
Supplementary Figure 1 

 

 

Statistics for changes in adhesion morphology during local RhoA Activation. (a) The percentage of 

adhesions that increase in vinculin intensity and applied stress during local RhoA activation, and the 

magnitude of the relative increase, in the cell shown in Figure 2. (b) The percentage of adhesions that 

increase in paxillin intensity and increase in applied stress during local RhoA activation, and the 

magnitude of the relative increase, in the cell shown in Figure S4. (c) The percentage of adhesions that 

increase in zyxin intensity, and the magnitude of that intensity increase in the cell shown in Figure 5. 

 

  



Supplementary Figure 2 

 

Too much local activation can result in adhesion failure. (a) A time series showing a cell expressing 

mApple-paxillin during local activation of RhoA (orange box). The green arrow illustrates the focal 

adhesion that ruptures upon local activation. Time is min:sec. (b) The corresponding traction maps for 

the cell shown in a. (c) The strain energy as a function of time during local RhoA activation (blue 

background). Upon local activation a focal adhesion rips off the substrate leading to a sudden loss in 

stain energy.  

 

  



Supplementary Figure 3 

 

Cytoskeletal flow is primarily directed along the orientation of stress fibers. A time series of local RhoA 

activation (orange box) in a cell expressing mApple-MLC. The local cytoskeletal orientation is overlaid 

as red bars, while the local cytoskeletal flow vectors are shown in blue arrows. Time is hr:min:sec. 

 

  



Supplementary Figure 4 

 

Paxillin accumulates at sites of strain along stress fibers during local activation of RhoA. (a) A time 

series of an NIH 3T3 fibroblast expressing mApple-paxillin during local activation (orange box) of RhoA. 

(b) The corresponding traction maps for the time series in a. (c) The strain energy of the cell and the 

number of focal adhesions during local activation (blue background). The number of adhesions stays 

relatively constant throughout activation. (d) The average stress and fluorescence intensity of the 

adhesions marked by white boxes in a. Also shown are kymographs generated by drawing a line along 

the long axis of the indicated adhesion.  

 

  



Supplementary Figure 5 

 

(a) The average flow rates along stress fibers before, during, and after local RhoA activation in NIH 3T3 

fibroblasts. (b) The average flow rates along stress fibers before, during, and after local RhoA activation 

in zyxin(-/-) MEFs. During activation, flow still increases from both ends of the fiber toward the 

activation region. During relaxation, however, flow speeds return to pre-activation rates but do not 

exhibit any reversal of direction. (c) Average flow rates in zyxin(-/-)+EGFP-zyxin MEFs. Rescue of zyxin in 

the knockout cells recovers the elastic flow reversal behavior seen in the 3T3s. 

 

  



Supplementary Figure 6 

 

Boxplots representing the fitting parameters for the continuum model for 3T3s, zyxin(-/-) MEFs and 

zyxin(-/-)+EGFP-zyxin MEFs. The parameters represent the elastic modulus (E), the viscosity (), the 

frictional coefficient (), the activation stress (act), the relaxation stress (rel), the activation stress time 

constant (act) and the relaxation time constant (rel).  

  



Supplementary Note 

Continuum Modeling 

We are looking for a simple model consistent with the following requirements: 

 The model should allow flow to occur, at least on the time scale of tens of minutes, on which 

stress fibers flow 

 It should allow for an elastic component because forces are transmitted quickly over large 

distances 

 Flow should be driven by gradients in myosin II activity generated by local RhoA activation 

The simplest model fulfilling these requirements is an active Maxwell model, which consists of a spring 

and a dashpot in parallel with an additional active stress element, which generates a time-dependent 

contractile stress m (see red rectangle in Supplementary Note Figure 1A). An active Maxwell model is 

also used in the theory of active gels, which has been applied to a wide range of flow phenomena in 

cells and tissue (see e.g.  Prost et al.1 for a review). 

 

 

Supplementary Note Figure 1: (A) Effective representation of the one-dimensional cell on an elastic 
substrate. The cell is expressed as a myosin II motor driven viscoelastic bar which is viscoelastically 
connected to tits environment. In the non-activated case, each motor is assumed to exert the same 
contractile stress. (B) During activation, however, motors within the activation region pull stronger. 
Effectively, only the stress difference at the boundary enters the governing equations of the model.  
 

