SUPPLEMENTARY FIGURES

Supplementary Figure. 1. Validation in Plasma: Expression (number of reads/million, Log2) levels of miR-146a-5p, miR-146b-5p, and miR-24-3p after 8 weeks in MDD patients who responded to duloxetine treatment. ***indicates P<0.001. Levels of miRNA in plasma are considerably lower and more variable than in whole blood. We were not able to obtain reliable measures for miR-425-3p in plasma samples.

Supplementary Figure. 2. MicroRNA correlations in brain: Scatterplots of Pearson correlations between differentially expressed miRNAs in postmortem brain (vPFC) samples.

Supplementary Figure. 3. Discovery Cohort – Predicted target genes involved in MAPK and Wnt signaling

pathways: Differential expression analysis of MAPK/Wnt genes identified through our computational analysis. Most of the predicted targets were significantly dysregulated after duloxetine treatment (25 out of 36 genes, 69%).

Supplementary Figure. 4. Expression of miR-146a-5p, miR-146b-5p, miR-24-3p and miR-425-3p in human wholeblood and postmortem brain samples: Small RNA sequencing data (number of reads/million, Log2) expression data for miR-146a-5p, miR-146b-5p, miR-24-3p and miR-425-3p in whole-blood and vPFC of postmortem brains.

Supplementary Figure. 5. Expression of miR-146a-5p, miR-146b-5p, miR-24-3p and miR-425-3p in other human biological fluids: Small RNA sequencing data (number of reads/million, Log2) expression data for miR-146a-5p, miR-

146b-5p, miR-24-3p and miR-425-3p in human plasma (N=37), serum (N=13), saliva (N=3) and semen/sperm (N=4). miRmine Database: <u>http://guanlab.ccmb.med.umich.edu/mirmine/</u>

Expression of miRNAs in Different Human Body Fluids

SUPPLEMENTARY TABLES

Supplementary Table 1. Duloxetine Treated Samples: Expression of miR-146a-5p, miR-146b-5p, miR-24-3p, and miR-425-3p in responders vs. non-responders from the discovery cohort.

microRNA	Adj P value - Responders	Adj P value – Non-Responders
hsa-miR-425-3p	2.63949E-08	0.205673072
hsa-miR-24-3p	6.81342E-06	0.271682804
hsa-miR-146a-5p	3.74787E-05	0.271682804
hsa-miR-146b-5p	0.001448493	0.722733069

Supplementary Table 2. Placebo Treated Samples: Expression of miR-146a-5p, miR-146b-5p, miR-24-3p, and miR-425-3p in responders vs. non-responders from the discovery cohort.

microRNA	Adj P value - Responders	Adj P value – Non-Responders
hsa-miR-425-3p	0.000141454	0.278461101
hsa-miR-24-3p	0.000325475	0.203927569
hsa-miR-146a-5p	1.86011E-05	0.269224663
hsa-miR-146b-5p	0.003720756	0.59572429

Supplementary Table 3. Technical Validation: MicroRNAs selected for technical validation. In total, 13 out 15 (87%) miRNA targets tested were validated. Small RNA sequencing results were validated with a custom miRNA panel using circulatory miRNA assays by Firefly (BioWorks). Bold font denotes statistical significance.

miRNA	Group	FC	P value - RES
miR-24-3p	Target	0,75	1,691E-07
miR-425-3p	Target	0,62	5,373E-04
miR-324-5p	Target	0,77	1,366E-03
miR-361-3p	Target	0,78	0,002
miR-425-5p	Target	0,83	0,002
miR-423-3p	Target	1,23	0,004
miR-361-5p	Target	0,81	0,006
miR-146a-5p	Target	0,88	0,011
miR-6750-3p	Target	1,41	0,031
miR-146b-5p	Target	0,87	0,035
miR-3173-5p	Target	1,20	0,036
miR-3605-3p	Target	1,22	0,040
miR-3074-5p	Target	0,69	0,086
miR-1180-3p	Target	1,03	0,417
miR-6511a-3p	Target	1,00	0,487
Let-7b-5p	End Control	0,99	0,462
Let-7i-5p	End Control	1,02	0,319
miR-19b-3p	End Control	0,97	0,311

Supplementary Table 4. Correlation between the five differentially expressed miRNAs in duloxetine and placebo responders. Significant *P* values and Pearson coefficients (r).

