Table of Contents

1. General Information	2
2. General Procedure for Synthesis of Bisdentate Templates T1-10	2
3. General Procedure for Remote Site-selective C–H Olefination of Substrates 1	
4. Optimization of Reaction Conditions	4
4.1 Screening of the Palladium Salts	4
4.2 Screening of the Silver Salts	5
4.3 Screening of the Oxidants/Additives	5
4.4 Screening of the Solvents	6
4.5 Screening of the Loading of 2a	7
4.6 Screening of the Concentrations	7
4.7 Screening of the Loading of Template, Pd(OAc) ₂ and Ligand	8
5. Gram-scale Reaction	9
6. General Procedure for Synthesis of Tridentate Templates T11-19	
7. Procedure for Remote Site-selective C-H Olefination of Substrate 4	
7.1 General Procedure	
7.2 Template Recovery	
7.3 Procedure for Remote Site-selective C-H Olefination of Camptothecin 4p	
7.4 Control Experiments	
8. Characterization of Templates, Substrates and Products	
9. NMR Spectra	61
10. X-Ray Crystallographic Data	150
11. References	190

1. General Information

Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. Anhydrous solvents were obtained from the solvent purification system produced by JC Meyer Solvent Systems. Analytical thin layer chromatography (TLC) was performed on Merck Millipore precoated (0.25 mm thickness) silica gel plates with F254 indicator. Visualization was accomplished by irradiation with UV light at 254 nm or PMA or KMnO₄ stain solution. Flash column chromatography was performed on silica gel (32-63 µm) supplied by Dynamic Adsorbents. ¹H NMR spectra were recorded on a Bruker DRX-600 spectrometer (600 MHz) in deuterated solvent and chemical shifts were reported in ppm (δ) relative to tetramethylsilane with the solvent resonance employed as the internal standard (CDCl₃, δ 7.26 ppm; DMSO- d_6 , δ 2.50 ppm; acetonitrile- d_3 , δ 1.94 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constants (Hz) and integration. ¹³C NMR spectra were recorded on a Bruker DRX-600 spectrometer (151 MHz) in deuterated solvent with complete proton decoupling and chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CDCl₃, δ 77.0 ppm; DMSO-d₆, δ 39.5 ppm; acetonitrile-d₃, δ 1.32 ppm). Highresolution mass spectra (HRMS) were recorded on an Agilent LC/MSD TOF mass spectrometer. The single crystal X-ray diffraction studies were carried out on a Bruker Kappa APEX-II CCD diffractometer equipped with Mo K radiation ($\lambda = 0.71073$ Å). The substrates **1b-v** were synthesized according to the literature known procedures^{1,2}.

2. General Procedure for Synthesis of Bisdentate Templates T1-10

2.1 Procedure for Synthesis of T1, T3-7, T9-10

$$H_{2N} + H_{2N} + H$$

(1R, 2R)-cyclohexane-1,2-diamine (343 mg, 3.0 mmol) and DMAP (18mg, 0.15 mmol) were placed in a pre-dried 100 mL three-necked flask and flushed with nitrogen. DCM (25 mL) and Et₃N (1.25 mL, 9.0 mmol) were added into the flask under nitrogen. The reaction solution was

cooled to 0 °C and pyridine-3-sulfonyl chloride (0.75 mL, 6.3 mmol) was added dropwise. The reaction mixture was stirred at 0 °C for 2 hours and warmed to room temperature slowly then stirred overnight. The solvent and volatile compounds were evaporated under reduced pressure at 45 °C. The residue was purified by column chromatography on silica gel using DCM/MeOH (20:1) as the eluent giving the template **T1** in its pure form.

2.2 Procedure for Synthesis of T8

Sodium hydride (1.476g, 36.9 mmol, 60 % dispersion in mineral oil) was placed in a pre-dried 50 mL Schlenk flask under nitrogen. THF (10 mL) was added and the mixture was cooled to 0 °C. 2,3-Dimethyl-2,3-butanediamine dihydrochloride (698 mg, 3.69 mmol) was added into the flask in portions under nitrogen, the mixture was stirred at 0 °C for 0.5 hour then warmed to room temperature and stirred for 0.5 hour. The mixture was cooled to 0 °C and pyridine-3-sulfonyl chloride (1.32 mL, 11.07 mmol) was added dropwise. The reaction mixture was stirred at 0 °C for 2 hours and warmed to room temperature slowly then stirred overnight. 2 N aquesous solution of HCl (11 mL) was added at 0 °C slowly and the mixture was extracted with ethyl acetate (50 mL) and DCM (50 mL) three times respectively. The organic layers were then combined and dried with Na₂SO₄. After removal of the solvents, the residue was purified by column chromatography on silica gel using DCM/MeOH (20:1) as the eluent giving the template **T8** in its pure form.

Template $T2^3$, $T4^4$, $T5^5$, $T9^6$ and $T10^7$ have been synthesized and characterized before.

3. General Procedure for Remote Site-selective C-H Olefination of Substrates 1

A reaction tube (15 mL) with magnetic stir bar was charged with **1a** (14.3 μ L, 0.1 mmol), **T8** (8.0 mg, 0.02 mmol), Pd(OAc)₂ (6.7 mg, 0.03 mmol), Ac-Gly-OH (2.3mg, 0.02 mmol), AgBF₄ (19.5 mg, 0.1 mmol), Cu(OAc)₂ (36.3 mg, 0.2 mmol), HFIP (2.0 ml) and **2a** (31.8 μ l, 0.3 mmol) in air. The reaction tube was sealed and allowed to stir at ambient temperature for 10 minutes, then heated to 110 °C for 48 hours. Upon completion, the reaction mixture was cooled to 0 °C and saturated aquesous solution of sodium sulfide (1.0 mL) was added followed by water (3.0 mL). The mixture was extracted with DCM (10 mL) for three times and the organic layers were combined and filtered through a silica gel plug then dried with Na₂SO₄. The solvent and volatile compounds were evaporated under reduced pressure at 45 °C. The crude reaction mixture was purified on preparative TLC using hexanes/ethyl acetate (2:1) as the eluent to afford the desired product **3a**.

Caution: The operator should have appropriate protection all the time when the reaction is running due to the high pressure generated in the sealed reaction flask under high temperature.

4. Optimization of Reaction Conditions

4.1 Screening of the Palladium Salts

N 1a 0.1 mmol	T1 (50 mol%) Pd(II) (70 mol%) Ac-Gly-OH (30 mol%) AgBF₄ (1.0 equiv.) 2a (5.0 equiv.)	$\begin{pmatrix} a \\ b \\ b \\ c \\ N \\ \end{pmatrix}$	$O_2Et $ $V_{N} = V_{N} = V_{N}$ $V_{N} = V_{N} = V_{N}$ $V_{N} = V_{N} = V_{N}$ $V_{N} = V_{N}$
Entry	Pd(II)	Yield (%) ^a	$m:(o+p)^{a}$
1	Pd(CH ₃ CN) ₂ (BF ₄) ₂	2	79:21
2	Pd(TFA) ₂	7	73:27
3	Pd(acac) ₂	1	60:40
4	PdSO ₄	1	70:30

Table S1	Screening	of the	Palladium	Salts
----------	-----------	--------	-----------	-------

5	PdCl ₂	<1	N.D.
6	Pd(OAc) ₂	49	73:27

[a] The yield of the olefinated products, the *meta*:(*ortho* + *para*) ratio of mono-olefinated products were determined by ¹H NMR analysis of the unpurified reaction mixture using CH_2Br_2 as the internal standard (assisted with GC-MS analysis), the variance is estimated to be within 5%. Ac-Gly-OH: *N*-acetyl-glycine.