We exclude other models for the following reasons. A solid model, e.g. a purely elastic or a Kelvin-Voigt 

one, has the property to relax to its initial configuration once all stresses vanish. This disagrees with the 

flow data in Figures 4b-d, which shows that the backflow after relaxation is significantly lower than the 

inflow during activation, thus the initial configuration is not reached anymore. We conclude that the 



system has to have a viscous component, so that it can lose memory. 

  

We also exclude a purely viscous model, in which both the inflow during RhoA activation and the 

outflow during relaxation are driven by myosin II activity. Here, the backflow after relaxation could be 

explained by the fact that the myosin motors outside the activation region work under stalling 

conditions and produce a larger effective stress during relaxation than the motors inside the activation 

region. However, we note that zyxin does not alter the myosin-II motor activity because otherwise 

there would be a significant change of the inflow dynamics during RhoA activation if zyxin is absent, 

which is not observed. Therefore this possibility would lead to a backflow during relaxation even in the 

absence of zyxin, which is not observed (compare Figure 5f). We conclude that an elastic component is 

needed to explain the strong backflow.  

 

The only two-element spring-dashpot model which incorporates both an elastic and a viscous behavior 

is the active Maxwell model used here. In the following, we will first describe the constitutive 

equations of the model. We then derive the equations of motion and the finite element formulation in 

one and two dimensions.  

 

One-dimensional active Maxwell Model 

On a coarse-grained level, cells and tissue obey the fundamental equations of viscoelasticity2:  

 Momentum Conservation:    (   )      (   )    (   )    for tissue 

 Angular momentum conservation:         

 Constitutive relation:     (      ̇   ) 

Here,   is the mass density,  (   ) the acceleration vector,  (   ) the stress tensor,  (   ) represents 

external forces and  (   ) the linear strain tensor 
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with    being the components of the displacement vector. 

 

The constitutive equation we used for the active Maxwell model reads 
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with the Young’s modulus  , the viscosity  , the Maxwell time constant   
 
 ⁄ , the Lamé coefficients 

  and  , and the active strain rate   ̇   of the motors. 

 

During the experiments, the cytoskeleton experiences a Stokes’ law friction   with the surrounding 

cytoplasm. Cells on elastic substrates are, in addition, elastically coupled to their environment, which is 

represented by a number density   of springs with an effective spring constant   arranged in series 

with the Stokes’ elements (see blue rectangle in Supplementary Note Figure 1A): 

   (   )      (   ) (   )  

   (   )       (   ) (   )  

Here,   (   ) and   (   )   ̇ (   ) are the displacement of the coupling springs and velocity of the 

coupling Stokes’ elements, respectively. We denote         as the total displacement. Note that 

the two terms on the right would add up for a model with parallel elements. Here however we have 

serial elements and therefore two equations involving the same force (which in turn is the derivative of 

the stress).  

 

In the following, we will derive the PDE which governs the evolution of the tissue by combining the 

constitutive relation (Equation 1.2) and the momentum conservation (Equation 1.3). We consider a 

one-dimensional bar of width 2L, representing the cellular cytoskeleton, which undergoes an isotropic 

contraction. The only non-zero component of the constitutive relation (Equation 1.2) is  
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We will skip the indices of     and    in the following. 

 

In order to obtain the PDE which governs the evolution of the tissue, we first calculate the derivative of 

Equation 1.5 with respect to space   and the derivative of the momentum conservation (see Equation 

1.3) with respect to time   and obtain 
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In Equation 1.6, we assumed a linear relation between the motor stress    and the active strain rate 

    , which is a plausible approximation of the concave force-velocity relation measured by Hill3. A 

linearization of the law, following e.g. the work of Besser et al.4, leads to a much simpler mathematical 

treatment and yields rather similar qualitative results. Regarding the distribution of stresses    along 

the viscoelastic bar, we make the simple assumption, that    stays constant along the bar. Thus, the 

derivative      ⁄  vanishes along the whole bar. The only position at which      ⁄  does not vanish 

is the boundary between the activation and the outer region during RhoA activation (see 

Supplementary Note Figure 1B). Therefore,      ⁄  can be skipped in Equation 1.5 and later 

introduced as a Neumann boundary condition (see Equation 1.17).  

