s,

1026 w, 1015 w, 856 w, 814 m, 773 m, 745 m, 705 m, 690 m.

MS, m/z (relative intensity, %): 368 (M⁺, 100), 323 (M⁺-45, 19), 260 (M⁺-108, 21).

HRMS (EI): Calcd for C₂₁H₁₇ClO₂S 368.0638, Found 338.0635.

1-(4'-Methoxy-6-(phenylthio)-[1,1'-biphenyl]-3yl)ethane-1-one (SM-21).

General procedure was followed on a 1.7 mmol scale except that 4-methoxyphenylboronic acid was used instead of phenylboronic acid and 1-(3-bromo-4-(phenylthio)phenyl)ethane-1-one was used instead of (2-bromophenyl)phenyl sulfideate.

Pale yellow oil (426 mg, 75%). Rf 0.21 (hexane/EtOAc = 10/1).

¹H NMR (CDCl₃, 399.78 MHz) δ: 2.56 (s, 3H), 3.87 (s, 3H), 6.95-7.01 (m, 3H), 7.37-7.46 (m,

7H), 7.69-7.71 (m, 1H), 7.80 (d, *J* = 1.8 Hz, 1H)

¹³C NMR (CDCl₃, 100.53 MHz) δ: 26.6, 55.4, 113.8, 127.3 (two overlapping peaks), 129.0,

129.8, 130.1, 130.6, 131.9, 132.4, 134.3, 134.6, 140.3, 144.4, 159.5, 197.4.

IR(ATR): 3002 w, 2836 w, 1679 m, 1586 m, 1512 m, 1462 m, 1299 m, 1245 s, 1232 s, 1177 m, 1035 m, 1024 m, 961 m, 831 m, 751 m.

MS, m/z (relative intensity, %): 334 (M⁺, 100), 319 (M⁺-15, 41).

HRMS (EI): Calcd for C₂₁H₁₈O₂S 334.1028, Found 334.1031.

3-(2-(Phenylthio)phenyl)thiophene (SM-22).

General procedure was followed on a 3.8 mmol scale except that 3-thiopheneboronic acid,

K₂CO₃ and 1,4-dioxane were used instead of phenylboronic acid, Na₂CO₃, and toluene, respectively.

Colorless oil (612 mg, 60%). Rf 0.24 (hexane).

¹H NMR (CDCl₃, 399.78 MHz) δ: 7.21-7.29 (m, 9H), 7.32-7.34 (m, 2H), 7.37-7.39 (m, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ: 123.9, 124.9, 127.0, 127.2, 128.1, 129.0, 129.3, 130.6, 131.6, 131.7, 135.0, 135.6, 137.8, 140.8.

IR(ATR):3102 w, 3055 w, 3019 w, 1581 w, 1472 w, 1437 w, 1262 w, 1192 w, 1071 w, 1038 w, 1024 w, 856 w, 787 m, 744 s, 688 s.

MS, m/z (relative intensity, %): 268 (M⁺, 100), 235 (M⁺-33, 60), 190 (M⁺-78, 18).

HRMS (EI): Calcd for C₁₆H₁₂S₂ 268.0380, Found 268.0379.

2-Phenylselenobiphenyl (SM-23) [CAS: 126146-85-8].7

A two-necked flask was charged with diphenyl diselenide (1.1 g, 3.5 mmol), 2-iodobiphenyl (1.4g, 5 mmol), CuI (47.6 mg, 0.25 mmol), Cs₂CO₃ (4.89 g, 15 mmol) and acetonitrile (25 mL), and the resulting solution was heated at 82 °C for 28 h. The reaction mixture was then cooled to rt and partitioned between EtOAc and brine. The organic layer was collected, dried over MgSO₄, filtered, and concentrated in vacuo to give a residue, which was purified by flash column chromatography (hexane, Rf = 0.27) to give as an yellow oil (572 mg, 37%). ¹H NMR (CDCl₃, 399.78 MHz) δ : 7.21-7.29 (m, 9H), 7.32-7.34 (m, 2H), 7.37-7.39 (m, 1H). ¹³C NMR (CDCl₃, 100.53 MHz) δ : 123.9, 124.9, 127.0, 127.2, 128.1, 129.0, 129.3, 130.6, 131.6, 131.7, 135.0, 135.6, 137.8, 140.8. IR(ATR):3102 w, 3055 w, 3019 w, 1581 w, 1472 w, 1437 w, 1262 w, 1192 w, 1071 w, 1038 w, 1024 w, 856 w, 787 m, 744 s, 688 s. MS, m/z (relative intensity, %): 268 (M⁺, 100), 235 (M⁺-33, 60), 190 (M⁺-78, 18). HRMS (EI): Calcd for C₁₆H₁₂S₂ 268.0380, Found 268.0379.

IV. Typical Procedure for the Palladium-Catalyzed Synthesis of Dibenzothiophenes via C-H/C-S Coupling (Table 1, Entry 6)

An oven-dried 5 mL screw-capped vial was charged with $Pd(OAc)_2$ (10 mg, 0.045 mmol), [1,1'-biphenyl]-2-yl(phenyl)sulfane (79 mg, 0.30 mmol), 2,6-dimethylbenzoic acid (**3**, 20 mg, 0.14 mmol) and toluene (1.0 mL) under a gentle stream of nitrogen. The vessel was then sealed

⁷ Dandapat, A.; Korupalli, C. Prasad, D. J. C.; Singh, R.; Sekar, G. Synthesis 2011, 14, 2297.

and heated at 130 °C for 18 h. The mixture was cooled to rt and filtered through a short pad of silica gel, eluting with EtOAc. The eluent was evaporated, and the residue was purified by flash chromatography (hexane) to give dibenzothiophene as a white solid (44 mg, 79%).

V. Spectroscopic Data of Products Listed in Figure 1

Dibenzothiophene (2) [CAS: 132-65-0].

White solid (44 mg, 79%). Rf 0.43 (hexane). ¹H NMR (CDCl₃, 399.78 MHz): δ 7.44-7.48 (m, 4H), 7.85-7.87 (m, 2H), 8.16-8.18 (m, 2H). ¹³C NMR (CDCl₃, 100.53 MHz): δ 121.7, 122.9, 124.5, 126.8, 135.6, 139.5. HRMS (EI): Calcd for C₁₂H₈S 184.0347, Found 184.0346.

Methyldibenzo[b,d]thiophene-3-carboxylate (4) [CAS: 60718-96-9].

General procedure was followed except that Methyl

2'-(phenylthio)-[1,1'-biphenyl]-4-carboxylate was used instead of

[1,1'-biphenyl]-2-yl(phenyl)sulfane.

White solid (68 mg, 94%). Rf 0.57 (hexane/EtOAc = 10/1).

¹H NMR (CDCl₃, 399.78 MHz): δ 3.99 (s, 3H), 7.50-7.54 (m, 2H), 7.89-7.91 (m, 1H), 8.12-8.14

(m, 1H), 8.20-8.23 (m, 2H), 8.58 (d, J = 0.9 Hz, 1H).

¹³C NMR (CDCl₃, 100.53 MHz): δ 52.5, 121.4, 122.6, 123.1, 124.82, 124.84, 125.6, 127.9,

128.4, 134.8, 139.3, 139.4, 141.1, 167.0.

HRMS (EI): Calcd for C₁₄H₁₀O₂S 242.0402, Found 242.0401.

3-Acetyldibenzothiophene (5) [CAS: 5337-07-2]

General procedure was followed except that 2-Phenylthio-4'-acetylbiphenyl was used instead of [1,1'-biphenyl]-2-yl(phenyl)sulfane.

White solid (67 mg, 98%). Rf 0.31 (hexane/EtOAc = 10/1).