4.2 Screening of the Silver Salts

Table S2 Screening of the Silver Salts

N 1a 0.1 mmol	T1 (30 mol%) Pd(OAc)₂ (30 mol%) Pd(OAc)₂ (30 mol%) Ac-Gly-OH (20 mol%) Ag(I) (1.0 equi HFIP (1.0 mL 100 °C, 24h, a (5.0 equiv.)	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$_{2^{\text{Et}}} \begin{vmatrix} 0 & 0 \\ 0 \approx S - NH & HN - S \leq 0 \\ \hline N & T1 & N \end{vmatrix}$
Entry	Ag(I)	Yield (%) ^a	$m:(o+p)^{a}$
1	AgTFA	21	63:37
2	AgOTf	29	63:37
3	AgF	4	63:37
4	AgPF ₆	14	71:29
5	$AgSbF_6$	23	66:34
6	AgBF ₄	32	72:28

[a] The yield of the olefinated products, the *meta*:(*ortho* + *para*) ratio of mono-olefinated products were determined by ¹H NMR analysis of the unpurified reaction mixture using CH_2Br_2 as the internal standard (assisted with GC-MS analysis), the variance is estimated to be within 5%. Ac-Gly-OH: *N*-acetyl-glycine.

4.3 Screening of the Oxidants/Additives

Table S3 Screening of the Oxidants/Additives

1a 0.1 mmo	T1 (20 mol%) Pd(OAc)2 (30 mol%) Ac-Gly-OH (20 mol%) AgBF4 (1.0 equiv.) 2a HFIP (1.0 mL) 100 °C, 48h, air	o m CO ₂ E	$t \bigvee_{N=1}^{O} $
Entry	Additive (2.0 equiv. of Cu)	Yield (%) ^a	$m:(o+p)^a$
1	Cu(OTf) ₂	0	N.D.
2	Cu(TFA) ₂ ·xH ₂ O	0	N.D.
3	Cu ₃ (PO ₄) ₂	33	84:16
4	CuCl ₂	0	N.D.
5	CuF ₂	45	85:15
6	CuO	34	81:19
7	$Cu(NO_3)_2 \cdot 3H_2O$	0	N.D.
8	Cu(ClO ₄)·6H ₂ O	0	N.D.
9	Cu(TCA) ₂	0	N.D.
10	Cu(OAc) ₂	53	85:15

[a] The yield of the olefinated products, the *meta*:(*ortho* + *para*) ratio of mono-olefinated products were determined by ¹H NMR analysis of the unpurified reaction mixture using CH_2Br_2 as the internal standard (assisted with GC-MS analysis), the variance is estimated to be within 5%.

4.4 Screening of the Solvents

HFIP: 75%, *m*:(*o*+*p*) = 89:11, mono:di = 87:13.

When *t*-Amyl-OH, Dioxane, DMSO, MeOH, DMF, EtOAc, MeCN, THF, TBME or DME was used as solvent, no desired product was observed.

When DCE or Toluene was used as solvent, only trace amount of desired product was observed.

4.5 Screening of the Loading of 2a

1a 0.1 mmol	T8 (20 mol%) Pd(OAc) ₂ (30 mol%) Pd(OAc) ₂ (30 mol%) Ac-Gly-OH (20 mol%) AgBF ₄ (1.0 equiv. Cu(OAc) ₂ (2.0 equiv. HFIP (1.0 mL) 110 °C, 48 h, air	$ \begin{array}{c} 6 \\ 6 \\ \hline \\ 6 \\ \hline \\ 0 \\ V. \end{array} \right) \xrightarrow{p} \\ c \\ O_2 E \\ O_2$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ N \\ N \\ N \\ N \\ N \\ N \\$
Entry	2a (equiv.)	Yield (%) ^a	$m:(o+p)^{a}$
1	5.0	60	94.4:5.6
2	4.0	66	94.0:6.0
3	3.0	75	94.3:5.7
4	2.0	70	93.8:6.2

Table S4 Screening of the loading of 2a

[a] The yield of the olefinated products, the *meta*:(*ortho* + *para*) ratio of mono-olefinated products were determined by ¹H NMR analysis of the unpurified reaction mixture using CH_2Br_2 as the internal standard (assisted with GC-MS analysis), the variance is estimated to be within 5%.

4.6 Screening of the Concentrations

 Table S5 Screening of the Concentrations

N 1a 0.1 mmol	+ CO ₂ Et _ 2a (3.0 equiv.)	T8 (20 mol%) Pd(OAc) ₂ (30 mol%) Ac-Gly-OH (20 mol%) AgBF ₄ (1.0 equiv.) Cu(OAc) ₂ (2.0 equiv.) HFIP 110 °C, 48 h, air	o m CO ₂	$Et \begin{vmatrix} 0 & 0 \\ 0 \approx S - NH & HN - S \approx 0 \\ 0 \approx N & N = 0 \\ N & N = 0 \\ T8 \\ $
Entry	HFIP (mL)	Concentration (M)	Yield $(\%)^a$	$m:(o+p)^a$
1	1.0	0.100	75	94:6
2	2.0	0.050	77	95:5
3	3.0	0.033	69	95:5
4	4.0	0.025	57	94:6
5	5.0	0.020	51	93:7

[a] The yield of the olefinated products, the *meta*:(*ortho* + *para*) ratio of mono-olefinated products were determined by ¹H NMR analysis of the unpurified reaction mixture using CH_2Br_2 as the internal standard (assisted with GC-MS analysis), the variance is estimated to be within 5%.

4.7 Screening of the Loading of Template, Pd(OAc)₂ and Ligand

Table S6 Screening of the Loading of Template, Pd(OAc)₂ and Ligand

0.1	+ CO ₂ Et . 1a 2a mmol (3.0 equiv.)	T8 (x mol%) Pd(OAc) ₂ (y mol%) Ac-Gly-OH (z mol%) AgBF₄ (1.0 equiv.) Cu(OAc) ₂ (2.0 equiv.) HFIP (2.0 mL) 110 °C, air	N N N N N N N N N N N N N N N N N N N	CO_2Et	
Entry	T8 (mol%)	Pd(OAc) ₂ (mol%)	Ac-Gly-OH (mol%)	Yield (%) ^a	$m:(o+p)^{a}$
1	10	15	10	14	89:11
2	10	15	15	25	90:10
3	10	20	5	62	94:6

9	20	30	20	77	95:5
8	20	30	10	76	95:5
7	15	30	15	65	95:5
6	15	20	5	64	95:5
5	10	20	15	40	92:8
4	10	20	10	60	94:6

[a] The yield of the olefinated products, the *meta*:(*ortho* + *para*) ratio of mono-olefinated products were determined by ¹H NMR analysis of the unpurified reaction mixture using CH_2Br_2 as the internal standard (assisted with GC-MS analysis), the variance is estimated to be within 5%.

5. Gram-scale Reaction

A reaction tube (250 mL) with magnetic stir bar was charged with **10** (1.0 g, 4.646 mmol), **T8** (277 mg, 0.697 mmol), Pd(OAc)₂ (209 mg, 0.929 mmol), Ac-Gly-OH (27 mg, 0.232 mmol), AgBF₄ (0.904 g, 4.646 mmol), Cu(OAc)₂ (1.688 g, 9.292 mmol), HFIP (46 ml) and **2a** (1.48 mL, 13.937 mmol) in air. The reaction tube was sealed and allowed to stir at ambient temperature for 10 minutes, then heated to 120 °C for 72 hours. Upon completion, the reaction mixture was cooled to 0 °C and saturated aquesous solution of sodium sulfide (10 mL) was added followed by water (30 mL) and DCM (30 mL). The mixture was filtered through a pad of celite and washed with DCM. The solvents were evaporated under reduced pressure at 45 °C and then the mixture was extracted with DCM (100 mL) for three times. After dried with Na₂SO₄, the solvent and volatile compounds were evaporated under reduced pressure at 45 °C. A sample (10 mg) was taken from the unpurified reaction mixture and the *m:o* ratio of mono-olefinated products was determined to be 99:1 and the mono:di ratio was determined to be 98:2 by ¹H NMR analysis. The rest crude reaction mixture and the sample for ¹H NMR analysis were combined and purified by

column chromatography on silica gel using hexane/ethyl acetate (5:1 to 2:1) then DCM/MeOH (10:1) as the eluents giving **30** (1.03 g, 70% yield) and **T8** (266 mg, 96% recovered).

Caution: The operator should have appropriate protection all the time when the reaction is running due to the high pressure generated in the sealed reaction flask under high temperature.