Pearson's r / (<i>P</i> Values)	miR-146a-5p	miR-146b-5p	miR-24-3p	miR-3074-5p	miR-425-3p
miR-146a-5p	1	Х	Х	Х	Х
miR-146b-5p	0.70 (6.9E-38)	1	Х	Х	Х
miR-24-3p	0.70 (8.5E-38)	0.39 (3.1E-10)	1	Х	Х
miR-3074-5p	0.62 (3.2E-27)	0.29 (3.1E-6)	0.97 (1.2E-162)	1	Х
miR-425-3p	0.77 (1.6E-50)	0.55 (2.8E-21)	0.73 (6.8E-43)	0.64 (2.1E-30)	1

Supplementary Table 5. Replication Cohort 1. Differential expression of miRNAs after 8 weeks of antidepressant treatment. MiRNAs are ranked according to *P* values and fold change (FC).

miRNA	FC (T0 vs T8)	P value - RES
miR-425-3p	0.81	0.023
miR-24-3p	0.83	0.035
miR-146a-5p	0.82	0.030
miR-146b-5p	0.83	0.041
miR-3074-5p	0.95	0.333

Supplementary Table 6. Replication Cohort 2. Differential expression of miRNAs after 8 weeks of antidepressant treatment. MiRNAs are ranked according to *P* values and fold change (FC).

miRNA	FC (T0 vs T8)	P value - RES
miR-425-3p	0.99	0.480
miR-24-3p	0.89	0.023
miR-146a-5p	0.80	0.045
miR-146b-5p	0.73	0.030

Supplementary Table 7. Hematology data analysis: Cell count analysis performed in blood samples from MDD patients treated with Duloxetine (Discovery Cohort).

	Respo	nders -Duloxetir	ne	Non-Res	ponders – Duloxo	etine
Cell Type	Baseline	After Treatment	P- value	Baseline	After Treatment	P- value
Leukocytes	6.5 ± 1.6	6.4 ± 1.4	0,76	6.69 ± 1.9	6.9 ± 2.1	0,25
Basophils	0.35 ± 0.19	0.33 ± 0.2	0,84	0.36 ± 0.19	0.37 ± 0.2	0,55
Eosinophils	2.3 ± 0.16	2.5 ± 0.16	0,11	2.9 ± 0.21	2.9 ± 0.22	0,45
Lymphocytes	29.2 ± 6.8	29.5 ± 6.8	0,95	32.4 ± 9.2	30.1 ± 7.3	0,41
Monocytes	6.6 ± 2.3	6.7 ± 2.0	0,51	6.5 ± 2.0	6.7 ± 2.2	0,64
Neutrophils	61.6 ± 8.6	60.7 ± 8.3	0,57	57.9 ± 10.8	58.6 ± 8.4	0,80

Supplementary Table 8. Hematology data analysis: Cell count analysis performed in blood samples from MDD patients treated with a placebo control (Discovery Cohort).

	Resp	onders -Placebo		Non-Re	esponders – Place	ebo
Cell Type	Baseline	After Treatment	P- value	Baseline	After Treatment	P- value
Leukocytes	6.6 ± 2.1	6.5 ± 1.5	0,67	6.8 ± 1.9	6.7 ± 1.9	0,61
Basophils	0.44 ± 0.3	0.43 ± 0.2	0,86	0.35 ± 0.2	0.41 ± 0.2	0,24
Eosinophils	2.3 ± 0.17	2.9 ± 0.2	0,34	2.5 ± 0.14	2.5 ± 0.177	0,57
Lymphocytes	30.2 ± 8.6	31.0 ± 7.0	0,62	31.1 ± 8.2	31.4 ± 6.9	0,70
Monocytes	6.8 ± 2.9	7.2 ± 2.9	0,37	6.6 ± 2.4	6.1 ± 2.2	0,28
Neutrophils	59.1 ± 10.6	57.4 ± 9.4	0,39	59.5 ± 9.4	58.7 ± 7.7	0,95

Supplementary Table 9. Correlation between miR-146a-5p, miR-146b-5p, miR-24-3p and miR-425-3p in postmortem brains of subjects with MDD and controls. Significant P values and Pearson coefficients (r).