 

We can now insert Equations 1.3 and 1.7 into 1.6 with the aim to eliminate     ⁄  and        ⁄ , 

which yields the evolution equation 
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or, in a rescaled version, 
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with the localization or penetration length5 
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At the beginning of the simulation, we assume that the displacement and the strain in the cell is zero, 

which leads to the initial conditions 
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For all simulations of the cell both on the elastic substrate and on glass, we assume free boundaries. 

Fixed boundaries would give rise to an increase of the slope of the paths of the kymographs towards 

the activation region during RhoA activation, which is not observed (compare Figure 4f). From the 

biological perspective, by using free boundaries, we assume a formation of new stress fiber material at 

the focal adhesions during RhoA activation (see e.g. Oakes et al.6). 

 

We further model the cellular contraction due to RhoA activation as a constant interior boundary 

stress which is applied at a distance      from the center of the layer in the Eulerian frame. This 

denotes the second boundary condition 
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with a typical stress profile in Supplementary Note Figure 2. The one-dimensional activation “area”    is 

calculated via 
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with      being the two-dimensional area of the activation region and       the cell area.  

 

We model two kinds of experiments by means of this one-dimensional model. First, we fit the 

evolution of the strain energy (Figure 2f), which the cell puts into an elastic substrate during its 

contraction. Here, we are interested in the dynamics of the springs   and, thus, we only consider the 

lower one of Equations 1.9. Second, we model the kymographs which emerge from the dynamics of 

the α-actinin and myosin-II compartments of the stress fibers (Figure 4b,f). Here, cells are adhering to a 

glass substrate, and thus, we are only interested in the upper one of Equations 1.9.  



 

Supplementary Note Figure 2: Typical stress profile during activation of RhoA. We assume an 
exponential plateauing of the active stress with activation and relaxation time constants      and     .  
 

Numerical algorithm  

We use a Finite Element (FE) approach with a backward difference scheme to compute the 

displacement  (   ) in Equation 1.11. For this, we discretize the time       and space       

with   {       ⁄ } and   {          }. With the Finite Difference (FD) approximation, we 

have  
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The weak formulation of Equation 1.11 amounts to 
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with region   and test function  . We can partially integrate the term on the left-hand side which 

results in 
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Then, the discretized version of Equation 1.20 is 
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The initial and boundary conditions from Equations 1.15-1.17 are implemented as 
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applying an active stress    at      at some time step     . The equations were calculated with 

the FE solver FEniCS7. 

 

Parametrization 

The Equations 1.11 and 1.17 contain 10 free parameters: Elastic modulus  ; Viscous modulus  ; 

Friction coefficient  ; Maximal active stress       ; Global (background) stress     ; Stress activation 

and relaxation time constants      and     ; Penetration length   ; and Lamé coefficients   and  . We 

choose the two Lamé coefficients from Edwards and Schwarz5:   
 

    
 with       , and       . 

The penetration length is calculated using an expression derived by Banerjee and Marchetti8: 
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with parameters taken from Supplementary Note Table 1, yielding           . The remaining 7 

parameters                             are obtained by the best fit parameter values iteratively using 

the Nelder-Mead method9. 

 

Stiffness of focal adhesion bonds    2.5     ⁄  

Lateral extent of cell    45 µm 

Length of sarcomeric subunit       1 µm 

Thickness of the substrate     

Poisson’s ratio of the substrate    0.5 

Elastic modulus of the substrate    25.8 kPa 

Thickness of the cell    1 µm 

Approx. elastic modulus of the cell    10 kPa 

Supplementary Note Table 1: Parameters used to calculate the penetration length    from Equation 1.11 

 

Fitting Results 

We applied the numerical scheme and fitting procedure presented so far to derive numerical values to 

characterize the experimental results. Supplementary Note Table 2 shows the results of fitting the 

model to the time course of the strain energy in Figure 2f. The parameter values yield a Maxwell time 

constant    
 
 ⁄        , which is in good accordance with a recent study10. 