¹H NMR (CDCl₃, 399.78 MHz): δ 2.70 (s, 3H), 7.49-7.53 (m, 2H), 7.87-7.89 (m, 1H), 8.02-8.05 (m, 1H), 8.17-8.20 (m, 2H), 8.46 (t, *J* = 0.8 Hz, 1H).

¹³C NMR (CDCl₃, 100.53 MHz): δ 26.8, 121.4, 122.4, 122.9, 123.4, 124.3, 124.7, 127.8, 134.5, 135.2, 139.1, 139.4, 141.1, 197.4.

HRMS (EI): Calcd for C₁₄H₁₀OS 226.0452, Found 226.0452.

3-Nitrodibenzothiophene (6) [CAS: 94764-55-3].

General procedure was followed except that 2-Phenylthio-4'-nitrobiphenyl was used instead of [1,1'-biphenyl]-2-yl(phenyl)sulfane. Pd(OAc)₂ (20 mg, 0.09 mmol) and 2,6-dimethylbenzoic acid (40 mg, 0.27 mmol) were used respectively.

Yellow solid (23 mg, 33%). Rf 0.25 (hexane/EtOAc = 20/1).

¹H NMR (CDCl₃, 399.78 MHz): δ 7.53-7.61 (m, 2H), 7.93 (d, J = 7.8 Hz, 1H), 8.23-8.34 (m,

3H), 8.77 (d, *J* = 1.8 Hz, 1H).

¹³C NMR (CDCl₃, 100.53 MHz): δ 119.0, 119.8, 121.8, 123.0, 123.3, 125.4, 128.8, 133.9,

139.8, 140.5, 141.9, 146.4.

HRMS (EI): Calcd for C₁₄H₁₀OS 226.0452, Found 226.0452.

All of other substrates bearing an electron-withdrawing group reacted smoothly to give the desired products in high yields. It was therefore considered that the low yield obtained in the NO₂-containing substrate could be attributed to the poisoning of the catalyst by the NO₂ group, most likely through the coordination of this group to the Pd(II) species. In this way, the NO₂ group would inhibit the binding of the substrate to the catalyst, thereby inhibiting the reaction, which would explain the low yield. To test this hypothesis, we investigated the impact of adding a single equivalent of nitrobenzene to the reaction of another substrate. The result of this reaction showed that there was a 3-fold decrease in the yield of the cyclized product (see below). These results therefore clearly show that the presence of a nitro group in the reaction was detrimental to the catalytic process.

SPh 0.3 mmol		$\begin{array}{c} Pd(OAc)_2 (15 \text{ mol\%}) \\ 2,6-Me_2C_6H_3CO_2H (45 \text{ mol\%}) \\ \hline additive (1 equiv) \\ \hline toluene 1 \text{ mL}, 130 °C, 18 \text{ h} \end{array}$		ОМе
-	entry	additive	yield	
-	1	none	97% (isolated)	
_	2	<i>p</i> -nitrotoluene	33% (NMR)	

3-Methoxybenzothiophene (7) [CAS: 54815-67-7].

General procedure was followed except that 2-Phenylthio-4'-methoxybiphenyl was used instead of [1,1'-biphenyl]-2-yl(phenyl)sulfane.

White solid (63 mg, 97%). Rf 0.36 (hexane).

¹H NMR (CDCl₃, 399.78 MHz): δ 3.89 (s, 3H), 7.02-7.05 (m, 1H), 7.31-7.43 (m, 3H), 7.78-7.80 (m, 1H), 7.99-8.03 (m, 2H).

¹³C NMR (CDCl₃, 100.53 MHz): δ 55.7, 105.9, 113.6, 120.9, 122.4, 122.8, 124.5, 125.6, 129.2, 135.6, 138.7, 141.1, 159.1.

HRMS (EI): Calcd for C₁₃H₁₀OS 214.0452, Found 214.0453.

Dibenzothiophene-3-ol (8) [CAS: 69747-77-9].

General procedure was followed except that 2-Phenylthio-4'-hydroxybiphenyl was used instead of [1,1'-biphenyl]-2-yl(phenyl)sulfane. Pd(OAc)₂ (20 mg, 0.09 mmol) and 2,6-dimethylbenzoic acid (40 mg, 0.27 mmol) were used respectively.

White solid (38 mg, 63%). Rf 0.51 (hexane/EtOAc = 5/2).

¹H NMR (CDCl₃, 399.78 MHz): δ 5.04 (s, 1H), 6.96-6.99 (m, 1H), 7.29 (d, *J* = 2.4 Hz, 1H),

7.38-7.43 (m, 2H), 7.80 (d, *J* = 7.2 Hz, 1H), 7.99-8.04 (m, 2H).

¹³C NMR (CDCl₃, 100.53 MHz): δ 108.6, 113.7, 120.9, 122.6, 122.8, 124.6, 125.8, 129.5,

135.5, 138.7, 141.2, 155.0.

HRMS (EI): Calcd for C₁₂H₈OS 200.0296, Found 200.0294.

3-tert-Butyldibenzothiophene (9) [CAS: 147792-07-2].

General procedure was followed except that 2-Phenylthio-4'-*tert*-butylbiphenyl was used instead of [1,1'-biphenyl]-2-yl(phenyl)sulfane.

White solid (50 mg, 69%). Rf 0.43 (hexane).

¹H NMR (CDCl₃, 399.78 MHz): δ 1.41 (s, 9H), 7.41-7.43 (m, 2H), 7.49-7.52 (m, 1H), 7.82-7.85 (m, 2H), 8.06-8.12 (m, 2H).

¹³C NMR (CDCl₃, 100.53 MHz): δ 31.7, 35.2, 119.2, 121.2, 121.4, 122.5, 122.9, 124.4, 126.3, 133.2, 135.6, 139.5, 139.7, 150.3.

HRMS (EI): Calcd for C₁₆H₁₆S 240.0973, Found 240.0971.

3-Fluorodibenzothiophene (10) [CAS: 169690-06-6].

General procedure was followed except that 2-Phenylthio-4'-fluorobiphenyl was used instead of [1,1'-biphenyl]-2-yl(phenyl)sulfane.

White solid (57 mg, 94%). Rf 0.51 (hexane).

¹H NMR (CDCl₃, 399.78 MHz): δ 7.19 (td, *J* = 8.7, 2.3 Hz, 1H), 7.43-7.48 (m, 2H), 7.54 (dd, *J* = 4.3, 2.3 Hz, 1H), 7.82-7.85 (m, 1H), 8.07-8.11 (m, 2H).

¹³C NMR (CDCl₃, 100.53 MHz): δ 109.3 (d, *J* = 24.9 Hz), 113.0 (d, *J* = 24.0 Hz), 121.4, 122.7 (d, *J* = 9.7 Hz), 122.9, 124.7, 126.5, 132.0, 134.9, 139.3, 140.8 (d, *J* = 10.6 Hz), 161.9 (d, *J* = 246.3 Hz).

HRMS (EI): Calcd for C₁₂H₇FS 202.0252, Found 202.0251.

3-Chlorodibenzothiophene (11) [CAS: 109014-35-9].

General procedure was followed except that 2-Phenylthio-4'-chlorobiphenyl was used instead of [1,1'-biphenyl]-2-yl(phenyl)sulfane.

White solid (64 mg, 98%). Rf 0.56 (hexane).

¹H NMR (CDCl₃, 399.78 MHz): δ 7.41-7.48 (m, 3H), 7.83-7.86 (m, 2H), 8.06 (d, *J* = 8.4 Hz,

1H), 8.10-8.13 (m, 1H).

¹³C NMR (CDCl₃, 100.53 MHz): δ 121.7, 122.4, 122.6, 122.9, 124.8, 125.2, 127.1, 132.6, 134.1, 134.8, 139.5, 140.7.

HRMS (EI): Calcd for C₁₂H₇ClS 217.9957, Found 217.9958.

2-Methyldibenzothiophene (12) [CAS: 20928-02-3].