Pearson's r / (P Values)	miR-146a-5p	miR-146b-5p	miR-24-3p	miR-425-3p
miR-146a-5p	1	Х	Х	Х
miR-146b-5p	0.91 (9.2E-20)	1	Х	Х
miR-24-3p	0.91 (2.8E-20)	0.88 (7.0E-18)	1	Х
miR-425-3p	0.92 (9.9E-22)	0.92 (6.2E-22)	0.94 (2.5E-24)	1

Supplementary Table 10. Discovery Cohort – **Predicted target genes involved in MAPK and Wnt signaling pathways:** Correlation analysis between the expression of miR-146a-5p, miR-146b-5p, miR-24-3p and miR-425-3p with genes identified through our computational analysis. Most of the predicted targets were significantly correlated with one or more of the miRNAs tested (32 out of 36 genes, 89%).

Gene Symbol	# of Pathways	Signaling Pathway	Correlated with miRNAs
CACNA1E	2	МАРК	Yes
MAPT	1	МАРК	Yes
NTRK2	1	МАРК	Yes
PDGFRB	2	МАРК	Yes
PPM1A	1	МАРК	Yes
SRF	1	МАРК	Yes
PRKACA	3	MAPK, Wnt	Yes
PRKCA	3	MAPK, Wnt	Yes
PRKCB	3	MAPK, Wnt	Yes
RAC1	3	MAPK, Wnt	Yes
CTNNBIP1	1	Wnt	Yes
NFAT5	1	Wnt	Yes
PPP2R1B	1	Wnt	Yes
SMAD3	2	Wnt	Yes
RPS6KA3	1	МАРК	Yes
MAPK8	2	MAPK, Wnt	Yes
PRKACB	3	MAPK, Wnt	Yes
CAMK2D	2	Wnt	Yes
TBL1X	1	Wnt	Yes
WNT7B	1	Wnt	Yes
ACVR1B	3	MAPK	Yes
EGFR	4	МАРК	Yes
FGF2	1	MAPK	Yes
MAP3K8	1	МАРК	Yes
MRAS	1	MAPK	Yes
PDGFRA	3	MAPK	Yes
ZAK	1	MAPK	Yes
NFATC2	2	MAPK, Wnt	Yes
FZD3	1	Wnt	Yes
SMAD4	2	Wnt	Yes
VANGL2	1	Wnt	Yes
MAPK14	1	МАРК	Yes
RASGRF1	1	MAPK	No
RPS6KA6	2	МАРК	No
CXXC4	1	Wnt	No
SMAD2	1	Wnt	No

Supplementary Table 11. Discovery Cohort – Predicted target genes involved in MAPK and Wnt signaling pathways: Differential expression analysis of MAPK/Wnt genes identified through our computational analysis. Most of the predicted targets were significantly dysregulated after duloxetine treatment (25 out of 36 genes, 69%).