 

Elasticity   7.37 kPa 

Viscosity   40.20 MPa•s 

Stokes’ friction   1.05        ⁄  

Global (background) stress      0.33 kPa 

Max. activation stress        0.28 kPa, 1.57 kPa, 1.68 kPa 

Activation time constant      130.12 s, 228.76 s, 130.12 s 

Relaxation time constant      158.29s, 158.29 s, 158.29 s 

Supplementary Note Table 2: Resulting parameters after fitting the active Maxwell 

model to the evolution of the strain energy in Figure 2f. The three values in the lower 

lines refer to the three succeeding RhoA activation.  

 

Supplementary Note Figure 3 illustrates the model fits to the kymographs presented in Figure 4. In 

order to be able to compare with the model, we hand-marked 10 bright paths per kymograph, each 

path consisting of 13 points, and introduced these paths into the fitting algorithm. We can see a 

qualitatively excellent agreement between model and experiment. Furthermore, Supplementary Figure 



6 reveals the parameter values we can deduce from the kymographs. The resulting parameter values 

are in good accordance with the values we already deduced from the strain energy course in 

Supplementary Note Table 2. We can calculate a hydrodynamic length    √  ⁄         , which is 

in good agreement with that of other cell types11. 

 

 

Supplementary Note Figure 3: Kymographs showing the spatiotemporal evolution of fluorescent 
myosin II molecules in single stress fibers during activation of RhoA, with time in horizontal and space 
in the vertical direction. Overlaid yellow lines show the model fits. Blue boxes illustrate the activation 
length (5 µm) and duration (900 s). 
 

We can clearly see the change in magnitudes if zyxin is absent: the stress fiber becomes stiffer and 

more fluid, the last by both a decreased viscosity and a decreased viscous coupling to its environment. 

As Supplementary Note Figure 4 demonstrates, a stiffening of the stress fiber alone does not explain 

the experiments correctly. Thus, zyxin has an effect on both the stiffness and the viscosity of the cell.   



 

 

Supplementary Note Figure 4: Kymographs showing the spatiotemporal evolution of fluorescent 
myosin II molecules in single stress fibers during activation of RhoA for the zyxin-null experiment. In 
contrast to Supplementary Note Figure 3, we inserted the model parameters derived for wild-type cells 
and turned     (yellow lines), which, obviously, is not sufficient to describe the zyxin-null case. The 
system additionally has to become more fluid.  
 

Two-dimensional active Maxwell model 

We consider the two-dimensional problem of a rectangular, one-dimensionally contracting cell of 

Maxwell type with fixed boundary (see Supplementary Note Figure 5A). We develop the corresponding 

theory, following the results of the previous section, and present numerical details. The two-

dimensional model is used to create a connection between the continuum model presented and the 

discrete model. The resulting material flow in both the continuum and discrete models is illustrated in 

Figure 3d. 

 

Supplementary Note Figure 5: (A) A two-dimensional rectangular cell, which is fixed at its boundary, 
experiences a linear contraction. (B) In order to approach the cable nature of actin filaments, the 
continuum simulation has to be modified: the cell is divided into a viscous (Newtonian) and a 
viscoelastic (Maxwellian) part. Cell material inside the activation region is modelled as viscous, non-
repelling, while material outside the activation region is viscoelastic. 

 

Theory 

 With regard to a comparison of a viscoelastic continuum model and a discrete cable Maxwell model, 

we have to modify the material as depicted in Supplementary Note Figure 5B:  

• We only consider a half cell, such that the left boundary remains unfixed. Material can “vanish” 



through this unspecified boundary.  

• The part of the cell which is covered by the activation region is modelled as a purely viscous material 

in order to achieve the non-repelling character known from cables. Once material crosses the border 

to the activation region, it is “lost”, which is equivalent to the behavior in cable Maxwell networks.  

 

Indeed, material flow inside the activation region in the continuum model significantly differs from that 

of the cable Maxwell model. However, we are only interested in the flow close to the activation region, 

such that dynamics inside the activation region remain irrelevant for our purposes. We model the 

material outside the activation region,   ,  as a Maxwell fluid with constitutive relation  
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while the material inside the activation region,   , is modeled as a Newtonian fluid 
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Together with the equation of motion 1.3, we can calculate the evolution equations for both regions in 

analogy to above, which results in 
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for region   . We start with the initial conditions 
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The fixed cell boundary gives rise to the conditions 
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Upon activation in a region of width   , we apply a piecewise active stress    in the x-direction 



according to Supplementary Note Figure 6: 
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Supplementary Note Figure 6: distribution of the active stress across the cell. The active stress is zero 
outside of the activation region.  