6. General Procedure for Synthesis of Tridentate Templates T11-19

Quinoline-3-carboxylic acid (0.245 g, 1.41 mmol) was charged in the flask with stir bar and thionyl chloride was added. The resulting mixture was allowed to stir at 80 °C overnight. Upon completion, the reaction mixture was cooled to room temperature and concentrated *in vacuo*. MeOH was added to this crude mixture and was heated under reflux for 8 h. Upon completion, the reaction mixture was cooled to room temperature, diluted with DCM, and was washed with saturated aqueous NaHCO₃. The aqueous layer was extracted with DCM twice, and the combined organic layers were dried with anhydrous Na₂SO₄. After removal of the solvents, the residue was purified by column chromatography on silica gel using EtOAc/ hexanes (1: 6) as the eluent to give **4k** (0.161 g, 61%). ¹H NMR (600 MHz, CDCl₃): δ 9.46 (d, *J* = 2.1 Hz, 1H), 8.86 (d, *J* = 2.2 Hz, 1H), 8.17 (d, *J* = 8.5 Hz, 1H), 7.95 (d, *J* = 8.2 Hz, 1H), 7.84 (ddd, *J* = 8.5, 6.9, 1.4 Hz, 1H), 7.63 (ddd, *J* = 8.1, 6.9, 1.2 Hz, 1H), 4.03 (s, 3H). ¹H NMR matches previously reported data⁸.

2-Chloroquinoxaline (0.823g, 5 mmol) and NaOMe (1.89g, 35 mmol) were charged in the flask with stir bar and MeOH (10 mL) was added to this mixture. The resulting solution was heated at 80 °C for 4 h. Upon completion, the reaction mixture was cooled to room temperature and filtered through celite (the celite pad was washed with EtOAc). The filtrate was concentrated *in*

vacuo. Water was added to this crude mixture and extracted with EtOAc three times. The combined organic layers were dried with anhydrous Na₂SO₄. After removal of the solvents, the residue was purified by column chromatography on silica gel using EtOAc/hexanes as the eluent giving pure product. ¹H NMR (600 MHz, CDCl₃): δ 8.47 (s, 1H), 8.02 (dd, *J* = 8.2, 1.5 Hz, 1H), 7.85 (dd, *J* = 8.3, 1.4 Hz, 1H), 7.67 (ddd, *J* = 8.4, 7.0, 1.5 Hz, 1H), 7.56 (ddd, *J* = 8.3, 7.0, 1.4 Hz, 1H), 4.10 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 157.67, 140.38, 139.59, 138.87, 130.09, 128.98, 127.18, 126.51, 53.69. ¹H NMR , ¹³C NMR matches previously reported data⁹.

To a solution of the 2-bromobenzylamine (0.63 mL, 5.0 mmol) in THF (25 mL) at 0 °C was added Et₃N (4.18 mL, 30 mmol), followed by DMAP (0.01 g, 0.08 mmol). To the reaction mixture was added di-*tert*-butyl dicarbonate (1.31 g, 6.0 mmol) and the solution was warmed to room temperature and stirred for 5 h. Upon completion, the reaction was quenched with cold water and extracted with EtOAc three times. The combined organic layers were washed with water and brine, dried with anhydrous Na₂SO₄, and concentrated. The residue was purified by column chromatography on silica gel using EtOAc/hexanes (1: 10) as the eluent giving the pure product. ¹H NMR (400 MHz, CDCl₃): δ 7.54 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.38 (d, *J* = 7.7 Hz, 1H), 7.29 (d, *J* = 7.4, 1.2 Hz, 1H), 7.14 (dd, *J* = 7.8, 1.8 Hz, 1H), 5.01 (br, 1H), 4.39 (d, *J* = 6.3 Hz, 2H), 1.45 (s, 9H). ¹H NMR matches previously reported data¹⁰.

(General procedure A: Suzuki–Miyaura cross coupling)

2-cyanophenylboronic acid pinacol ester (0.504 g, 2.2 mmol), $Pd_2(dba)_3$ (0.0366g, 0.04 mmol), PCy₃ (0.0269 g, 0.096 mmol), and **S1** (0.572 g, 2 mmol) were added to a Schlenk flask equipped with a stir bar. After dioxane (5.4 mL) and 1.27 M K₃PO₄ aqueous solution (2.7 mL) were added, the flask was evacuated and refilled with nitrogen three times. The Schlenk flask was sealed and the resulting reaction mixture was stirred at 100 °C overnight. Upon completion, the reaction mixture was cooled to room temperature and filtered through celite (the celite pad was washed thoroughly with EtOAc). Water was added to this mixture and extracted three times with EtOAc. The combined organic layers were dried with anhydrous Na₂SO₄. After removal of the solvents, the residue was purified by column chromatography on silica gel using EtOAc/hexanes (1:6) as the eluent giving pure product.

(General Procedure **B**: Deprotection of Boc protecting group)

To a solution of the S2 (0.64 g, 2 mmol) in DCM (32 mL) at 0 °C was added TFA (3 mL) slowly. The solution was warmed to room temperature and stirred for 2 hours. Upon completion, the reaction was quenched with saturated aqueous NaHCO₃ and the organic layer was separated. Water layer was extracted with DCM three times and the combined organic layers were dried with anhydrous Na₂SO₄, and concentrated to give the crude amine S3, which was used in the next step without further purification.

S4 was synthesized using general procedure **A** and was purified by column chromatography on silica gel using EtOAc/hexanes (1:10) as the eluent.

For S5 (R=F)

To a solution of 2,6-difluoroaniline (1.0 mL, 10 mmol) in toluene (20 mL) was added acetic anhydride (1.13 mL, 12 mmol) in one portion. The reaction mixture was allowed to stir overnight at 110 °C. Upon completion, the solvent was removed under reduced pressure. Water was added to this crude mixture and extracted with EtOAc three times. The combined organic layers were washed with brine and dried with anhydrous Na₂SO₄. The solvent was removed to afford *N*-(2,6-difluorophenyl)acetamide, which was used in the next step without further purification.

To a solution of *N*-(2,6-difluorophenyl)acetamide in TFA (8.2 mL) and H_2SO_4 (11 mL) at 0 °C was added NBS (1.72 g, 9.7 mmol) in portions. The reaction mixture was stirred at 0 °C for 10 min and warmed to room temperature slowly then stirred overnight. Upon completion, ice was added to the reaction mixture and the white precipitate was collected by filtration. The crude product was washed with water and hexane extensively to give *N*-(3-bromo-2,6-difluorophenyl)acetamide, which was used in the next step without further purification.

To a solution of *N*-(3-bromo-2,6-difluorophenyl)acetamide in EtOH (5.7 mL) was added concentrated HCl (5.7 mL) at room temperature. The reaction mixture was allowed to stir overnight at 75 °C. Upon completion, the reaction mixture was cooled to room temperature. The reaction mixture was cooled to 0 °C and basified with aqueous NaOH solution. The reaction mixture was extracted three times with EtOAc. The combined organic layers were dried with anhydrous Na₂SO₄ and concentrated *in vacuo* to give 3-bromo- 2,6-difluoroaniline, which was used in the next step without further purification.

3-bromo-2,6-difluoroaniline was converted to **S5** using general procedure **A** and was purified by column chromatography on silica gel using EtOAc/hexanes as the eluent.

S6 was synthesized using the same procedure as S5.

To a solution of the 2-bromo-6-fluorobenzoic acid (2.19 g, 10 mmol) in toluene (40 mL) at room temperature was added Et₃N (1.46 mL, 10.5 mmol), followed by DPPA (2.26 mL, 10.5 mL). The reaction mixture was gradually heated to 70 °C and stirred at the same temperature until bubling stops. The solution was heated to 110 °C. After 1 h, to the reaction mixture was added ^{*t*}BuOH (7.4 g) and the solution was allowed to stir overnight at the same temperature. Upon completion, the reaction was cooled down to room temperature. Water was added and extracted with EtOAc three times. The combined organic layers were washed with 0.1 M HCl, water, saturated aqueous NaHCO₃, and brine, dried with anhydrous Na₂SO₄, and concentrated. The residue was purified by column chromatography on silica gel using EtOAc/hexanes (1:20 to 1:10) as the eluent to give **S7** (1.69 g, 58%). ¹H NMR (600 MHz, CDCl₃): δ 7.39–7.35 (m, 1H), 7.10–7.06 (m, 2H), 6.07 (br, 1H), 1.50 (s, 9H). ¹H NMR matches previously reported data¹¹.