		Respo	nders			Non-Resp	onders	5
Gene Name	T0 Mean	T8 Mean	FC	P value	T0 Mean	T8 Mean	FC	P value
PPM1A	4.55	5.41	1.19	0.004420326	4.62	4.34	0.94	0.49965897
PRKCB	319.72	338.64	1.06	0.060316585	322.24	326.96	1.01	0.7897703
CAMK2D	2.61	2.82	1.08	0.057039768	2.69	2.69	1.00	0.98554325
NFAT5	6.50	7.31	1.12	0.03572427	7.75	7.50	0.97	0.7655441
NTRK2	2.36	2.52	1.07	0.051177796	2.44	2.33	0.95	0.3864045
FGF2	2.61	2.79	1.07	0.08750842	2.82	2.66	0.94	0.3462899
МАРЗК8	45.66	49.45	1.08	0.045875274	38.48	43.25	1.12	0.5140519
PDGFRA	2.89	3.12	1.08	0.046876404	2.89	2.63	0.91	0.13049328
SMAD4	94.10	100.68	1.07	0.049906548	83.09	89.14	1.07	0.6193001
CTNNBIP1	8.75	10.30	1.18	0.036455154	12.65	11.97	0.95	0.7602985
MRAS	3.14	3.41	1.09	0.050751105	3.31	3.72	1.13	0.19830658
NFATC2	2.36	2.52	1.07	0.051177796	2.44	2.33	0.95	0.3864045
EGFR	2.61	2.80	1.07	0.06554178	2.17	2.26	1.04	0.3559935
МАРК8	3.12	3.42	1.08	0.044178944	3.28	3.41	1.04	0.6857121
MAPK14	5.04	5.74	1.14	0.03593131	6.52	5.15	0.79	0.19701816
SRF	182.04	191.19	1.05	0.041735854	178.86	185.74	1.04	0.3582986
ACVR1B	38.13	41.21	1.08	0.034682844	38.13	41.15	1.08	0.48104617
PPP2R1B	2.53	2.70	1.07	0.07770063	2.96	2.82	0.95	0.46333113
PRKACB	6.91	7.87	1.06	0.07025041	7.00	7.14	1.02	0.8925169
RAC1	503.27	522.19	1.04	0.07871647	507.27	493.01	0.97	0.41145188
FZD3	4.72	4.66	0.99	0.8001341	4.83	4.48	0.93	0.49779695
MAPT	4.66	4.32	0.93	0.22382466	3.99	4.15	1.04	0.5721705
PRKACA	2.31	2.54	1.10	0.002043212	2.28	2.48	1.09	0.21436845
VANGL2	3.20	3.04	0.95	0.28532743	3.11	3.22	1.03	0.7330913
ZAK	3.16	3.04	0.96	0.3574143	3.47	3.03	0.87	0.2767202
PRKCA	59.32	62.56	1.05	0.08641608	61.85	56.12	0.91	0.16824569
WNT7B	3.29	3.15	0.96	0.37274805	3.10	3.04	0.98	0.7147429
RPS6KA3	2.97	3.28	1.09	0.012417246	3.08	3.11	1.01	0.9133113
SMAD3	72.74	77.46	1.07	0.05446795	80.96	78.07	0.96	0.3105279
PDGFRB	3.55	3.61	1.02	0.7372547	4.35	4.11	0.95	0.53927463
CACNA1E	3.84	4.22	1.10	0.069353946	4.02	4.08	1.02	0.86569136
TBL1X	317.96	309.47	0.97	0.44723037	304.89	307.98	1.01	0.87157595
SMAD2	8.45	8.17	0.97	0.5262408	8.00	7.97	1.00	0.97446495
RPS6KA6	2.69	2.62	0.97	0.39195198	2.64	2.65	1.00	0.9641064
CXXC4	2.60	2.63	1.01	0.76980865	2.69	2.90	1.08	0.4009055
RASGRF1	2.79	2.85	1.02	0.5967571	2.76	2.66	0.96	0.5654304

Supplementary Table 12. Replication cohort – Predicted target genes involved in MAPK and Wnt signaling pathways: Correlation analysis between the expression of miR-146a-5p, miR-146b-5p, miR-24-3p and miR-425-3p with genes identified through our computational analysis. Most of the predicted targets were significantly correlated with one or more of the miRNAs tested (20 out of 28 genes, 71%).

Gene Symbol	# of Pathways	Signaling Pathway	Correlated with miRNAs
PRKCA	3	MAPK, Wnt	Yes
PRKCB	3	MAPK, Wnt	Yes
RAC1	3	MAPK, Wnt	Yes
CTNNBIP1	1	Wnt	Yes
NFAT5	1	Wnt	Yes
SMAD3	2	Wnt	Yes
RPS6KA3	1	МАРК	Yes
PRKACB	3	MAPK, Wnt	Yes
CAMK2D	2	Wnt	Yes
ACVR1B	3	МАРК	Yes
EGFR	4	МАРК	Yes
MAPK14	1	МАРК	Yes
FZD3	1	Wnt	Yes
SMAD2	1	Wnt	Yes
MAPT	1	МАРК	Yes
NTRK2	1	МАРК	Yes
PPP2R1B	1	Wnt	Yes
ZAK	1	МАРК	Yes
CXXC4	1	Wnt	Yes
VANGL2	1	Wnt	Yes
PDGFRB	2	МАРК	No
SRF	1	МАРК	No
MRAS	1	МАРК	No
PPM1A	1	МАРК	No
PRKACA	3	MAPK, Wnt	No
TBL1X	1	Wnt	No
RASGRF1	1	МАРК	No
NFATC2	2	MAPK, Wnt	No