General procedure was followed except that 2-Phenylthio-3'-methylbiphenyl was used instead of [1,1'-biphenyl]-2-yl(phenyl)sulfane. Pd(OAc)₂ (20 mg, 0.09 mmol) and 2,6-dimethylbenzoic acid (40 mg, 0.27 mmol) were used respectively.

White solid (36 mg, 60%). Rf 0.51 (hexane).

¹H NMR (CDCl₃, 399.78 MHz): δ 2.54 (s, 3H), 7.29 (d, J = 8.0 Hz, 1H), 7.43-7.45 (m, 2H),

7.73 (d, *J* = 8.0 Hz, 1H), 7.82-7.84 (m, 1H), 7.97 (s, 1H), 8.12-8.14 (m, 1H).

¹³C NMR (CDCl₃, 100.53 MHz): δ 21.7, 121.6, 121.9, 122.6, 123.0, 124.3, 126.7, 128.4, 134.3, 135.6, 135.8, 136.5, 139.9.

HRMS (EI): Calcd for $C_{13}H_{10}S$ 198.0503, Found 198.0502.

Benzo[b]naphtha[2,3-d]thiophene (13) [CAS: 243-46-9].

General procedure was followed except that SM-13 was used instead of

[1,1'-biphenyl]-2-yl(phenyl)sulfane.

White solid (53 mg, 75%). Rf 0.29 (hexane/EtOAc = 50/1).

¹H NMR (CDCl₃, 399.78 MHz): δ 7.48-7.54 (m, 4H), 7.82-7.85 (m, 1 H), 7.91-7.94 (m, 1H),

8.04-8.06 (m, 1H), 8.27-8.30 (m, 2H), 8.64 (s, 1H).

¹³C NMR (CDCl₃, 100.53 MHz): δ 120.1, 120.8, 122.1, 123.0, 124.7, 125.3, 126.1, 127.2,

127.8, 128.5, 131.0, 132.7, 135.2, 137.8, 140.2.

HRMS (EI): Calcd for C₁₆H₁₀S 234.0503, Found 234.0507.

Methyldibenzo[b,d]thiophene-2-carboxylate (14) [CAS: 22099-28-1].

General procedure was followed except that Methyl

6-(phenylthio)-[1,1'-biphenyl]3-carboxylate was used instead of

[1,1'-biphenyl]-2-yl(phenyl)sulfane. Pd(OAc)₂ (20 mg, 0.09 mmol) and 2,6-dimethylbenzoic

acid (40 mg, 0.27 mmol) were used respectively.

White solid (72 mg, 98%). Rf 0.42 (hexane/EtOAc = 10/1).

¹H NMR (CDCl₃, 399.78 MHz): δ 4.00 (s, 3H), 7.49-7.53 (m, 2H), 7.86-7.91 (m, 2H), 8.11-8.14

(m, 1H), 8.24-8.26 (m, 1H), 8.85 (d, *J* = 1.4 Hz, 1H).

¹³C NMR (CDCl₃, 100.53 MHz): δ 52.4, 122.1, 122.7, 123.0, 123.3, 125.0, 126.6, 127.4, 127.5, 135.3, 135.7, 139.8, 144.5, 167.4.

HRMS (EI): Calcd for C₁₄H₁₀O₂S 242.0402, Found 242.0402.

2-Chlorodibenzothiophene (15) [CAS: 68820-91-7].

General procedure was followed except that 5-Chloro-2-phenylthiobiphenyl was used instead of

[1,1'-biphenyl]-2-yl(phenyl)sulfane.

White solid (60 mg, 90%). Rf 0.50 (hexane).

¹H NMR (CDCl₃, 399.78 MHz): δ 7.42-7.50 (m, 3H), 7.77 (d, J = 8.8 Hz, 1H), 7.85-7.87 (m,

1H), 8.10-8.13 (m, 2H).

¹³C NMR (CDCl₃, 100.53 MHz): δ 121.6, 121.9, 123.0, 123.9, 124.7, 127.0, 127.5, 130.8,

134.6, 137.0, 137.6, 140.2.

HRMS (EI): Calcd for C₁₂H₇ClS 217.9957, Found 217.9959.

2,3-Dichlorodibenzothiophene (16) [CAS: 230308-30-2].

General procedure was followed except that

(3',4'-dichloro-[1,1'-biphenyl]-2-yl)(phenyl)sulfane was used instead of

[1,1'-biphenyl]-2-yl(phenyl)sulfane.

White solid (78 mg, 97%). Rf 0.49 (hexane).

¹H NMR (CDCl₃, 399.78 MHz): δ 7.46-7.52 (m, 2H), 7.83-7.85 (m, 1H), 7.92 (s, 1H), 8.06-8.08 (m, 1H), 8.19 (s, 1H).

¹³C NMR (CDCl₃, 100.53 MHz): δ 121.9, 122.9, 123.1, 124.1, 125.1, 127.7, 129.2, 130.8,

134.1, 135.5, 138.7, 140.1.

HRMS (EI): Calcd for C₁₂H₆Cl₂S 251.9567, Found 251.9568.

2,3,8-Trichlorodibenzothiophene (17) [CAS: 153524-15-3].

General procedure was followed except that

Phenyl(3',4',5-trichloro-[1,1'-biphenyl]-2-yl)sulfane was used instead of

[1,1'-biphenyl]-2-yl(phenyl)sulfane.

White solid (46 mg, 54%). Rf 0.57 (hexane).

¹H NMR (CDCl₃, 399.78 MHz): δ 7.44-7.47 (m, 1H), 7.74 (d, *J* = 8.2 Hz, 1H), 7.91 (s, 1H),

8.02 (d, *J* = 1.8 Hz, 1H), 8.14 (s, 1H).

¹³C NMR (CDCl₃, 100.53 MHz): δ 121.8, 123.1, 124.0, 124.2, 128.0, 129.6, 131.5, 131.6,

134.4, 135.4, 138.2, 139.3.

HRMS (EI): Calcd for C₁₂H₅Cl₃S 285.9178, Found 285.9178.

2-Chloro-7-methoxydibenzothiophene (18).

General procedure was followed except that

(5-chloro-4'-methoxy-[1,1'-biphenyl]-2-yl)(phenyl)sulfane was used instead of

[1,1'-biphenyl]-2-yl(phenyl)sulfane. Pd(OAc)₂ (20 mg, 0.090 mmol) and 2,6-dimethylbenzoic

acid (40 mg, 0.27 mmol) were used, respectively.

White solid (33 mg, 45%). Rf 0.53 (hexane/EtOAc = 10/1). Mp = 88 °C.

¹H NMR (CDCl₃, 399.78 MHz): δ 3.91 (s, 3H), 7.05 (dd, *J* = 8.7 Hz, 2.3 Hz, 1H), 7.30-7.35 (m, 2H), 7.70 (d, *J* = 8.2 Hz, 1H), 7.95-7.98 (m, 2H).

¹³C NMR (CDCl₃, 100.53 MHz): δ 55.8, 106.0, 113.9, 120.8, 122.6, 123.7, 125.8, 128.2, 130.8, 136.8, 137.0, 142.0, 159.6.

IR(ATR): 2936 w, 2833 w, 1601 s, 1564 w, 1485 s, 1451 s, 1412 m, 1264 s, 1251 s, 1215 s, 1079 m, 1059 m, 1036 m, 1008 w, 880 m, 829 m, 801 s, 772 m. MS, m/z (relative intensity, %): 248 (M⁺, 100), 233 (M⁺-15, 28), 205 (M⁺-43, 38). HRMS (EI): Calcd for C₁₃H₉ClOS 248.0063, Found 248.0059.

1-(8-Chlorodibenzo[b,d]thiophene-3-yl)ethane-1-one (19).