For **S8** (R= Et)

In the air, ethylboronic acid (3.69 g, 49.8 mmol), Pd(dppf)Cl₂ (0.91 g, 1.25 mmol), K₂CO₃ (10.3 g, 74.7 mmol), and **S7** (7.23 g, 24.9 mmol) were added to a Schlenk flask equipped with a stir bar. After toluene was added, the flask was evacuated and refilled with nitrogen three times. The schlenk flask was sealed and the resulting reaction mixture was stirred at 110 °C overnight. Upon completion, the reaction mixture was cooled to room temperature and filtered through celite (the celite pad was washed thoroughly with EtOAc). The filtrate was concentrated under reduced pressure, and the crude mixture was diluted with DCM, washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The mixture was passed through a pad of silica gel using EtOAc/hexanes (1:10) as the eluent to give *tert*-butyl (2-ethyl-6-fluorophenyl)carbamate, which was used in the next step without further purification.

Tert-butyl (2-ethyl-6-fluorophenyl)carbamate was converted to 2-ethyl-6-fluoroaniline using general procedure **B**.

To a solution of 2-ethyl-6-fluoroaniline in toluene was added acetic anhydride (1.3 mL, 13.7 mmol) in one portion. The reaction mixture was allowed to stir overnight at 110 °C. Upon completion, the solvent was removed under reduced pressure. To this crude residue was added TFA (12.1 mL) and H₂SO₄ (16.3 mL). The reaction mixture was cooled to 0 °C and NBS (2.44 g, 13.7 mmol) was added in portions. The reaction mixture was stirred at 0 °C for 10 min and warmed to room temperature slowly then stirred overnight. Upon completion, ice was added to the reaction mixture and the white precipitate was collected by filtration. The crude product was washed with water and hexane extensively, followed by recrystallization from hot MeOH to give **S8** (1.55 g, 44%).

To a solution of **S8** (1.43 g, 5.48 mmol) in EtOH (3.7 mL) was added concentrated HCl (3.7 mL) at room temperature. The reaction mixture was allowed to stir overnight at 75 °C. Upon completion, the reaction mixture was cooled to room temperature. The reaction mixture was cooled to 0 °C and basified with aqueous NaOH solution. The reaction mixture was extracted three times with EtOAc. The combined organic layers were dried with anhydrous Na₂SO₄ and concentrated *in vacuo* to give the crude product. This product was used in the next step without further purification.

3-bromo-2-ethyl-6-fluoroaniline was converted to **S10** using general procedure **A** and was purified by column chromatography on silica gel using EtOAc/hexanes (1:10) as the eluent. **S11** was synthesized from **S9** in the same manner as **S10**.

Scheme S7 Synthesis of S14

To a solution of 2,6-pyridinedicarboxylic acid (3.34 g, 20 mmol) in DCM (60 mL) was added oxalyl chloride (4 mL, 47.3 mmol) dropwise at room temperature. DMF (3 drops) was added and the reaction mixture was stirred for 10 h. Upon completion, the reaction mixture was concentrated under reduced pressure. Next, toluene (300 mL) and 3,5-bis(trifluoromethyl) aniline (2.5 mL, 16 mmol) were added to the reaction flask and submerged into an oil bath preheated to 70 °C. Then, the oil bath was heated to 120 °C and the reaction mixture was allowed to stir overnight. Upon completion, the reaction mixture was cooled to room temperature and concentrated under reduced pressure. MeOH (60 mL) was added to the reaction flask and heated under reflux for 9 h. Upon completion, the reaction mixture was cooled to room temperature. The white precipitate was collected by filtration and recrystallized from hot MeOH to give **S12** (1.93 g, 25%).

(General Procedure C: Deprotection of methyl ester)

To a solution of **S12** (1.84 g, 4.69 mmol) in MeOH (55 mL) was added LiOH monohydrate (0.39 g, 9.4 mmol) in portions. Upon completion, the solvent was removed *in vacuo*. The crude residue was dissolved in water and acidified by 6 M HCl, extracted with EtOAc three times, dried with anhydrous Na_2SO_4 , and concentrated. The crude product was used in the next step without further purification.

(General Procedure D: Amide formation)

To a solution of **S13** (1.0 equiv.) in toluene was added thionyl chloride (2.5 equiv.) dropwise at room temperature. DMF (3 drops) was added and the reaction mixture was stirred at 80 °C. Upon

completion, the reaction mixture was concentrated under reduced pressure. Next, toluene and **S3** were added to the reaction flask and submerged into an oil bath pre-heated to 80 °C. Then, the oil bath was heated to 120 °C and the reaction mixture was allowed to stir overnight. Upon completion, the reaction mixture was cooled to room temperature and concentrated under reduced pressure. Pure product was isolated by recrystallization from hot MeOH. **S15-S19** were synthesized following the same procedure as **S14**. **S18** and **S19** were recrystallized from hot MeOH. **S16** was purified by column chromatography on silica gel using EtOAc/hexanes as the eluent. **S15** and **S17** were purified by trituration with DCM, MeOH, and Acetone.

Scheme S8 Synthesis of S22

To a solution of 2,6-pyridinecarboxylic acid (1.67g, 10 mmol) in MeOH (57 mL) was added H₂SO₄ (0.19 mL) slowly at room temperature. The resulting mixture was allowed to stir at 90 °C overnight. Upon completion, solvent was removed *in vacuo*. To this residue was added DCM and saturated aqueous NaHCO₃. Water layer was extracted with DCM three times. The combined organic layers were dried with anhydrous Na₂SO₄, and concentrated. Recrystallization from hot MeOH gave **S20** (1.49 g, 76%) as colorless crystals. ¹H NMR (600 MHz, CDCl₃): δ 8.33 (d, *J* = 9.7 Hz, 2H), 8.04 (t, *J* = 7.8 Hz, 1H), 4.04 (s, 6H). ¹H NMR matches previously reported data¹².

To a solution of **S20** in MeOH (265 mL) was added KOH (3.15 g, 56.1 mmol) in portions. The resulting mixture was stirred overnight at room temperature. Upon completion, the solvent was removed in vacuo, and the crude residue was washed with EtOAc extensively. This residue was dried under vacuum and used in the next step without further purification.

Potassium 6-(methoxycarbonyl)picolinate was converted to S21 using general procedure D and was purified by column chromatography on silica gel using EtOAc/ hexanes (1:4) as the eluent.

S21 was converted to S22 using general procedure C and D, then recrystallized from hot MeOH.

To a solution of **S20** in MeOH was added KOH in portions. The resulting mixture was stirred overnight at room temperature. Upon completion, the solvent was removed *in vacuo*, and the crude residue was washed with EtOAc extensively. This residue was dried under vacuum and used in the next step without further purification.

Potassium 6-(methoxycarbonyl)picolinate was converted to S23 using general procedure **D** and was purified by column chromatography on silica gel using EtOAc/hexanes (1:2 to 1:1) as the eluent.

S23 was converted to S24 using general procedure C and D and was purified by column chromatography on silica gel using EtOAc/hexanes (1:1) as the eluent.

Scheme S10 Synthesis of T11

In the air, S14 (0.188 g, 0.33 mmol) and $Pd(OAc)_2$ (67.4 mg, 0.3 mmol) were added to a flask equipped with a stir bar. Acetonitrile (10 mL) was added to this flask and the resulting mixture was stirred at 60 °C. Upon completion, solvent was removed *in vacuo*. The residue was purified by column chromatography on silica gel using DCM/MeOH (100:1 to 20:1) as the eluent giving the pure T11. (T12~T19 were synthesized following the same procedure.)