Supplementary Table 13. Overexpression of miRNAs – Dysregulation of MAPK and Wnt genes: HEK293 cells were transfected for 24 hrs with a miRNA mimic for each of the individual miRNAs (miR-146a-5p, miR-146b-5p, miR-24-3p and miR-425-3p), a mock vehicle control or a miRNA-mimic scramble control. Results were compared to untreated control cells. All of the MAPK/Wnt genes tested were down-regulated by at least one of the miRNA mimics transfected. Bold font denotes statistical significance.

Gene	Untrs Ctrl	Vehicle Ctrl	Mimic Scramble	Mimic (miR-146a- 5p)	Mimic (miR-146b- 5p)	Mimic (miR- 24-3p)	Mimic (miR- 425-3p)
NTRK2 (T1)	1	0,9563	0,6539	0,0308	0,0046	0,0044	0,0008
MAPK8	1	0,1684	0,1195	0,0052	0,0153	0,0305	0,0006
MAPT	1	0,3775	0,2521	0,0070	0,0012	0,0764	0,0173
PRKACA	1	0,5554	0,4658	0,0312	0,0183	0,0929	0,0094
PDGFRB	1	0,1432	0,6751	0,0287	0,0500	0,0530	0,0313
RPS6KA3	1	0,5985	0,3422	0,0284	0,0091	0,0137	0,1300
ZAK	1	0,6916	0,2545	0,0178	0,0122	0,0115	0,1437
PPM1A	1	0,7750	0,2107	0,0013	0,0091	0,0004	0,1782
FGF2	1	0,6269	0,8467	0,0039	0,0162	0,0187	0,2939
PDGFRA	1	0,6373	0,3221	0,3271	0,0370	0,0245	0,0347
MAPK14	1	0,7948	0,5130	0,0265	0,0335	0,0447	0,3475
PRKCA	1	0,2576	0,4252	0,7020	0,0037	0,0036	0,0277
PRKACB	1	0,7682	0,2054	0,0042	0,8559	0,0087	0,0403
SRF	1	0,4667	0,4550	0,0610	0,0111	0,0481	0,0630
RAC1	1	0,9366	0,0897	0,0581	0,0005	0,0994	0,0301
ACVR1B	1	0,6816	0,3242	0,0279	0,1644	0,0756	0,0079
EGFR	1	0,8678	0,2799	0,0126	0,0395	0,0972	0,1635
MAP3K8	1	0,4425	0,8417	0,2709	0,0226	0,0047	0,0733
RPS6KA6	1	0,3079	0,7932	0,8192	0,0102	0,0025	0,0835
NFATC2	1	0,7783	0,4279	0,9689	0,0305	0,0488	0,1449
PRKCB	1	0,4853	0,7585	0,7473	0,6636	0,0344	0,0312
MRAS	1	0,2844	0,2957	0,0865	0,0563	0,5540	0,0455
RASGRF1	1	0,7801	0,1900	0,2000	0,2403	0,0777	0,3971
B Actin	1	0,6533	0,2446	0,5980	0,5678	0,3883	0,1525
GAPDH	1	0,5548	0,3238	0,3210	0,1964	0,7436	0,6392

Supplementary Table 14. MAPK and Wnt genes: Most of these genes have been previously associated with MDD or antidepressant activity (*supplementary references*).