General procedure was followed except that

1-(5'-chloro-2'-(phenylthio)-[1,1'-biphenyl])-4yl)ethane-1-one was used instead of

[1,1'-biphenyl]-2-yl(phenyl)sulfane.

White solid (46 mg, 59%). Rf 0.24 (hexane/EtOAc = 10/1). Mp = 155 °C.

¹H NMR (CDCl₃, 399.78 MHz): δ 2.71 (s, 3H), 7.48 (dd, *J* = 8.5 Hz, 1.8 Hz, 1H), 7.79 (d, *J* =

8.7 Hz, 1H), 8.03-8.06 (m, 1H), 8.13-8.15 (m, 2H), 8.45 (d, *J* = 1.4 Hz, 1H).

¹³C NMR (CDCl₃, 100.53 MHz): δ 27.0, 121.8, 122.4, 123.7, 124.1, 124.7, 128.3, 131.3, 136.0, 136.0, 138.2, 139.3, 140.4, 197.4.

IR(ATR): 1674 s, 1597 w, 1442 w, 1394 m, 1358 m, 1324 w, 1268 s, 1252 s, 1225 w, 1082 m,

1014 w, 974 w, 905 w, 878 w, 822 m, 801 m, 772 m, 670 w.

MS, m/z (relative intensity, %): 260 (M⁺, 63), 245 (M⁺-15, 100), 217 (M⁺-43, 44).

HRMS (EI): Calcd for C₁₄H₉ClOS 260.0063, Found 260.0059.

Ethyl 8-chlorodibenzo[b,d]thiophene-3-carboxylate (20).

General procedure was followed except that Ethyl

5'-chloro-2'-(phenylthio)-[1,1'-biphenyl]-4-carboxylate was used instead of

[1,1'-biphenyl]-2-yl(phenyl)sulfane.

Pale yellow solid (52 mg, 60%). Rf 0.31 (hexane/EtOAc = 20/1). Mp = 138 °C.

¹H NMR (CDCl₃, 399.78 MHz): δ 1.45 (t, *J* = 7.2 Hz, 3H), 4.44 (q, *J* = 7.2 Hz, 2H), 7.46 (dd, *J*

= 8.7 Hz, 1.8 Hz, 1H), 7.78 (d, *J* = 5.4 Hz, 1H), 8.12-8.14 (m, 3H), 8.55 (d, *J* = 0.9 Hz, 1H).

¹³C NMR (CDCl₃, 100.53 MHz): δ 14.5, 61.5, 121.6, 122.4, 124.1, 124.8, 125.8, 128.1, 129.4,

131.2, 136.1, 138.1, 139.1, 140.1, 166.3.

IR(ATR): 2976 w, 1705 s, 1587 w, 1445 w, 1396 w, 1365 w, 1271 m, 1251 m, 1223 w, 1116 w, 1082 m, 1016 w, 869 w, 836 w, 802 w, 770 m, 734 w. MS, m/z (relative intensity, %): 290 (M⁺, 100), 245 (M⁺-55, 82), 217 (M⁺-73, 39). HRMS (EI): Calcd for C₁₅H₁₁ClO₂S 290.0168, Found 290.0168.

1-(7-Methoxydibenzo[b,d]thiophene-2-yl)ethane-1-one (21).

General procedure was followed except that 2-Phenylthio-4'-chlorobiphenyl was used instead of [1,1'-biphenyl]-2-yl(phenyl)sulfane. Pd(OAc)₂ (20 mg, 0.090 mmol) and 2,6-dimethylbenzoic acid (40 mg, 0.27 mmol) were used respectively.

Pale yellow solid (39 mg, 51%). Mp = 140 °C. Rf 0.27 (hexane).

¹H NMR (CDCl₃, 399.78 MHz): δ 2.73 (s, 3H), 3.92 (s, 3H), 7.09-7.10 (m, 1H), 7.34 (d, *J* = 2.3 Hz, 1H), 7.86 (d, *J* = 8.2 Hz, 1H), 7.96-7.99 (m, 1H), 8.12 (d, *J* = 8.7 Hz, 1H), 8.63 (d, *J* = 1.8 Hz, 1H).

¹³C NMR (CDCl₃, 100.53 MHz): δ 26.9, 55.8, 106.1, 114.0, 120.9, 122.7, 122.7, 125.3, 128.8, 133.9, 135.8, 141.5, 144.0, 159.7, 197.9.

IR(ATR): 3002 w, 2939 w, 2834 w, 1675 s, 1590 s, 1357 m, 1304 m, 1271 s, 1254 s, 1233 s,

1214 s, 1033 s, 961 m, 881 m, 811 m, 753 m.

MS, m/z (relative intensity, %): 256 (M⁺, 100), 241 (M⁺-15, 95), 213 (M⁺-43, 44).

HRMS (EI): Calcd for C₁₅H₁₂O₂S 256.0558, Found 256.0559.

Thieno[2,3-b]benzothiophene (22) [CAS: 247-16-5].

General procedure was followed except that 3-(2-(Phenylthio)phenyl)thiophene was used instead of [1,1'-biphenyl]-2-yl(phenyl)sulfane. Pd(OAc)₂ (20 mg, 0.09 mmol) and

2,6-dimethylbenzoic acid (40 mg, 0.27 mmol) were used respectively.

White solid (17 mg, 30%). Rf 0.54 (hexane).

¹H NMR (CDCl₃, 399.78 MHz): δ 7.32-7.44 (m, 3H), 7.54-7.55 (m, 1H), 7.83 (d, *J* = 8.0 Hz, 1H), 7.94 (d, *J* = 7.2 Hz, 1H).

¹³C NMR (CDCl₃, 100.53 MHz): δ 119.4, 121.6, 123.4, 124.4, 124.7, 127.8, 132.9, 137.7, 142.2, 144.2.

HRMS (EI): Calcd for C₁₀H₆S₂ 189.9911, Found 189.9912.

Dibenzoselenophene (23) [CAS: 244-95-1].

General procedure was followed except that 2-Phenylselenobiphenyl was used instead of [1,1'-biphenyl]-2-yl(phenyl)sulfane. Pd(OAc)₂ (20 mg, 0.09 mmol) and 2,6-dimethylbenzoic acid (40 mg, 0.27 mmol) were used respectively.

Pale yellow solid (56 mg, 81%). Rf 0.37 (hexane/EtOAc = 50/1).

¹H NMR (CDCl₃, 399.78 MHz): δ 7.38-7.49 (m, 4H), 7.90 (d, *J* = 7.6 Hz, 2H), 8.14 (d, *J* = 7.6 Hz, 2H).

¹³C NMR (CDCl₃, 100.53 MHz): δ 123.0, 125.0, 126.2, 127.0, 138.4, 139.4.

HRMS (EI): Calcd for C₁₂H₈Se 231.9791, Found 231.9795.

VI. Procedures for Experiments Shown in Scheme 2

The reaction of 1b in the presence of AgOAc.⁸ An oven-dried 5 mL screw-capped vial was charged with 1b (79 mg, 0.30 mmol), Pd(tfa)₂ (10.0 mg, 0.03 mmol), AgOAc (200 mg, 1.2 mmol), K₂CO₃ (42 mg, 0.3 mmol) and PivOH (1.0 mL), and the resulting mixture was stirred at rt for 10 min until the generation of CO₂ ceased. The cap was then closed, and the mixture was stirred at 130 °C for 24 h. The mixture was cooled to rt and filtered through a short pad of silica gel, eluting with CH₂Cl₂. The eluent was then evaporated to give a residue, which was purified by flash chromatography (hexane) to give a inseparable mixture of 4-phenyldibenzothiophene **19** and dibenzothiophene **2** (37 mg, 51% in total). The ratio of 19/2 was determined to be 82:18 by GC analysis. Further purification by GPC gave an analytically pure **19**.

4-Phenyldibenzothiophene (24) [CAS: 98251-31-1].