 

Numerical Algorithm 

As in the previous section, we use a FE approach with a backward difference scheme to compute the 

displacement  (     ) in Equations 1.31 and 1.32 with the resulting discretization in Equation 1.19.  

 

The weak formulation of the evolution Equations 1.31 and 1.32 yields 
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We use the FE solver FEniCS to calculate the displacements in Equation 1.387. The equations are solved 

separately for both regions with the trivial boundary condition, that the displacements resemble at the 

boundary between the two regions.  

 

Discrete Model 

With our model we seek to describe the interplay between elastically and viscously dominated parts of 

the actin cytoskeleton on the intermediate time scale of several minutes that the cell needs to 

rearrange its structure. As we observe the rather flat shapes of adherent cells on planar substrates, we 



reduce the three-dimensional system to its two-dimensional projection. This approach significantly 

reduced computational complexity, while allowing insights into the role of effectively one-dimensional 

stress fibers (SFs) that are embedded in a higher-dimensional environment.  

 

The majority of actin filaments are organized in distributed networks that cannot be observed by 

standard resolution optical microscopy. As these networks are only weakly cross-linked and subject to 

high turnover rates, we assume that they can be modelled as a triangulated network, whose edges 

obey a Maxwell type material model (Figure 3c). However, for the polymeric nature of the 

cytoskeleton, we replace springs for cables and reference the corresponding element as cable-

Maxwell. Cables behave like springs in the extension regime, but do not resist compression. This 

represents the polymeric nature of the cytoskeleton, where filaments can depolymerize, buckle, or 

slide along each other under compressional stress. To account for the viscous environment of the 

cytoplasm, we additionally couple each vertex of the network to the environment via a viscous Stokes 

drag element.  

 

The situation is markedly different for SFs, which are clearly visible in our fluorescence microscopy 

images. Here, many actin filaments are tightly bundled and cross-linked, resulting in a much more 

stable structure on the time scale of a few minutes up to an hour. In the model, SFs are embedded into 

the triangular network as a connected series of edges. As they are also known to show both viscous 

and elastic properties, we use the same cable-Maxwell material model for their description, though the 

material parameters are chosen differently to address their increased stability.  

 

Before we describe the details of the algorithm, we want to make some remarks on the definition of 

the dashpot model. From a single discrete viscous element, one might expect a constant velocity 

response to an external force, regardless of its length, like the velocity of a sphere being dragged 

through a viscous fluid in a tube at constant force against Stokes’ friction does not depend on the 

tube’s length. We will find a distinctly different behavior for the dashpot, however. Its constitutive 

relation is defined as  

     ̇  (   )  



with stress  , dynamic viscosity  , and strain rate  ̇, which we substitute into the equation of motion, 
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where   is the displacement,   the mass density, and   the spatial coordinate, to get 
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Here we substituted in the velocity       ⁄ . This diffusion equation can now be solved for the 

boundary conditions  ( )   ( )    ̇       ⁄    and  ((   )  )   , where   and   

denote the borders of the dashpot and   is an external stress. The stationary solution found by setting 

      ⁄ , reads 
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Clearly, the velocity with which the endpoints move away from each other,     ( )   ( )    ⁄  

(   ), grows linearly with the system’s size. A constant force velocity relation therefore only exists if 

one artificially holds the system size constant. In contrast, if we identify the term     as the system 

size   and    as its time derivative, we arrive at 
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which obviously leads to an exponentially growing flow velocity of the dashpot model. Note that the 

last conclusion is only valid if the steady state in the diffusion equation 2.3 is reached sufficiently fast. 

That holds true for high velocity diffusion constants      ⁄ . 

 

This is consistent with the picture of a fixed line density   of elements showing Stokes drag viscosity. 

The velocity of a single Stokes drag element is  

      ⁄    (   )  

where   is a proportionality constant. Coupled in series, all elements contribute to the total velocity 
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with effective viscosity  ̃. Note the Equations 2.5 and 2.7 are equivalent.  