#	Gene Symbol	Signaling Pathway	Literature References MDD or AD Treatment	Literature References Other Psychiatric Disorders
1	CACNA1E	МАРК	1,2	
2	MAPT	МАРК	3	
3	NTRK2	МАРК	4,5,6	
4	PDGFRB	MAPK	7	
5	PPM1A	МАРК	8	
6	SRF	MAPK	9,1	
7	PRKACA	MAPK, Wnt	11	
8	PRKCA	MAPK, Wnt	12	
9	PRKCB	MAPK, Wnt	13,14	
10	RAC1	MAPK, Wnt	15	
11	CTNNBIP1	Wnt	10	
12	NFAT5	Wnt	17	
13	PPP2R1B	Wnt	18	
14	SMAD3	Wnt	19,2	
15	RPS6KA3	МАРК	21	
16	MAPK8	MAPK, Wnt	22	
17	PRKACB	MAPK, Wnt	11	
18	CAMK2D	Wnt	23	
19	TBL1X	Wnt	21	
20	WNT7B	Wnt	21	
21	ACVR1B	МАРК	1	
22	EGFR	МАРК	24,25	
23	FGF2	МАРК	20,27	29
24	MAP3K8	МАРК		28
25	MAPK14	МАРК		29
26	MRAS	МАРК	20.21	
27	PDGFRA	МАРК	30,51	
28	RASGRF1	MAPK	32,33	
29	RPS6KA6	MAPK	54	
30	ZAK	MAPK	25	
31	NFATC2	MAPK, Wnt		
32	CXXC4	Wnt	36 27	
33	FZD3	Wnt	10.29	
34	SMAD2	Wnt	17,38	
35	SMAD4	Wnt	30,39	
36	VANGL2	Wnt	40	

Gene	TaqMan Assay ID
miR-146a-5p	#000468
miR-146b-5p	#001097
miR-24-3p	#000402
miR-425-3p	#002302
ACVR1B	Hs00244715_m1
EGFR	Hs01076090_m1
FGF2	Hs00266645_m1
MAP3K8	Hs00178297_m1
MAPK14	Hs01051152_m1
MAPK8	Hs01548508_m1
MAPT	Hs00902194_m1
MRAS	Hs00171926_m1
NFATC2	Hs00905451_m1
NTRK2 (T1)	Hs01093110_m1
PDGFRA	Hs00998026_m1
PDGFRB	Hs01019589_m1
PPM1A	Hs01056778_g1
PRKACA	Hs00427274_m1
PRKACB	Hs01086757_m1
PRKCA	Hs00925193_m1
PRKCB	Hs00176998_m1
RAC1	Hs01902432_s1
RASGRF1	Hs00182314_m1
RPS6KA3	Hs00177936_m1
RPS6KA6	Hs00179523_m1

Supplementary Table 15. Primers: Complete list of primers used for qRT-PCR experiments