⁸ Che, R.; Wu, Z.; Li, Z.; Xiang, H.; Zhou, X. Chem.-Eur. J. 2014, 20, 7258.

White solid. Mp = 69 °C. Rf 0.34 (hexane).

¹H NMR (CDCl₃, 399.78 MHz): δ 7.45-7.59 (m, 7H), 7.74-7.76 (m, 2H), 7.83-7.85 (m, 1H), 8.16-8.20 (m, 2H).

¹³C NMR (CDCl₃, 100.53 MHz): δ 120.6, 121.9, 122.8, 124.5, 125.2, 126.9, 127.0, 128.2, 128.4, 128.9, 135.9, 136.3, 137.2, 138.7, 139.7, 140.7.

HRMS (EI): Calcd for C₁₂H₁₂S 260.0660, Found 260.0659.

VII. Experimental Procedures for Scheme 3

(2-Phenylthio)phenylboronic acid (25) [CAS: 515158-87-9].

BuLi (1.6 M in hexane, 16.3 mL, 26 mmol) was added in a dropwise manner to a stirred solution of (2-bromophenyl)phenyl sulfide (5.3 g, 20 mmol) in THF (40 mL) at -78 °C, and the resulting mixture was stirred at -78°C for 1 h. B(OMe)₃ (2.8 mL, 26 mmol) was then added to the mixture in a dropwise manner at -78°C, and the resulting mixture was warmed to rt and stirred for 2 h. The mixture was acidified with an aqueous solution of HCl (1.0 M), and evaporated to give a residue, which was extracted twice with CH_2Cl_2 . The combined organic extracts were dried over MgSO₄ and concentrated in vacuo to give a residue, which was triturated with hexane to give (2-phenylthio)phenylboronic acid (**25**) as a white solid (2.2 g, 48%).

 $Mp = 154 \ ^{\circ}C.$

¹H NMR (CDCl₃, 399.78 MHz) δ: 6.02 (s, 2H), 7.16-7.21 (m, 3H), 7.24-7.28 (m, 2H),

7.41-7.46 (m, 2H), 7.51-7.54 (m, 1H), 8.09-8.11 (m, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ: 126.9, 128.8, 128.9, 129.4, 130.1, 132.1, 136.4, 136.6, 137.4, 138.0.

IR(ATR): 3376 w, 3058 w, 1582 w, 1557 w, 1476 w, 1432 m, 1332 s, 1250 w, 1128 w, 1070 w, 1053 w, 1022 w, 913 w, 738 s, 688 m.

HRMS was measured after converting to the corresponding neopentyl glycol ester.

HRMS (EI): Calcd for C₁₇H₁₉BO₂S 298.1199, Found 298.1205.

2-(4-(tert-Butyl)phenyl)-5-(2'-(phenylthio)-[1,1'-biphenyl]-4-yl)1,3,4-oxadiazole (SM-26).

A saturated aqueous solution of Na₂CO₃ (38 mL), Pd(PPh₃)₄ (347 mg, 0.3 mmol), and 2-(4-bromophenyl)-5-[4-(1,1-dimethylethyl)phenyl]-1,3,4-oxadiazole⁹ (1.8 g, 5.0 mmol) were added to a stirred solution of **25** (690 mg, 3.0 mmol) in toluene (75 mL), and the resulting mixture was refluxed under a nitrogen atmosphere overnight. The reaction mixture was then cooled to rt and partitioned between EtOAc and brine. The separated organic extract was then dried over Na₂SO₄, filtered, and concentrated in vacuo to give a residue, which was purified by flash column chromatography to give **SM-26** as a pale yellow solid (863 mg, 62%). Mp = 113 °C. Rf = 0.37 (hexane/EtOAc = 5/1).

¹H NMR (CDCl₃, 399.78 MHz) δ: 1.39 (s, 9H), 7.23-7.35 (m, 9H), 7.57 (dd, *J* = 8.3 Hz, 2.3 Hz, 4H), 8.12 (dd, *J* = 28.8 Hz, 8.2 Hz, 4H).

¹³C NMR (CDCl₃, 150.9 MHz) δ: 31.3, 35.3, 121.4, 123.2, 126.2, 126.7, 127.0, 127.3, 127.4, 128.8, 129.3, 130.3, 130.6, 131.6, 132.3, 134.9, 135.7, 142.4, 144.3, 155.5, 164.5, 164.9. IR(ATR): 2962 w, 1613 w, 1581 w, 1494 s, 1462 m, 1269 w, 1067 w, 1020 w, 844 m, 749 s, 713 w.

MS, m/z (relative intensity, %): 463 (M⁺+1, 100).

HRMS (CI): Calcd for $C_{30}H_{26}N_2OS+H^+$ 463.1839, Found 463.1854.

2-(4-(tert-Butyl)phenyl)-5-(dibenzothiophene-3-yl)-1,3,4-oxadiazole (26).

A typical procedure was followed except that **SM-26** was used as the substrate and 0.09 mmol of $Pd(OAc)_2$ and 0.27 mmol of **3** were used.

Pale yellow solid (65 mg, 56%). Mp = 197 °C. Rf 0.43 (hexane/EtOAc = 5/1). ¹H NMR (CDCl₃, 399.78 MHz): δ 1.39 (s, 9H), 7.51-7.58 (m, 4H), 7.89-7.91 (m, 1H), 8.10 (d, *J* = 8.2 Hz, 2H), 8.21-8.30 (m, 3H), 8.62 (s, 1H).

⁹ Xu, Q.-L.; Li, H.-Y.; Wang, C.-C.; Zhang, S.; Li, T.-Y.; Jing, Y.-M.; Zheng, Y.-X.; Huang, W.; Zuo, J.-L.; You, X.-Z. *Inorganica Chimica Acta* **2012**, *391*, 50.

¹³C NMR (CDCl₃, 100.53 MHz): δ 31.3, 35.3, 121.2, 121.5, 122.2, 122.2, 122.3, 123.0, 123.1, 124.9, 126.2, 126.9, 127.9, 134.8, 138.2, 140.1, 140.6, 155.6, 164.4, 164.9.
IR(ATR): 2960 m, 1494 w, 1450 w, 1401 w, 1320 w, 839 w, 766 w, 734 m.
MS, m/z (relative intensity, %): 385 (M⁺+1, 100).

HRMS (CI): Calcd for $C_{24}H_{20}N_2OS+H^+$ 385.1369, Found $C_{24}H_{21}N_2OS$ 385.1370.

2-(2-(Phenylthio)phenyl)anthraquinone (SM-27).

A saturated aqueous solution of Na₂CO₃ (38 mL), Pd(PPh₃)₄ (347 mg, 0.3 mmol),

2-bromoanthraquinone (2.15 g, 7.5 mmol) were added to a stirred solution of **25** (690 mg, 3.0 mmol) in toluene (75 mL), and the resulting mixture was refluxed under a nitrogen atmosphere overnight. The reaction mixture was then cooled to rt and partitioned between EtOAc and brine. The separated organic extract was then dried over Na_2SO_4 , filtered, and concentrated in vacuo to give a residue, which was purified by flash column chromatography to give **SM-27** as a yellow solid (998 mg, 85%).

Mp = 131 °C. Rf = 0.27 (hexane/EtOAc = 10/1).

¹H NMR (CDCl₃, 399.78 MHz) δ: 7.18-7.23 (m, 5H), 7.34-7.38 (m, 4H), 7.80-7.86 (m, 3H), 8.30-8.35 (m, 4H).

¹³C NMR (CDCl₃, 150.9 MHz) δ: 127.1, 127.3, 127.4 (two overlapping peaks), 127.6, 128.3, 129.3, 129.3, 130.5, 131.5, 132.4, 132.5, 133.3, 133.7, 133.7, 134.2, 134.2, 134.8, 135.3, 135.3, 141.6, 146.8, 183.0, 183.1.