 

These findings match the expectations of a viscous polymeric system. If a piece of filamentous network 



of length   flows with velocity   in response to a force  , this is due to molecular processes like the 

unbinding and binding of crosslinker proteins, or polymerization. If the system size is doubled to    , 

the number of crosslinkers, binding sites, etc. is also twice as large, resulting in a flow velocity of    . 

In contrast, the viscous coupling of the vertices to the environment should not depend on any distance 

from an arbitrary initial position, but resemble the situation of Stokes’ drag.  

 

Though the viscous environment coupling does not depend on the initial position, it has to depend on 

the mesh size. We expect it to be the same regardless if an area   is triangulated with   or rather    

vertices, for example. Further, the viscosity should remain constant over the whole triangulated region 

even if the vertex density is significantly higher in some regions as in others. We therefore set 

      ̃   ⁄  in Eq. 2.6, where  ̃ is a characteristic length scale, and    the area associated with 

vertex   (one third of all triangles adjacent to the vertex).  

 

Algorithm 

In order to solve the equations of motion for the network, we apply an Euler algorithm that consists of 

repeating the following steps: 

1. Determine the total contractile force    on each link   and its elastic part   
  from the current 

cable configuration alone. 

2. Determine the force  ⃗  on each vertex   as ∑     ⃗  , where the sum runs over all the adjacent 

links and the  ⃗  denote unit vectors along the links pointing away from  . 

3. Move each vertex   by  ⃗  ( ⃗   ̃    ) ( 
    ), where    is the chosen time step,    the 

viscosity of the surrounding medium,  ̃ is a characteristic friction length scale, and    is the area 

associated with vertex  . 

4. Account for the flow in the dashpot by adjusting the rest length      of each cable in a cable-

Maxwell element by 
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where    is the same time step as above,    is the cross section of the fiber and    the viscosity 

of the cable-Maxwell element. Note that      can never decrease in a cable-Maxwell model due 



to the absence of pushing forces. The rest lengths of pure cable links representing SFs are not 

adjusted. 

5. Adjust the triangular mesh to retain a good discretization (see below).  

 

Mesh Alterations 

The description of a viscously flowing matter with a triangular mesh faces some challenges regarding 

mesh integrity. As discussed before, we expect sources and sinks of cytoskeletal material due to 

polymerization and depolymerization processes as well as compression and stretching. When we 

consider a source, we expect all vertices of the surrounding mesh to flow away from it. This results in 

increasingly large and pointed triangles in this area, until the material cannot be described with the 

desired resolution anymore and discretization artifacts become visible in the simulations. The converse 

holds for sinks: as all vertices flow inwards, triangle sizes decrease until numerical difficulties arise. As a 

consequence, we need to dynamically alter the mesh configuration by refining large triangles in source 

regions and removing small triangles at sinks. This necessarily comes at the cost that one destroys 

information contained in removed triangles, edges and vertices, or introduces artificial information for 

newly created mesh elements. Still one can retain most of the information of the original state, and we 

will show how to achieve this in the following sections.  

 

To determine when mesh alterations are necessary, we define a characteristic link length   ̅ as the 

average of all resting lengths at the beginning of the simulation and a scale factor  . Then   ̅    

constitutes an upper threshold for edge resting lengths, and   ̅  ⁄  a lower threshold.  

 

Triangle refinement 

There are multiple ways to introduce new triangles into a triangular mesh. The first one that might 

come to one’s mind is to replace one large triangle by four smaller ones of equal size (Supplementary 

Note Figure 7A). However, this introduces hanging nodes, if adjacent triangles are not refined as well. 

We therefore stick to an even simpler way to insert new triangles into the mesh, as shown in 

Supplementary Note Figure 7B. An edge connecting two triangles is split in half, if its length exceeds 

  ̅   . The midpoint is connected to the two opposing tips of the triangles that shared the split edge. In 



this way, we introduce only two new triangles in one refinement step and preserve mesh integrity.  

 

Supplementary Note Figure 7: Triangle refinement. (A) Triangle refinement by splitting all edges yields 
three additional triangles but introduces hanging nodes (red). (B) Refining one long edge connecting 
two triangles. Only two additional triangles are created without hanging nodes. Edges are denoted by 
   prior to the refinement, and    afterwards.  
 