SUPPLEMENTARY REFERENCES

- Lavebratt, C., Aberg, E., Sjoholm, L. K. & Forsell, Y. Variations in FKBP5 and BDNF genes are suggestively associated with depression in a Swedish population-based cohort. Journal of affective disorders 125, 249-255, doi:10.1016/j.jad.2010.02.113 (2010).
- Drago, A. et al. AKAP13, CACNA1, GRIK4 and GRIA1 genetic variations may be associated with haloperidol efficacy during acute treatment. European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology 23, 887-894, doi:10.1016/j.euroneuro.2012.08.013 (2013).
- 3. Romano, A. et al. Depressive-like behavior is paired to monoaminergic alteration in a murine model of Alzheimer's disease. Int J Neuropsychopharmacol 18, doi:10.1093/ijnp/pyu020 (2015).
- 4. Maussion, G. et al. Regulation of a truncated form of tropomyosin-related kinase B (TrkB) by Hsa-miR-185* in frontal cortex of suicide completers. PLoS One 7, e39301, doi:10.1371/journal.pone.0039301 (2012).
- 5. Wang, J. W., Dranovsky, A. & Hen, R. The when and where of BDNF and the antidepressant response. Biol Psychiatry 63, 640-641, doi:10.1016/j.biopsych.2008.01.008 (2008).
- Ernst, C., Chen, E. S. & Turecki, G. Histone methylation and decreased expression of TrkB.T1 in orbital frontal cortex of suicide completers. Mol Psychiatry 14, 830-832, doi:10.1038/mp.2009.35 (2009).
- Kruk, J. S. et al. Fluoxetine-induced transactivation of the platelet-derived growth factor type beta receptor reveals a novel heterologous desensitization process. Molecular and cellular neurosciences 65, 45-51, doi:10.1016/j.mcn.2015.02.013 (2015).
- 8 .Malki, K. et al. Convergent animal and human evidence suggests a role of PPM1A gene in response to antidepressants. Biol Psychiatry 69, 360-365, doi:10.1016/j.biopsych.2010.08.011 (2011).
- Xu, F. et al. Differential co-expression and regulation analyses reveal different mechanisms underlying major depressive disorder and subsyndromal symptomatic depression. BMC bioinformatics 16, 112, doi:10.1186/s12859-015-0543-y (2015).
- 10. Nestler, E. J. Role of the Brain's Reward Circuitry in Depression: Transcriptional Mechanisms. International review of neurobiology 124, 151-170, doi:10.1016/bs.irn.2015.07.003 (2015).
- Shelton, R. C., Hal Manier, D. & Lewis, D. A. Protein kinases A and C in post-mortem prefrontal cortex from persons with major depression and normal controls. Int J Neuropsychopharmacol 12, 1223-1232, doi:10.1017/S1461145709000285 (2009).
- 12. Carroll, L. S. et al. Evidence for rare and common genetic risk variants for schizophrenia at protein kinase C, alpha. Mol Psychiatry 15, 1101-1111, doi:10.1038/mp.2009.96 (2010).
- 13. Costas, J. et al. Association study of 44 candidate genes with depressive and anxiety symptoms in post-partum women. J Psychiatr Res 44, 717-724, doi:10.1016/j.jpsychires.2009.12.012 (2010).
- 14. Sakaida, M. et al. Electroconvulsive seizure-induced changes in gene expression in the mouse hypothalamic paraventricular nucleus. J Psychopharmacol 27, 1058-1069, doi:10.1177/0269881113497612 (2013).
- 15. Golden, S. A. et al. Epigenetic regulation of RAC1 induces synaptic remodeling in stress disorders and depression. Nature medicine 19, 337-344, doi:10.1038/nm.3090 (2013).
- 16. Wei, Y. B., Backlund, L., Wegener, G., Mathe, A. A. & Lavebratt, C. Telomerase dysregulation in the hippocampus of a rat model of depression: normalization by lithium. Int J Neuropsychopharmacol 18, pyv002, doi:10.1093/ijnp/pyv002 (2015).
- 17. Ploski, J. E., Newton, S. S. & Duman, R. S. Electroconvulsive seizure-induced gene expression profile of the hippocampus dentate gyrus granule cell layer. Journal of neurochemistry 99, 1122-1132, doi:10.1111/j.1471-4159.2006.04156.x (2006).
- 18. Kim, S. & Webster, M. J. Integrative genome-wide association analysis of cytoarchitectural abnormalities in the prefrontal cortex of psychiatric disorders. Mol Psychiatry 16, 452-461, doi:10.1038/mp.2010.23 (2011).
- Park, S. H. et al. Melittin inhibits TGF-beta-induced pro-fibrotic gene expression through the suppression of the TGFbetaRII-Smad, ERK1/2 and JNK-mediated signaling pathway. The American journal of Chinese medicine 42, 1139-1152, doi:10.1142/S0192415X14500712 (2014).
- 20. Ganea, K. et al. Convergent animal and human evidence suggests the activin/inhibin pathway to be involved in antidepressant response. Translational psychiatry 2, e177, doi:10.1038/tp.2012.104 (2012).
- Bergstrom, A., Jayatissa, M. N., Thykjaer, T. & Wiborg, O. Molecular pathways associated with stress resilience and drug resistance in the chronic mild stress rat model of depression: a gene expression study. Journal of molecular neuroscience : MN 33, 201-215 (2007).
- 22. Malki, K. et al. Antidepressant-dependent mRNA changes in mouse associated with hippocampal neurogenesis in a mouse model of depression. Pharmacogenetics and genomics 22, 765-776, doi:10.1097/FPC.0b013e328356fa90 (2012).