IR(ATR): 3057 w, 1739 m, 1674 w, 1577 w, 1440 m, 1379 m, 1323 w, 1280 w, 1231 w, 1101 m, 1016 m, 883 w, 813 m, 740 s, 695 s.

MS, m/z (relative intensity, %): 393 (M⁺+1, 100).

HRMS (CI): Calcd for C₂₆H₁₆O₂S 392.0871, Found 392.0864.

Anthra[2,3-b]benzo[d]thiophene-7,12-dione (27) [CAS: 13781-50-5].

A typical procedure was followed except that **SM-27** was used as the substrate and 0.09 mmol of $Pd(OAc)_2$ and 0.27 mmol of **3** were used.

Yellow solid (84 mg, 89%). Rf 0.27 (hexane/EtOAc = 10/1) ¹H NMR (CDCl₃, 399.78 MHz): δ 7.55-7.60 (m, 2H), 7.81-7.84 (m, 2H), 7.90-7.92 (m, 1H), 8.34-8.39 (m, 3H), 8.78 (s, 1H), 9.05 (s, 1H). ¹³C NMR (CDCl₃, 150.9 MHz): δ 121.0, 122.5, 123.2, 123.3, 125.6, 127.5 (two overlapping peaks), 128.9, 130.1, 131.3, 134.0, 134.1, 134.3, 134.3, 134.9, 140.0, 141.5, 145.4, 182.9, 183.2. HRMS (CI): Calcd for C₂₀H₁₀O₂S+H⁺ 315.0474, Found 315.0484.

Methyl (2'-(Phenylthio)-[1,1'-biphenyl]-4-carbonyl)prolinate (SM-28).

A saturated aqueous solution of Na₂CO₃ (38 mL), Pd(PPh₃)₄ (347 mg, 0.3 mmol), methyl (4-bromobenzoyl)-*L*-prolinate (1.87 g, 6.0 mmol) were added to a stirred solution of **25** (690 mg, 3.0 mmol) in toluene (75 mL), and the resulting mixture was refluxed under a nitrogen atmosphere overnight. The reaction mixture was then cooled to rt and partitioned between EtOAc and brine. The separated organic extract was then dried over Na₂SO₄, filtered, and concentrated in vacuo to give a residue, which was purified by flash column chromatography (hexane/EtOAc = 1/1) to give **SM-28** as a yellow oil (1.06 g, 90%).

Rf 0.26 (hexane/EtOAc = 1/1).

The spectroscopic date indicated that **SM-28** existed as a mixture of two rotational isomers. ¹H NMR (CDCl₃, 399.78 MHz) δ : 1.87-2.06 (m, 4H), 2.29-2.34 (m, 1H), 3.47-3.81 (m, 6H), 4.68 (dd, J = 8.4, 5.6 Hz, 1H), 7.18-7.29 (m, 8H), 7.39-7.44 (m, 3H), 7.59 (d, J = 7.6 Hz, 2H). ¹³C NMR (CDCl₃, 100.53 MHz) δ : [22.4, 25.0], [29.0, 31.1], [46.2, 49.6], [51.8, 51.9], [58.8, 60.9], [125.8, 126.7], 12.8, 126.8, 128.1, 128.8, [128.8, 129.0], 130.1, 131.1, 131.3, 134.1, 134.6, 135.0, 141.8, 142.1, 168.8, 172.3.

IR(ATR): 3054 w, 2952 w, 2877 w, 1743 s, 1631 s, 1414 s, 1200 m, 1174 m, 1004 w, 848 w, 751 s, 691 m.

MS, m/z (relative intensity, %): 417 (M⁺, 25), 289 (M⁺-128, 100).

HRMS (CI): Calcd for C₂₅H₂₃NO₃S 417.1399, Found 417.1394.

Methyl (Dibenzothiophene-3-carbonyl)prolinate (28).

A typical procedure was followed except that **SM-28** was used as the substrate and 0.045 mmol of $Pd(OAc)_2$ and 0.135 mmol of **3** were used.

The spectroscopic date indicated that 28 existed as a mixture of two rotational isomers.

¹H NMR (CDCl₃, 399.78 MHz) δ: 1.90-2.39 (m, 4H), 3.54-3.85 (m, 5H), 4.73 (dd, *J* = 8.0, 5.2 Hz, 1H), 7.46-7.52 (m, 2H), 7.68 (d, *J* = 8.0 Hz, 1H), 7.86-7.88 (m, 1H), 8.09 (s, 1H), 8.18 (d, *J* = 7.6 Hz, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ: [22.8, 25.5], [29.4, 31.5], [46.8, 50.2], 52.4, [59.3, 61.6],

[121.4, 121.6], 122.1, 122.1, [122.8, 122.9], 123.7, 124.7, 127.4, 134.4, [134.9, 135.2], [136.6, 137.0], [139.3, 139.4], [140.1, 140.3], [169.3, 170.2], 172.8.

IR(ATR): 3381 w, 2952 w, 2878 w, 1739 m, 1623 m, 1548 w, 1486 w, 1442 m, 1409 m, 1316 w, 1281 w, 1198 m, 1172 m, 1003 w, 834 w, 747 s.

MS, m/z (relative intensity, %): 339 (M⁺, 32), 280 (M⁺-59, 34), 211 (M⁺-128, 100), 183

(M⁺-156, 52), 139 (M⁺-200, 30).

HRMS (EI): Calcd for C₁₉H₁₇NO₃S 339.0929, Found 339.0923.

The stability of the stereocenter of the proline moiety of **28** under the reaction conditions used for Suzuki-Miyaura and C-H/C-S couplings was confirmed by HPLC (conditions: DAICEL Chiralpak AD, 1.0 mL/min, *n*-hexane/isopropanol = 85/15, at 40 °C). Racemate:

L-Isomer after being exposed to the conditions of C-H/C-S coupling:

5,5-Difluoro-1,3,7,9-tetramethyl-10-(2'-phenylthio)-[1,1'-biphenyl]-4-yl) -5*H*-4 λ^4 , 5 λ^4 -dipyrrolo[1,2-*c*:2',1'-*f*][1,3,2]diazaborinine (SM-29).

A saturated aqueous solution of Na₂CO₃ (15 mL), Pd(PPh₃)₄ (231 mg, 0.2 mmol),

10-(4-bromophenyl)-5,5-difluoro-1,3,7,9-tetramethyl-5*H*-4 λ^4 ,

 $5\lambda^4$ -dipyrrolo[1,2-*c*:2',1'-*f*][1,3,2]diazaborinine¹⁰ (806 mg, 2.0 mmol) were added to a stirred solution of **25** (920 mg, 4.0 mmol) in toluene (30 mL), and the resulting mixture was refluxed under a nitrogen atmosphere overnight. The reaction mixture was then cooled to rt and partitioned between CH₂Cl₂ and brine. The separated organic extract was then dried over Na₂SO₄, filtered, and concentrated in vacuo to give a residue, which was purified by flash column chromatography (hexane/CH₂Cl₂ = 3/2) to give **SM-29** as a red solid (912 mg, 89%). Rf 0.29 (hexane/CH₂Cl₂ = 3/2).

¹H NMR (CDCl₃, 399.78 MHz) δ: 1.42 (s, 6H), 2.56 (s, 6H), 598 (s, 2H), 7.19-7.39 (m, 11H), 7.54 (d, *J* = 8.2 Hz, 2H).

¹³C NMR (CDCl₃, 100.53 MHz) δ: 14.7, 14.7, 121.4, 127.0, 127.5, 127.7, 128.7, 129.3, 130.3, 130.7, 130.9, 131.6, 132.3, 134.1, 134.2, 135.7, 141.6, 141.7, 142.8, 143.4, 155.5.