7. Procedure for Remote Site-selective C-H Olefination of Substrate 4

7.1 General Procedure

A reaction tube (15 mL) was charged with **4a** (12.9 mg, 0.1 mmol), **T18** (67.0 mg, 0.1 mmol) and minimal amount of DCM to dissolve the substrate and template. After 5 min, the mixture was concentrated *in vacuo*. Magnetic stir bar, Pd(OAc)₂ (2.2 mg, 0.01 mmol), Ac-Gly-OH (2.3 mg, 0.02 mmol), AgOAc (41.7 mg, 0.25 mmol), HFIP (1.0 ml) and **2a** (33.0 μ l, 0.3 mmol) was added in the reaction tube in air. The reaction tube was sealed and allowed to stir at 80 °C for 43 h. Upon completion, the reaction mixture was cooled to room temperature. The crude reaction mixture was diluted with EtOAc and filtered through a short pad of celite. The sealed tube and celite pad were washed with additional EtOAc. The filtrate was concentrated *in vacuo*. To this residue toluene (2.0~2.5 mL) and DMAP (1.5~10 equiv.) was added. The solution was then stirred at 80 °C for 15 min. Upon completion, the reaction was cooled to room temperature. The mixture was passed through a short pad of silica (in the column) using EtOAc/hexanes=1:1 as the eluent to give the product mixture. (The silica pad was washed with DCM/MeOH=10:1 to give the crude template solution for the template regeneration. See **7.2 Template Recovery**.) The filtrate was concentrated *in vacuo* and the crude reaction mixture was purified on preparative TLC using DCM as the eluent to afford the desired product **5a**.

Caution: The operator should have appropriate protection all the time when the reaction is running due to the high pressure generated in the sealed reaction flask under high temperature.

7.2 Template Recovery

The crude template solution was concentrated *in vacuo* and dissolved in acetonitrile (3 mL). To this residue was added methanesulfonic acid (6.5 μ l, 0.1 mmol) and the resulting mixture was heated at 60 °C for 2 h. Upon completion, the reaction mixture was cooled to room temperature.

The solvent was removed *in vacuo*. Water was added to the reaction mixture and extracted with DCM three times. The organic layer was dried with Na₂SO₄ and concentrated *in vacuo*. This crude mixture was dissolved in acetonitrile (3 mL). To this reaction methanesulfonic acid (3.0 μ l, 0.046 mmol) was added and the resulting mixture was heated at 60 °C for 30 min. Upon completion, the reaction mixture was cooled to room temperature. The solvent was removed *in vacuo*. Water was added to the reaction mixture and extracted with DCM three times. The organic layer was dried with Na₂SO₄ and concentrated *in vacuo* to give template in 96 % yield (64.1 mg).

The Efficiency Test of Recovered T18

reference

7.3 Procedure for Remote Site-selective C-H Olefination of Camptothecin 4p

A reaction tube (15 mL) with magnetic stir bar was charged with **4p** (34.8 mg, 0.1 mmol), **T14** (73.2 mg, 0.1 mmol), $Pd(OAc)_2$ (2.2 mg, 0.01 mmol), Ac-Gly-OH (2.3 mg, 0.02 mmol), AgOAc (41.7 mg, 0.25 mmol), HFIP (1.0 ml) and **2a** (33.0 µl, 0.3 mmol) in air. The reaction tube was sealed and allowed to stir at 80 °C. After 24 h, additional AgOAc (41.7 mg, 0.25 mmol) was added to the reaction mixture and allowed to stir another 24 h at the same temperature. Upon completion, the reaction mixture was cooled to room temperature. The crude reaction mixture was diluted with EtOAc and filtered through a short pad of celite. The sealed tube and celite pad were washed with additional EtOAc. The filtrate was concentrated *in vacuo*. To this residue toluene (2.5 mL) and DMAP (1.5 equiv.) was added. The solution was then stirred at 80 °C for 15 min. Upon completion, the reaction mixture was cooled to room temperature. The mixture was concentrated *in vacuo* and the crude reaction mixture was purified on preparative TLC using acetone/toluene (1:5) as the eluent to afford the desired product **5p**.

7.4 Control Experiments

[a] The yield of the olefinated products, the C_5 : others ratio of olefinated products were determined by ¹H NMR analysis of the unpurified reaction mixture using 1,3,5-trimethoxybenzene as the internal standard, the variance is estimated to be within 5%. Ac-Gly-OH: *N*-acetyl-glycine.

8. Characterization of Templates, Substrates and Products

N,*N*'-((1*R*,2*R*)-cyclohexane-1,2-diyl)bis(pyridine-3-sulfonamide) **T1**. Colorless solid, 0.974 g. Yield: 82%. TLC (CH₂Cl₂:MeOH, 90:10 v/v): RF = 0.49; ¹H NMR (600 MHz, DMSO-*d*₆): δ 8.90 (dd, *J* = 2.4, 0.8 Hz, 2H), 8.79 (dd, *J* = 4.8, 1.6 Hz, 2H), 8.11 (ddd, *J* = 8.0, 2.4, 1.6 Hz, 2H), 7.80 (br, 1H), 7.79 (br, 1H), 7.59 (ddd, *J* = 8.0, 4.8, 0.8 Hz, 2H), 2.97–2.95 (m, 2H), 1.50–1.48 (m, 2H), 1.44–1.42 (m, 2H), 1.20–1.15 (m, 2H), 1.10–1.04 (m, 2H); ¹³C NMR (151 MHz, DMSO-*d*₆): δ 152.79, 146.84, 138.12, 134.28, 124.15, 55.00, 30.54, 22.50; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₁₆H₂₁N₄O₄S₂⁺, 397.0999; found 397.1001.

N,*N*'-((1*R*,2*S*)-cyclohexane-1,2-diyl)bis(pyridine-3-sulfonamide) **T3**. Colorless solid, 0.927 g. Yield: 78%. TLC (CH₂Cl₂:MeOH, 90:10 v/v): RF = 0.46; ¹H NMR (600 MHz, DMSO-*d*₆): δ 8.95 (dd, *J* = 2.4, 0.6 Hz, 2H), 8.78 (dd, *J* = 4.8, 1.6 Hz, 2H), 8.17 (ddd, *J* = 8.0, 2.4, 1.6 Hz, 2H), 7.73 (br, 1H), 7.72 (br, 1H), 7.60 (ddd, *J* = 8.0, 4.8, 0.7 Hz, 2H), 2.30–2.27 (m, 2H), 1.43–1.38 (m, 2H), 1.34–1.31 (m, 2H), 1.19–1.15 (m, 2H), 1.10–1.05 (m, 2H); ¹³C NMR (151 MHz, DMSO-*d*₆): δ 152.82, 152.78, 146.97, 146.93, 138.07, 134.36, 124.16, 124.12, 53.82, 28.10, 20.92; HRMS (ESI-TOF) *m/z*: $[M+H]^+$ calcd. for C₁₆H₂₁N₄O₄S₂⁺, 397.0999; found 397.1001.

N,*N*'-((1*R*,2*R*)-1,2-diphenylethane-1,2-diyl)bis(pyridine-3-sulfonamide) **T6**. White solid, 1.05 g. Yield: 71%. TLC (CH₂Cl₂:MeOH, 90:10 v/v): RF = 0.49; ¹H NMR (600 MHz, DMSO-*d*₆): δ 8.90–8.86 (m, 2H), 8.48 (d, *J* = 1.8 Hz, 2H), 8.45 (dd, *J* = 4.8, 1.8 Hz, 2H), 7.63 (ddd, *J* = 7.8, 2.4, 1.8 Hz, 2H), 7.16 (ddd, *J* = 8.4, 4.8, 0.6 Hz, 2H), 6.83–6.75 (m, 10H), 4.58–4.54 (m, 2H); ¹³C NMR (151 MHz, DMSO-*d*₆): δ 151.87, 151.83, 146.61, 146.57, 137.54, 136.68, 133.72, 133.67, 127.57, 127.38, 126.97, 123.31, 123.25, 62.24; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₂₄H₂₃N₄O₄S₂⁺, 495.1155; found 495.1156.