- Drago, A., Cocchi, E., Crisafulli, C. & Serretti, A. A molecular pathway analysis of the glutamatergic-monoaminergic interplay serves to investigate the number of depressive records during citalopram treatment. J Neural Transm (Vienna) 122, 465-475, doi:10.1007/s00702-014-1267-2 (2015).
- 24. Tian, W. et al. A study of the functional significance of epidermal growth factor in major depressive disorder. Psychiatric genetics 22, 161-167, doi:10.1097/YPG.0b013e3283539550 (2012).
- 25. Yamamori, H. et al. Assessment of a multi-assay biological diagnostic test for mood disorders in a Japanese population. Neuroscience letters 612, 167-171, doi:10.1016/j.neulet.2015.12.019 (2016).
- 26. Birey, F. et al. Genetic and Stress-Induced Loss of NG2 Glia Triggers Emergence of Depressive-like Behaviors through Reduced Secretion of FGF2. Neuron 88, 941-956, doi:10.1016/j.neuron.2015.10.046 (2015).
- Borroto-Escuela, D. O., Tarakanov, A. O. & Fuxe, K. FGFR1-5-HT1A Heteroreceptor Complexes: Implications for Understanding and Treating Major Depression. Trends in neurosciences 39, 5-15, doi:10.1016/j.tins.2015.11.003 (2016).
- 28. Schwarz, R. et al. A preliminary study on methylphenidate-regulated gene expression in lymphoblastoid cells of ADHD patients. The world journal of biological psychiatry : the official journal of the World Federation of Societies of Biological Psychiatry 16, 180-189, doi:10.3109/15622975.2014.948064 (2015).
- Onwuameze, O. E. et al. MAPK14 and CNR1 gene variant interactions: effects on brain volume deficits in schizophrenia patients with marijuana misuse. Psychological medicine 43, 619-631, doi:10.1017/S0033291712001559 (2013).
- 30. Elsayed, M. et al. Antidepressant effects of fibroblast growth factor-2 in behavioral and cellular models of depression. Biol Psychiatry 72, 258-265, doi:10.1016/j.biopsych.2012.03.003 (2012).
- 31. Sathyanesan, M. et al. A molecular characterization of the choroid plexus and stress-induced gene regulation. Translational psychiatry 2, e139, doi:10.1038/tp.2012.64 (2012).
- 32. Fabbri, C. & Serretti, A. Genetics of long-term treatment outcome in bipolar disorder. Progress in neuropsychopharmacology & biological psychiatry 65, 17-24, doi:10.1016/j.pnpbp.2015.08.008 (2016).
- 33. Darcy, M. J., Trouche, S., Jin, S. X. & Feig, L. A. Age-dependent role for Ras-GRF1 in the late stages of adult neurogenesis in the dentate gyrus. Hippocampus 24, 315-325, doi:10.1002/hipo.22225 (2014).
- 34. Smagin, D. A. et al. Dysfunction in Ribosomal Gene Expression in the Hypothalamus and Hippocampus following Chronic Social Defeat Stress in Male Mice as Revealed by RNA-Seq. Neural plasticity 2016, 3289187, doi:10.1155/2016/3289187 (2016).
- 35. Inkster, B. et al. Pathway-based approaches to imaging genetics association studies: Wnt signaling, GSK3beta substrates and major depression. NeuroImage 53, 908-917, doi:10.1016/j.neuroimage.2010.02.065 (2010).
- 36. Hashimoto, R. et al. Association study of the frizzled-3 (FZD3) gene with schizophrenia and mood disorders. J Neural Transm (Vienna) 112, 303-307, doi:10.1007/s00702-004-0264-2 (2005).
- 37. Keri, S., Szabo, C. & Kelemen, O. Blood biomarkers of depression track clinical changes during cognitive-behavioral therapy. Journal of affective disorders 164, 118-122, doi:10.1016/j.jad.2014.04.030 (2014).
- 38. Dow, A. L., Russell, D. S. & Duman, R. S. Regulation of activin mRNA and Smad2 phosphorylation by antidepressant treatment in the rat brain: effects in behavioral models. The Journal of neuroscience : the official journal of the Society for Neuroscience 25, 4908-4916, doi:10.1523/JNEUROSCI.5155-04.2005 (2005).
- Suda, S., Segi-Nishida, E., Newton, S. S. & Duman, R. S. A postpartum model in rat: behavioral and gene expression changes induced by ovarian steroid deprivation. Biol Psychiatry 64, 311-319, doi:10.1016/j.biopsych.2008.03.029 (2008).
- 40. Okerlund, N. D. & Cheyette, B. N. Synaptic Wnt signaling-a contributor to major psychiatric disorders? Journal of neurodevelopmental disorders 3, 162-174, doi:10.1007/s11689-011-9083-6 (2011).