IR(ATR): 2925 w, 1544 s, 1510 m, 1464 m, 1410 w, 1370 w, 1307 m, 1193 s, 1156 s, 1081 m, 1053 m, 979 s, 835 w, 751 m, 714 w.

MS, m/z (relative intensity, %): 508 (M⁺, 8), 154 (M⁺-354, 100), 136 (M⁺-372, 65). HRMS (FAB): Calcd for C₃₁H₂₇BF₂N₂S 508.1956, Found 508.1977.

10-(Dibenzothiophene-3-yl)-5,5-difluoro-1,3,7,9-tetramethyl-5H-4 λ ⁴, 5 λ ⁴-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinine (29)

A typical procedure was followed on a 0.1 mmol scale except that **SM-29** was used as the substrate and 0.03 mmol of $Pd(OAc)_2$ and 0.09 mmol of **3** were used. HFIP (0.34 mL) was used instead of toluene.

¹⁰ Zhang, X.; Xiao, Y.; Qian, X. Org. Lett., **2008**, 10, 29.

Red solid (12.8 mg, 30%). Rf 0.26 (hexane/CH₂Cl₂ = 3/2)

¹H NMR (CDCl₃, 399.78 MHz): δ 1.36 (s, 6H), 2.58 (s, 6H), 5.99 (s, 2H), 7.37-7.40 (m, 1H), 7.52-7.54 (m, 2H), 7.79 (d, *J* = 0.92 Hz, 1H), 7.90-7.92 (m, 1H), 8.22-8.24 (m, 1H), 8.29 (d, *J* = 7.60 Hz, 1H).

¹³C NMR (CDCl₃, 100.53 MHz): δ 14.8 (two overlapping peaks), 121.5, 121.8, 122.0, 122.4, 122.5, 123.1, 124.5, 124.9, 127.5, 131.7, 133.5, 135.1, 136.1, 140.1 (d, *J* = 26.8 Hz), 141.3, 143.3, 155.8.

IR(ATR): 2925 w, 2856 w, 1545 s, 1510 s, 1469 m, 1409 m, 1369 w, 1308 m, 1193 s, 1157 s, 1082 m, 977 s, 826 w, 751 s, 702 w.

MS, m/z (relative intensity, %): 430 (M⁺, 4), 307 (M⁺-123, 22), 154 (M⁺-276, 100), 136 (M⁺-294, 63).

HRMS (FAB): Calcd for C₂₅H₂₁BF₂N₂S 430.1487, Found 430.1495.

VIII. Mechanistic Studies

VIII-1. Intermediacy of a sulfonium intermediate.

Synthesis of 5-phenyl-dibenzothiophenium perchlorate (34) [CAS: 42065-20-3].¹¹

A two-necked flask was charged with dibenzpthiophene 5-oxide (2.0 g, 10.0 mmol) and benzene (20 mL), and the resulting solution was cooled to 0 °C. Conc. H₂SO₄ (2.7 mL) was then added to the mixture, and the resulting mixture was stirred at rt for 24 h. The reaction mixture was added to ice water (50 mL) and extracted with benzene. The aqueous layer was collected, and added 70% HClO₄ (5.0 mL). Sparated out solid was collected, which was triturated with MeOH to give 5-phenyl-perchloratedibenzothiophenium (**34**) as a white solid (2.1g, 58%). ¹H NMR (DMSO-*d*₆, 399.78 MHz) δ : 7.59-7.78 (m, 7H), 7.94-7.98 (m, 3H), 8.38 (d, *J* = 7.80 Hz, 2H), 8.53 (d, *J* = 7.80 Hz, 2H). ¹³C NMR (DMSO-*d*₆, 100.53 MHz) δ : 124.5, 128.3, 129.2, 129.6, 131.2, 131.3, 133.2, 133.9, 134.0, 139.2.

¹¹ Hori, M.; Kataoka, T.; Shimizu, H.; Miyagaki, M. Yakugaku Zasshi. 1973, 93, 476.

A procedure for the reaction of 34 with stoichiometric Pd(0) complexes.

An oven-dried 5 mL screw-capped vial was charged with a palladium complex (0.15 mmol), 5-phenyl-perchloratedibenzothiophenium (**34**) (54.1 mg, 0.15 mmol) and toluene (0.5 mL) under a gentle stream of nitrogen, and the resulting mixture was heated at the indicated temperature for 18 h. The mixture was cooled to rt and filtered through a short pad of silica gel, eluting with EtOAc. The eluent was evaporated to give a residue, which was purified by flash column chromatography over silica gel eluting with hexane. In some cases, the yield was too low to allow for the isolation of the product, and the yield was consequently determined by NMR using 1,1,2,2-tetrachloroethane as an internal standard. When Pd(PPh₃)₄ was used as the palladium(0) source, dibenzothiophene (**2**) was obtained in good yield, even at 80 °C (entries 1). A similar result was also obtained with a phosphine-free palladium(0) source [CpPd(η^3 -1-PhC₃H₄)], although a higher temperature (130 °C) was required for completion (entries 2 and 3). These results indicated that the sulfonium salt **31** in Scheme 4 was involved as a potential intermediate in the palladium-catalyzed C-H/C-S coupling reaction. Sulfonium salt **34** did not give **2** in the absence of a palladium complex (entry 4), which indicates that the C-S bond cleavage is mediated by a palladium complex.

34	$\begin{array}{c} + & - & - \\ + & - & - \\ S & ClO_4 & - \\ Ph & ClO_4 & - \\ 18 h \\ 0.15 \text{ mmol} \end{array}$	omplex (1 equiv) ne 0.5 mL	2
entry	Pd complex	temp. (°C)	NMR yield of 2
1	Pd(PPh ₃) ₄	80	94%
2	[CpPd(η ³ -1-PhC ₃ H ₄)]	80	12%
3	[CpPd(η ³ -1-PhC ₃ H ₄)]	130	87%
4	none	130	0%

VIII-2. The fate of the cleaved phenyl group.

An oven-dried 5 mL screw-capped vial was charged with Pd(OAc)₂ (10.1 mg, 0.045 mmol), 2-phenylthio-4'-acetylbiphenyl (**SM-5**, 91.3 mg, 0.30 mmol), 2,6-dimethylbenzoic acid (**3**, 20.3 mg, 0.135 mmol) and toluene (1 mL) under a gentle stream of nitrogen, and the resulting mixture was heated at 130 °C for 18 h. The mixture was cooled to rt and filtered through a short pad of silica gel, eluting with EtOAc. The eluent was analyzed by GC using 4-benzylbiphenyl as an internal standard. The results of this analysis revealed that benzene was formed in 73% yield, along with the cyclized product (94% by NMR).

VIII-3. Labeling studies.

An oven-dried 10 mL two necked flask was charged with $Pd(OAc)_2$ (6.7 mg, 0.03 mmol), **1b** (78.7 mg, 0.30 mmol), 2,6-dimethylbenzoic acid (13.5 mg, 0.09 mmol), 4-benzylbiphenyl (25 mg as an internal standard) and toluene (2 mL) under a gentle stream of nitrogen, and the resulting mixture was refluxed under a nitrogen atmosphere. The reaction was sampled after 30, 60, 90, 120, 240, and 480 min. Each sample was diluted with EtOAc and analyzed by GC. The same reaction was also conducted in parallel using **1b-d**₅ (80.2 mg, 0.3 mmol) instead of **1b**.

The amount of **2** or **2**- d_4 in each reaction mixture was determined over time, and the results are shown below. The profiles for the reactions of **1b** and **1b**- d_4 were similar, indicating that C-H bond cleavage was not involved in the turnover-limiting step of the catalytic cycle.

([1,1'-Biphenyl]-2-yl-2',3',4',5',6',-d₅)(phenyl)sulfane (1b-d₅).