N,*N*'-(2,2-dimethylpropane-1,3-diyl)bis(pyridine-3-sulfonamide) **T7**. White solid, 0.761 g. Yield: 66%. TLC (CH₂Cl₂:MeOH, 90:10 v/v): RF = 0.44; ¹H NMR (600 MHz, DMSO-*d*₆): δ 8.93 (dd, *J* = 2.4, 0.6 Hz, 2H), 8.81 (dd, *J* = 4.8, 1.8 Hz, 2H), 8.15 (ddd, *J* = 8.0, 2.4, 1.8 Hz, 2H), 7.76 (br, 2H), 7.64 (ddd, *J* = 8.0, 4.8, 0.6 Hz, 2H), 2.60 (s, 4H), 0.78 (s, 6H); ¹³C NMR (151 MHz, DMSO-*d*₆): δ 152.95, 152.91, 146.97, 146.93, 137.04, 134.41, 124.29, 124.24, 50.52, 35.05, 22.51, 22.50; HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ calcd. for C₁₅H₂₁N₄O₄S₂⁺, 385.0999; found 385.0999.

N,*N*'-(2,3-dimethylbutane-2,3-diyl)bis(pyridine-3-sulfonamide) **T8**. Pale yellow solid, 388 mg. Yield: 53%. TLC (CH₂Cl₂:MeOH, 90:10 v/v): RF = 0.46; ¹H NMR (600 MHz, DMSO-*d*₆): δ 8.99 (d, *J* = 2.4, Hz, 2H), 8.81 (dd, *J* = 4.8, 1.6 Hz, 2H), 8.22 (ddd, *J* = 8.0, 2.4, 1.6 Hz, 2H), 7.65 (ddd, *J* = 8.0, 4.8, 0.7 Hz, 2H), 7.58 (br, 2H), 1.07 (s, 12H); ¹³C NMR (151 MHz, DMSO-*d*₆): δ 152.83, 146.93, 140.26, 134.29, 124.36, 62.14, 22.14; HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ calcd. for C₁₆H₂₃N₄O₄S₂⁺, 399.1155; found 399.1155.

3-(4-methoxyphenyl)-5-methylpyridine **1m**. TLC (Hexane:EtOAc, 50:50 v/v): RF = 0.41; ¹H NMR (600 MHz, CDCl₃): δ 8.62 (d, *J* = 2.4 Hz, 1H), 8.38 (d, *J* = 1.8 Hz, 1H), 7.64–7.62 (m, 1H), 7.51 (d, *J* = 9.0 Hz, 2H), 7.00 (d, *J* = 9.0 Hz, 2H), 3.86 (s, 3H), 2.39 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 159.63, 148.39, 145.20, 135.71, 134.46, 132.87, 130.35, 128.18, 114.45, 55.35, 18.46; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₁₃H₁₄NO⁺, 200.1070; found 200.1064.

3-methoxy-5-(4-methoxyphenyl)pyridine **10**. TLC (Hexane:EtOAc, 50:50 v/v): RF = 0.39; ¹H NMR (600 MHz, CDCl₃): δ 8.42 (d, *J* = 1.8 Hz, 1H), 8.25 (d, *J* = 3.0 Hz, 1H), 7.51 (d, *J* = 9.0 Hz, 2H), 7.32 (dd, *J* = 3.0, 1.8 Hz, 1H), 7.00 (d, *J* = 9.0 Hz, 2H), 3.91 (s, 3H), 3.86 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 159.78, 155.71, 140.43, 136.93, 135.37, 130.04, 128.29, 118.63, 114.47, 55.58, 55.35; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₁₃H₁₄NO₂⁺, 216.1019; found 216.1019.

ethyl (*E*)-3-(3-(pyridin-3-yl)phenyl)acrylate **3a**. Pale yellow solid, 16.3 mg. Yield: 64%. TLC (Hexane:EtOAc, 50:50 v/v): RF = 0.34; ¹H NMR (600 MHz, CDCl₃): δ 8.85 (s, 1H), 8.62 (d, *J* = 3.6 Hz, 1H), 7.87 (ddd, *J* = 7.8, 2.4, 1.8 Hz, 1H), 7.74 (d, *J* = 16.2 Hz, 1H), 7.70 (s, 1H), 7.59 (d, *J* = 7.8 Hz, 1H), 7.56 (d, *J* = 7.8 Hz, 1H), 7.50 (t, *J* = 7.8 Hz, 1H), 7.38 (dd, *J* = 7.8, 4.8 Hz, 1H), 6.51 (d, *J* = 16.2 Hz, 1H), 4.28 (q, *J* = 7.2 Hz, 2H), 1.34 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 166.74, 148.86, 148.24, 143.93, 138.59, 135.91, 135.31, 134.33, 129.62, 128.85, 127.48, 126.78, 123.58, 119.12, 60.60, 14.29; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₁₆H₁₆NO₂⁺, 254.1176; found 254.1177.

ethyl (*E*)-3-(4-methyl-3-(pyridin-3-yl)phenyl)acrylate **3b**. Pale yellow solid, 16.0 mg. Yield: 60%. TLC (Hexane:EtOAc, 50:50 v/v): RF = 0.41; ¹H NMR (600 MHz, CDCl₃): δ 8.62 (dd, *J* = 4.8, 1.8 Hz, 1H), 8.59 (dd, *J* = 2.4, 1.2 Hz, 1H), 7.68 (d, *J* = 16.2 Hz, 1H), 7.65 (ddd, *J* = 7.8, 1.8, 1.2 Hz, 1H), 7.47 (dd, *J* = 8.4, 2.4 Hz, 1H), 7.38–7.36 (m, 2H), 7.32 (d, *J* = 8.4 Hz, 1H), 6.43 (d, *J* = 16.2 Hz, 1H), 4.26 (q, *J* = 7.2 Hz, 2H), 2.28 (s, 3H), 1.33 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 166.94, 149.80, 148.51, 143.88, 138.72, 138.18, 136.67, 136.34, 132.49, 131.17, 129.49, 127.52, 123.10, 118.05, 60.48, 20.39, 14.30; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₁₇H₁₈NO₂⁺, 268.1332; found 268.1337.

ethyl (*E*)-3-(3-methyl-5-(pyridin-3-yl)phenyl)acrylate **3c**. White solid, 16.0 mg. Yield: 60%. TLC (Hexane:EtOAc, 50:50 v/v): RF = 0.39; ¹H NMR (600 MHz, CDCl₃): δ 8.84 (d, *J* = 1.4 Hz, 1H), 8.62 (d, *J* = 4.0 Hz, 1H), 7.87 (dt, *J* = 7.9, 1.8 Hz, 1H), 7.72 (d, *J* = 16.0 Hz, 1H), 7.52 (s, 1H), 7.40 (s, 1H), 7.39 (s, 1H), 7.38 (dd, *J* = 7.9, 4.8 Hz, 1H), 6.50 (d, *J* = 16.0 Hz, 1H), 4.28 (q, *J* = 7.1 Hz, 2H), 2.45 (s, 3H), 1.35 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 166.85, 148.78, 148.27, 144.14, 141.74, 139.43, 138.56, 135.27, 134.37, 129.76, 128.24, 124.11, 123.56, 118.89, 60.57, 21.41, 14.31; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₁₇H₁₈NO₂⁺, 268.1332; found 268.1328.

ethyl (*E*)-3-(2-methyl-5-(pyridin-3-yl)phenyl)acrylate **3d**. Pale yellow solid, 16.3 mg. Yield: 61%. TLC (Hexane:EtOAc, 50:50 v/v): RF = 0.39; ¹H NMR (600 MHz, CDCl₃): δ 8.83 (d, *J* = 2.4 Hz, 1H), 8.59 (dd, *J* = 4.8, 1.2 Hz, 1H), 8.00 (d, *J* = 16.2 Hz, 1H), 7.86 (dt, *J* = 7.8, 1.8 Hz, 1H), 7.74 (d, *J* = 1.2 Hz, 1H), 7.49 (dd, *J* = 7.8, 1.8 Hz, 1H), 7.36 (dd, *J* = 7.8, 4.8 Hz, 1H), 7.32

(d, J = 7.8 Hz, 1H), 6.44 (d, J = 16.2 Hz, 1H), 4.28 (q, J = 7.2 Hz, 2H), 2.48 (s, 3H), 1.35 (t, J = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 166.82, 148.57, 148.10, 141.84, 137.51, 135.99, 135.94, 134.20, 134.14, 131.55, 128.44, 125.05, 123.54, 120.10, 60.59, 19.52, 14.30; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₁₇H₁₈NO₂⁺, 268.1332; found 268.1335.