For triangle refinement it is also straightforward to define the viscous and elastic properties on the 

new edges. We are guided by the idea that we want to describe the same material with a different 

discretization, which in particular means that the forces on any vertex should not change and that the 

elastic properties of the links need to be adjusted. It is well known that two springs with spring 

constants    in series behave like one spring with        . So              holds to describe the 

same material. In our simulations we will choose the spring constants for   ,    from a homogeneous 

background stiffness, which is set to represent the elasticity of the unstrained cytoskeleton. Regarding 

the viscous properties,  (  )   (  )   (  ) can be directly transferred from    to   ,   , since the 

viscosity is already defined per length. Similar to the spring constant, we choose the filament viscosity 

from a background viscosity for the newly created edges.  

 

Triangle Removal 

As for refinement, triangles can be removed from a mesh in many different ways. The minimal well 

known approach is the edge collapse algorithm, where an edge is replaced by a vertex, which is then 

connected to the surrounding vertices12. This technique is most appropriate if triangles contain one 

edge which is significantly shorter than the other two. In our simulations with flowing cable networks, 

we also observe another way of triangle shrinkage: when one height of the triangle becomes small 

compared to the corresponding edge. These two cases are best treated with the two procedures 

described below (Supplementary Note Figure 8). 



 

Supplementary Note Figure 8: Triangle removal. (A) The short edge shared by the red triangles is 
collapsed, only the green triangles remain. (B) The height of the red triangle is small compared to its 
longest edge and is collapsed. At the same time, the blue triangle has to be split in half to avoid 
hanging nods, so the overall number of triangles in the mesh is constant.  
 

Edge Collapse 

This is the standard case for triangle removal in our simulations, as it is the simplest way to reduce the 

overall number of triangles. The procedure is triggered if an edge becomes shorter than   ̅  ⁄  and 

works as follows. First, the center of the short edge shared by the red triangles in Supplementary Note 

Figure 8A is obtained. Second, the red triangles are removed from the mesh. Third, the vertices where 

  ,    and   ,    meet are displaced to the center determined previously. In the last step, each of the 

two edges that a red triangle shared with green ones have to be merged.  

 

Note that there are mesh configurations, in which the procedure as described above does not yield the 

desired results. We list here the three checks we perform before the operation is executed. If any of 

the checks is positive, the operation is prohibited. 

1. One of the dashed white lines may intersect with one of the outer edges of a green triangle. In 

this case, the application of the edge collapse algorithm would lead to a failure in the mesh 

(some area is covered by two triangles, while some other area is uncovered at the same time). 

2. Either of the red triangles in Supplementary Note Figure 8A may possess an internal structure 

of even smaller triangles. In this case, the algorithm would transform the sub-triangles into a 

straight line, which leads to undefined behavior. 

3. One of the dashed white lines may become longer than a threshold for triangle refinement and 

thereby cause an infinite sequence of refinement and removal steps. 

 



Height collapse 

Edge collapse is not sufficient as the only way to remove triangles from the mesh. Each edge length 

might still be above a given threshold for a long and pointed triangle, but the triangle area can still tend 

towards zero. For this reason, we introduce another operation, which removes one triangle and splits 

another. Consequently, the overall number of triangles is conserved under this operation. However, it 

leads to more homogeneous distributions of triangle areas.  

 

The procedure is triggered if the height of a triangle becomes smaller than   ̅ (  )⁄ . As depicted in 

Supplementary Note Figure 8B, the central triangle (red) is removed, and the joint vertex of all green 

triangles is moved to the center of the red triangle. The blue triangle that shares the long edge of the 

red one is split in two in order to avoid hanging nodes. Note that the long edge is therefore split in two, 

and each of the parts is merged with one edge of the now neighboring green triangle.  

 

Again, one has to check for several pitfalls that may occur for certain mesh configurations. If any of the 

following checks is positive, the operation is prohibited. The triangle colors now refer to the ones in 

Supplementary Note Figure 8B.  

1. As for the edge collapse case, one of the dashed white lines may intersect with one of the outer 

edges of a green triangle. In this case, the application of the edge collapse algorithm would lead 

to a failure in the mesh (some area is covered by two triangles, while some other area is 

uncovered at the same time). 

2. The four triangles that share an edge with the red triangle could match the height collapse 

criterion as well (the blue one counts as two once it is split). If they do, this can lead to an 

infinite chain of refinements. 