A saturated aqueous solution of Na₂CO₃ (38 mL), Pd(PPh₃)₄ (578 mg, 0.50 mmol), and bromobenzene- d_5 (2.43 g, 15.0 mmol) were added to a stirred solution of (2-phenylthio)phenyl boronic acid (1.15 g, 5.0 mmol) in toluene (75 mL), and the resulting mixture was then refluxed under nitrogen atmosphere overnight. The reaction mixture was then cooled to rt and partitioned between EtOAc and brine. The organic layer was then dried over Na₂SO₄, filtered, and concentrated in vacuo to give a residue, which was purified by flash column chromatography (hexane, Rf 0.24) to give **1b-** d_5 (1.18 g, 88%) as a colorless oil.

¹H NMR (CDCl₃, 399.78 MHz) δ: 7.19-7.32 (m, 9H).

¹³C NMR (CDCl₃, 100.53 MHz) δ: 126.8, 127.1, 127.4, 128.0, 128.1, 129.2, 129.4, 130.6, 131.2, 131.9, 135.0, 135.6, 140.4, 143.0.

IR(ATR): 3056 w, 1581 w, 1472 m, 1437 w, 1383 w, 1321 w, 1067 w, 1024 w, 834 w, 745 s, 690 s.

MS, m/z (relative intensity, %): 267 (M⁺, 100), 190 (M⁺-77, 14), 157 (M⁺-110, 8).

HRMS (EI): Calcd for C₁₈H₉D₅S 267.1130, Found 267.1129.

Dibenzothiophene-1,2,3,4-*d*₄ (2-*d*₄).

General procedure was followed except that **1b**-*d*₅ was used instead of [1,1'-biphenyl]-2-yl(phenyl)sulfane. White solid (28 mg, 50%). Mp = 94 °C. Rf 0.46 (hexane). ¹H NMR (CDCl₃, 399.78 MHz) δ : 7.45-7.47 (m, 2H), 7.85-7.87 (m, 1H), 8.15-8.18 (m, 1H). ¹³C NMR (CDCl₃, 100.53 MHz) δ : 121.7, 122.9, 124.5, 126.8, 135.7, 139.6. IR(ATR): 3056 w, 2924 w, 1739 w, 1563 w, 1442 w, 1375 w, 1334 w, 1309 w, 1261 w, 1224 w, 1130 w, 1069 w, 1049 w, 1024 w, 733 s. MS, m/z (relative intensity, %): 188 (M⁺, 100). HRMS (CI): Calcd for C₁₂H₄D₄S 188.0598, Found 188.0600.

VIII-4. Product inhibition.

An oven-dried 5 mL screw-capped vial was charged with Pd(OAc)₂ (10.1 mg, 0.045 mmol), **1b** (78.7 mg, 0.30 mmol) or 2-phenylthio-4'-acetylbiphenyl **SM-5** (91.3 mg, 0.30 mmol), 2,6-dimethylbenzoic acid (20.3 mg, 0.135 mmol), DBT derivative (0.30 mmol) and toluene (1 mL) under a gentle stream of nitrogen, and the resulting mixture was heated at 130 °C for 18 h. The mixture was cooled to rt and filtered through a short pad of silica gel, eluting with EtOAc. The filtrate was evaporated. The yield of **5** were determined by NMR using 1,1,2,2-tetrachloroethane as an internal standard. As shown below, the yields of the product decreased by 28-48 % following the addition of DBT derivatives. These results indicated that the magnitude of the inhibitory effect of the dibenzothiophene derivative was dependent on its structure, with the electron-rich derivative showing higher inhibition than the electron-neutral

derivative.

VIII-5. Effect of the leaving group.

Several other SAr groups were also investigated in this reaction to determine the electronic effects on the outcome of the catalytic cyclization process. The results revealed that the use of an electron-rich phenyl ring (i.e., Ar = p-MeO-C₆H₄) resulted in a similar yield of the cyclized product to that obtained using a naked phenyl ring (i.e., Ar = Ph). However, the use of an electron-deficient phenyl ring (i.e., Ar = p-F₃C-C₆H₄) led to a 6-fold decrease in the yield (see the table below). These electronic effects can be attributed to a delicate balance between the demands of the different steps involved in the ring-forming process. For example, the use of an electron-rich SAr group would be preferred during the reductive elimination step from **30**', whereas an electron-deficient SAr group would better facilitate the subsequent oxidative addition step of **31**'. Based on these considerations, it is clear to see why the use of an electron-neutral SPh group gave the highest yield of the product.

General procedure for the synthesis of diaryl sulfide with aryl thiols.¹²

Cu(I) iodide (213 mg, 1.12 mmol), K₂CO₃ (1.5 g, 11.2 mmol), ethylene glycol (624 μ L, 11.2 mmol), 2-iodobiphenyl (3.14 g, 11.2 mmol), 4-methoxybenzenethiol (785 mg, 5.6 mmol) and *t*-amylalcohol (5.6 mL) were added to a 50 mL Schlenk flask under a nitrogen atmosphere. The flask was heated at 100 °C and stirred for 24 h. The mixture was cooled to rt and filtered through a short pad of silica gel, eluting with EtOAc. The eluent was evaporated, and the residue was purified by flash chromatography (hexane/EtOAc = 10/1, Rf 0.50) to give [1,1'-biphenyl]-2-yl(4-methoxyphenyl)sulfane as a white solid (442 mg, 27%).

[1,1'-Biphenyl]-2-yl(4-methoxyphenyl)sulfane .

Mp = 93 °C.

¹H NMR (CDCl₃, 399.78 MHz) δ: 3.81 (s, 3H), 6.87 (dd, *J* = 6.3 Hz, 2.9 Hz, 2H), 6.93-6.96 (m, 1H), 7.16-7.26 (m, 3H), 7.32-7.46 (m, 7H).

¹³C NMR (CDCl₃, 100.53 MHz) δ: 55.5, 115.1, 124.3, 125.6, 127.6, 128.0, 128.2, 128.2, 129.5, 130.3, 136.1, 137.8, 140.7, 141.0, 160.0.

IR(ATR): 3055 w, 2937 w, 2835 w, 1590 w, 1491 m, 1460 m, 1286 w, 1245 s, 1173 w, 1031 w, 1008 w, 913 w, 827 w, 746 s, 700 s.

MS, m/z (relative intensity, %): 292 (M⁺, 100), 244 (M⁺-48, 24), 216 (M⁺-76, 11).

HRMS (CI): Calcd for C₁₉H₁₆OS 292.0922, Found 292.0922.

[1,1'-Biphenyl]-2-yl(4-(trifluoromethyl)phenyl)sulfane .

¹² Kwong, F. Y.; Buchwald, S. L. Org. Lett. 2002, 4, 3517.

General procedure was followed except that 4-trifluoromethylbenzenethiol was used instead of 4-methoxybenzenethiol

Colorless oil. (668 mg, 36%). Rf 0.34 (hexane).

¹H NMR (CDCl₃, 399.78 MHz) δ: 7.16 (d, *J* = 8.0 Hz, 2H), 7.30-7.36 (m, 6H), 7.39-7.42 (m,

4H), 7.47-7.49 (m, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ: 124.2 (d, *J* = 271.2 Hz), 125.8 (dd, *J* = 6.7 Hz, 3.8 Hz),

127.6, 128.0, 128.1 (d, *J* = 32.6 Hz), 128.6, 128.8, 129.0, 129.4, 131.2, 131.7, 134.5, 140.6, 142.9, 145.5.

IR(ATR):3059 w, 1604 w, 1463 w, 1401 w, 1324 s, 1164 m, 1120 s, 1092 m, 1063 m, 1038 w, 1012 m, 827 w, 772 w, 750 s, 699 m.

MS, m/z (relative intensity, %): 330 (M⁺, 100), 184 (M⁺-146, 25), 152 (M⁺-178, 18).

HRMS (CI): Calcd for C₁₉H₁₆OS 330.0690, Found 330.0687.