ethyl (*E*)-3-(2-fluoro-5-(pyridin-3-yl)phenyl)acrylate **3e**. Pale yellow solid, 17.9 mg. Yield: 66%. TLC (Hexane:EtOAc, 50:50 v/v): RF = 0.32; ¹H NMR (600 MHz, CDCl₃): δ 8.80 (d, *J* = 1.8 Hz, 1H), 8.61 (dd, *J* = 4.8, 1.8 Hz, 1H), 7.84 (d, *J* = 16.2 Hz, 1H), 7.83 (dt, *J* = 7.8, 1.8 Hz, 1H), 7.71 (dd, *J* = 6.6, 2.4 Hz, 1H), 7.56–7.53 (m, 1H), 7.38 (dd, *J* = 7.8, 4.8 Hz, 1H), 7.22 (dd, *J* = 10.2, 8.4 Hz, 1H), 6.61 (d, *J* = 16.2 Hz, 1H), 4.28 (q, *J* = 7.2 Hz, 2H), 1.34 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 166.56, 161.25 (d, *J*_{C-F} = 256.7 Hz), 148.87, 148.07, 136.70 (d, *J*_{C-F} = 2.4 Hz), 135.11, 134.47 (d, *J*_{C-F} = 3.8 Hz), 134.21, 130.20 (d, *J*_{C-F} = 8.9 Hz), 127.77 (d, *J*_{C-F} = 3.3 Hz), 123.60, 123.14 (d, *J*_{C-F} = 12.5 Hz), 121.68 (d, *J*_{C-F} = 6.8 Hz), 116.97 (d, *J*_{C-F} = 22.7 Hz), 60.72, 14.27; HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ calcd. for C₁₆H₁₅FNO₂⁺, 272.1081; found 272.1081.

ethyl (*E*)-3-(2-chloro-5-(pyridin-3-yl)phenyl)acrylate **3f**. White solid, 14.4 mg. Yield: 50%. TLC (Hexane:EtOAc, 50:50 v/v): RF = 0.38; ¹H NMR (600 MHz, CDCl₃): δ 8.82 (dd, *J* = 2.4, 0.8 Hz, 1H), 8.63 (dd, *J* = 4.8, 2.4 Hz, 1H), 8.11 (d, *J* = 16.0 Hz, 1H), 7.85 (ddd, *J* = 7.8, 2.4, 1.6 Hz, 1H), 7.79 (d, *J* = 2.0 Hz, 1H), 7.52 (d, *J* = 0.5 Hz, 1H), 7.51 (d, *J* = 2.0 Hz, 1H), 7.39 (ddd, *J* = 7.8, 4.8, 0.8 Hz, 1H), 6.52 (d, *J* = 16.0 Hz, 1H), 4.29 (q, *J* = 7.1 Hz, 2H), 1.35 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 166.26, 149.14, 148.07, 139.96, 136.99, 135.01, 134.82, 134.22, 133.43, 130.83, 129.46, 126.21, 123.64, 121.66, 60.80, 14.28; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₁₆H₁₅CINO₂⁺, 288.0786; found 288.0788.

ethyl (*E*)-3-(2-bromo-5-(pyridin-3-yl)phenyl)acrylate **3g**. White solid, 20.0 mg. Yield: 60%. TLC (Hexane:EtOAc, 50:50 v/v): RF = 0.38; ¹H NMR (600 MHz, CDCl₃): δ 8.83 (d, *J* = 2.4 Hz, 1H), 8.64 (dd, *J* = 4.2, 1.2 Hz, 1H), 8.08 (d, *J* = 16.2 Hz, 1H), 7.86 (dt, *J* = 7.8, 1.8 Hz, 1H), 7.77 (d, *J* = 2.4 Hz, 1H), 7.72 (d, *J* = 8.4 Hz, 1H), 7.43 (dd, *J* = 8.4, 2.4 Hz, 1H), 7.39 (dd, *J* = 7.8, 4.8 Hz, 1H), 6.48 (d, *J* = 16.2 Hz, 1H), 4.30 (q, *J* = 7.2 Hz, 2H), 1.36 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 166.18, 149.21, 148.05, 142.51, 137.65, 135.30, 135.03, 134.18, 134.10, 129.63, 126.34, 125.07, 123.67, 121.84, 60.81, 14.29; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₁₆H₁₅BrNO₂⁺, 332.0281; found 332.0280.

ethyl (*E*)-3-(4-methoxy-3-(pyridin-3-yl)phenyl)acrylate **3h**. White solid, 17.3 mg. Yield: 61%. TLC (Hexane:EtOAc, 50:50 v/v): RF = 0.31; ¹H NMR (600 MHz, CDCl₃): δ 8.75 (d, *J* = 1.8 Hz, 1H), 8.58 (dd, *J* = 4.8, 1.2 Hz, 1H), 7.83 (dt, *J* = 7.8, 1.8 Hz, 1H), 7.68 (d, *J* = 16.2 Hz, 1H), 7.54 (dd, *J* = 8.4, 1.2 Hz, 1H), 7.49 (d, *J* = 2.4 Hz, 1H), 7.34 (dd, *J* = 7.8, 4.8 Hz, 1H), 7.01 (d, *J* = 8.4 Hz, 1H), 6.35 (d, *J* = 16.2 Hz, 1H), 4.25 (q, *J* = 7.2 Hz, 2H), 3.86 (s, 3H), 1.33 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 167.11, 158.19, 150.15, 148.32, 143.68, 136.68, 133.41, 130.24, 129.75, 127.63, 127.51, 122.94, 116.50, 111.43, 60.39, 55.73, 14.32; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₁₇H₁₈NO₃⁺, 284.1281; found 284.1280.

ethyl (*E*)-3-(3-methoxy-5-(pyridin-3-yl)phenyl)acrylate **3i**. Colorless liquid, 2.8 mg. Yield: 10%. TLC (Hexane:EtOAc, 50:50 v/v): RF = 0.36; ¹H NMR (600 MHz, CDCl₃): δ 8.84 (d, *J* = 4.8 Hz, 1H), 8.62 (dd, *J* = 4.8, 1.8 Hz, 1H), 7.87 (dt, *J* = 7.8, 1.8 Hz, 1H), 7.71 (d, *J* = 15.6 Hz, 1H), 7.37 (dd, *J* = 7.8, 4.8 Hz, 1H), 7.31 (s, 1H), 7.12 (s, 1H), 7.09 (s, 1H), 6.50 (d, *J* = 15.6 Hz, 1H), 4.28

(q, J = 7.2 Hz, 2H), 3.90 (s, 3H), 1.35 (t, J = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 166.74, 160.45, 148.95, 148.23, 143.98, 139.87, 136.58, 135.92, 134.45, 123.60, 119.68, 119.35, 114.99, 112.20, 60.65, 55.52, 14.31; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₇H₁₈NO₃⁺, 284.1281; found 284.1274.

ethyl (*E*)-3-(2-methoxy-4-(pyridin-3-yl)phenyl)acrylate **3i**-*para*. Colorless liquid, 8.0 mg. Yield: 28%. TLC (Hexane:EtOAc, 50:50 v/v): RF = 0.26; ¹H NMR (600 MHz, CDCl₃): δ 8.86 (d, *J* = 2.4 Hz, 1H), 8.62 (dd, *J* = 4.8, 1.2 Hz, 1H), 8.00 (d, *J* = 16.2 Hz, 1H), 7.89 (ddd, *J* = 7.8, 2.4, 1.8 Hz, 1H), 7.61 (d, *J* = 8.4 Hz, 1H), 7.38 (dd, *J* = 7.8, 4.8 Hz, 1H), 7.18 (dd, *J* = 7.8, 1.8 Hz, 1H), 7.09 (d, *J* = 1.2 Hz, 1H), 6.58 (d, *J* = 16.2 Hz, 1H), 4.28 (q, *J* = 7.2 Hz, 2H), 3.97 (s, 3H), 1.35 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 167.39, 158.71, 149.00, 148.18, 140.90, 139.23, 136.01, 134.30, 129.58, 123.59, 123.29, 119.55, 119.26, 109.79, 60.42, 55.63, 14.36; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₁₇H₁₈NO₃⁺, 284.1281; found 284.1273.