 

Conserving important structures during triangle removal 

Note that we introduce one new vertex in each of the triangle removal operations. Its position is 

indicated in Supplementary Note Figure 8 by the point where the dotted white lines merge. However, 

this might not be appropriate if the operations are to be performed in the presence of fixed vertices, 

free boundaries, or stress fibers. These structures are to be preserved, as they are of special 



importance to the simulations. This means for fixed vertices to keep their position, and for edges at the 

boundary or edges of stress fibers to remain straight lines. If it is not possible to retain all structures 

unperturbed, we give highest priority to keeping the location of fixed vertices, followed by vertex 

locations at the boundary and within stress fibers in this order.  

 

Cable properties during triangle removal  

We are again guided by the idea to describe the same material, now with a coarser discretization. 

Forces on vertices and local elastic properties should not change. However, it is not possible to achieve 

this completely, since we are removing information from the mesh. In the edge collapse case, the 

orientation and therefore the force direction of edges       in Supplementary Note Figure 8A 

changes only slightly, since the collapsed edge is short. However, force magnitudes may change 

significantly depending on the local spring constants. We therefore adjust the resting length for each of 

these edges such that  (  )   (  ), where   denotes the edge force, while the spring constants are 

kept constant. As   ,    and   ,    are merged, their spring constants   are added to yield  (  )  

 (  )   (  ) and  (  )   (  )   (  ). In this sum we account only for edges that are in the 

extension limit, as cables cannot build up compression forces. Rest lengths    are chosen such that the 

force of the merged edge equals the sum of its two predecessors. If both preceding edges do not bear 

force, the rest length is ill-defined because of the flat force-extension curve for cables in the 

compression regime. In this case, we choose the new rest length such that the length difference    

between current length   and rest length   ,        , of the merged edge is the average of the two 

predecessors. If the preceding edges carry active forces, the new edge will carry the summed force.  

 

In the height collapse case, we combine the algorithms for edge splitting and edge merging, that are 

adopted from the edge collapse and the triangle refinement operations. The edge shared by the red 

and the blue triangle is split as in the triangle insertion section, and each of the two parts is merged 

with the corresponding edge share by the red and a green triangle.  

 

Regarding the viscous properties, we note that splitting an edge does not change the filament viscosity 

as it is defined per length (see above). Merging however does increase the viscosity of the single 



dashpots to their sum in the joint element. So for merging, filament viscosities are treated just as it is 

explained above for the spring constants.  

 

Edge flipping  

After some repetitions of triangle insertion and removal, some vertices show an increase in 

connectivity, i.e. in the number of edges connected to one vertex, which ultimately leads to numerical 

and algorithmic difficulties (e. g. the problems discussed in the triangle removal section). We introduce 

edge flipping in order to keep a homogeneous distribution of connectivity. If two triangles are 

connected by an edge  , and if the two triangle angles opposite to   are larger than a threshold angle 

    ⁄ , the edge is flipped and connects now the two vertices which where unconnected before. 

During this operation, we can conserve hardly any elastic properties of the material. We simply select 

the spring constant for the new edge from the background elasticity and apply zero strain. To keep 

these events rare, we use        in our simulations. 

 

Active contraction 

To induce the active contraction of the mesh, we assign force dipoles    to edges   in the activated 

region of the cell (Figure 3c). Further, if the force dipoles are assigned to both SF and background 

network edges, and the contractile zone does not span the whole width of the cell, SFs are indented 

towards the center. As this does not occur in experiments, we conclude that SFs are the only relevant 

active elements (Figure 3e,f) and restrict the assignment to SF edges. As in the one-dimensional model, 

we ramp the force level up and down with an exponentially plateauing function,     (  

   (   ⁄ )), where tau is a time constant fitted to be         with the continuum model.  

 

Parameter Choice 

In order to compare the discrete model to the continuum model, we derive the main parameters from 

the continuum quantities according to Caillerie et al.13. For this purpose, we set the spring constant to 

    √     ⁄ , where        is the system height and    is the Young’s modulus from the 

continuum model. Likewise, we evaluate     √     ⁄  and     ⁄      ⁄ . For the fitting of the 

kymograph shown in Figure 4h, we used the fitted parameters from the continuum model, which are 



          ,             , and                
 .  
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