ethyl (*E*)-3-(2-methoxy-5-(pyridin-3-yl)phenyl)acrylate **3j**. White solid, 23.8 mg. Yield: 84%. TLC (Hexane:EtOAc, 50:50 v/v): RF = 0.29; ¹H NMR (600 MHz, CDCl₃): δ 8.81 (d, *J* = 2.4 Hz, 1H), 8.57 (dd, *J* = 4.8, 1.2 Hz, 1H), 8.01 (d, *J* = 16.2 Hz, 1H), 7.83 (ddd, *J* = 7.8, 2.4, 1.8 Hz, 1H), 7.70 (d, *J* = 2.4 Hz, 1H), 7.56 (dd, *J* = 9.0, 2.4 Hz, 1H), 7.35 (ddd, *J* = 7.8, 4.8, 1.2 Hz, 1H), 7.02 (d, *J* = 8.4 Hz, 1H), 6.60 (d, *J* = 16.2 Hz, 1H), 4.27 (q, *J* = 7.2 Hz, 2H), 3.94 (s, 3H), 1.34 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 167.26, 158.32, 148.23, 147.92, 139.51, 135.67, 133.87, 130.36, 129.86, 127.55, 124.08, 123.52, 119.62, 111.77, 60.44, 55.70, 14.34; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₁₇H₁₈NO₃⁺, 284.1281; found 284.1286.

ethyl (*E*)-3-(5-(6-fluoropyridin-3-yl)-2-methoxyphenyl)acrylate **3k**. White solid, 19.6 mg. Yield: 65%. TLC (Hexane:EtOAc, 50:50 v/v): RF = 0.70; ¹H NMR (600 MHz, CDCl₃): δ 8.37 (s, 1H), 8.00 (d, *J* = 16.2 Hz, 1H), 7.92 (td, *J* = 8.4, 2.4 Hz, 1H), 7.64 (d, *J* = 1.8 Hz, 1H), 7.50 (dd, *J* = 9.0, 2.4 Hz, 1H), 7.02 (d, *J* = 8.4 Hz, 1H), 6.99 (dd, *J* = 9.0, 2.4 Hz, 1H), 6.59 (d, *J* = 16.2 Hz, 1H), 4.27 (q, *J* = 7.2 Hz, 2H), 3.94 (s, 3H), 1.34 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 167.24, 162.94 (d, *J*_{C-F} = 239.2 Hz), 158.35, 145.41 (d, *J*_{C-F} = 14.6 Hz), 139.41, 139.32 (d, *J*_{C-F} = 7.9 Hz), 133.94 (d, *J*_{C-F} = 4.5 Hz), 129.79, 129.27, 127.48, 124.15, 119.78, 111.84, 109.47 (d, *J*_{C-F} = 37.6 Hz), 60.50, 55.75, 14.36; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₁₇H₁₇FNO₃⁺, 302.1187; found 302.1188.

ethyl (*E*)-3-(5-(5-fluoropyridin-3-yl)-2-methoxyphenyl)acrylate **31**. Pale yellow solid, 21.2 mg. Yield: 70%. TLC (Hexane:EtOAc, 50:50 v/v): RF = 0.56; ¹H NMR (600 MHz, CDCl₃): δ 8.63 (t, *J* = 1.7 Hz, 1H), 8.43 (d, *J* = 2.7 Hz, 1H), 8.00 (d, *J* = 16.2 Hz, 1H), 7.69 (d, *J* = 2.4 Hz, 1H), 7.56–7.53 (m, 2H), 7.03 (d, *J* = 8.6 Hz, 1H), 6.60 (d, *J* = 16.2 Hz, 1H), 4.27 (q, *J* = 7.2 Hz, 2H), 3.94 (s, 3H), 1.34 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 167.15, 159.66 (d, *J*_{C-F} = 256.7 Hz), 158.68, 143.67 (d, *J*_{C-F} = 4.5 Hz),139.25, 137.30 (d, *J*_{C-F} = 4.5 Hz), 136.37 (d, *J*_{C-F} = 22.7 Hz), 129.90, 128.87, 127.60, 124.25, 120.5 (d, *J*_{C-F} = 18.1 Hz), 119.89, 111.86, 60.47, 55.73, 14.32; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₁₇H₁₇FNO₃⁺, 302.1187; found 302.1190.

ethyl (*E*)-3-(2-methoxy-5-(5-methylpyridin-3-yl)phenyl)acrylate **3m**. White solid, 21.6 mg. Yield: 72%. TLC (Hexane:EtOAc, 50:50 v/v): RF = 0.28; ¹H NMR (600 MHz, CDCl₃): δ 8.60 (d, J = 1.8 Hz, 1H), 8.40 (d, J = 2.4 Hz, 1H), 8.01 (d, J = 16.2 Hz, 1H), 7.69 (d, J = 2.4 Hz, 1H),

7.63-7.62 (m, 1H), 7.55 (dd, J = 8.4, 2.4 Hz, 1H), 7.00 (d, J = 8.4 Hz, 1H), 6.60 (d, J = 16.2 Hz, 1H), 4.27 (q, J = 7.2 Hz, 2H), 3.93 (s, 3H), 2.40 (s, 3H), 1.34 (t, J = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 167.25, 158.21, 148.72, 145.07, 139.54, 135.13, 134.47, 133.00, 130.43, 129.85, 127.47, 123.98, 119.49, 111.69, 60.41, 55.67, 18.43, 14.33; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₁₈H₂₀NO₃⁺, 298.1438; found 298.1434.

ethyl (*E*)-3-(2-fluoro-5-(5-methylpyridin-3-yl)phenyl)acrylate **3n**. Pale yellow solid, 20.1 mg. Yield: 70%. TLC (Hexane:EtOAc, 50:50 v/v): RF = 0.40; ¹H NMR (600 MHz, CDCl₃): δ 8.60 (s, 1H), 8.45 (d, 1H), 7.84 (d, *J* = 16.2 Hz, 1H), 7.70 (dd, *J* = 6.8, 2.3 Hz, 1H), 7.63 (s, 1H), 7.55–7.52 (m, 1H), 7.20 (dd, *J* = 10.1, 8.5 Hz, 1H), 6.61 (d, *J* = 16.2 Hz, 1H), 4.28 (q, *J* = 7.1 Hz, 2H), 2.41 (s, 3H), 1.34 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 166.58, 161.18 (d, *J*_{C-F} = 255.6 Hz), 149.36, 145.23, 136.75 (d, *J*_{C-F} = 2.4 Hz), 134.81, 134.63, 134.57 (d, *J*_{C-F} = 3.5 Hz), 133.18, 130.20 (d, *J*_{C-F} = 8.9 Hz), 127.70 (d, *J*_{C-F} = 3.2 Hz), 123.06 (d, *J*_{C-F} = 12.2 Hz), 121.57 (d, *J*_{C-F} = 6.6 Hz), 116.88 (d, *J*_{C-F} = 22.5 Hz), 60.71, 18.43, 14.27; HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ calcd. for C₁₇H₁₇FNO₂⁺, 286.1238; found 286.1237.

ethyl (*E*)-3-(2-methoxy-5-(5-methoxypyridin-3-yl)phenyl)acrylate **30**. Pale yellow solid, 26.6 mg. Yield: 85%. TLC (Hexane:EtOAc, 50:50 v/v): RF = 0.30; ¹H NMR (600 MHz, CDCl₃): δ 8.41 (d, *J* = 1.8 Hz, 1H), 8.27 (d, *J* = 3.0 Hz, 1H), 8.00 (d, *J* = 16.2 Hz, 1H), 7.69 (d, *J* = 2.4 Hz, 1H), 7.55 (dd, *J* = 9.0, 2.4 Hz, 1H), 7.31 (dd, *J* = 3.0, 1.8 Hz, 1H), 7.01 (d, *J* = 9.0 Hz, 1H), 6.60 (d, *J* = 16.2 Hz, 1H), 4.27 (q, *J* = 7.2 Hz, 2H), 3.93 (s, 3H), 3.92 (s, 3H), 1.34 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 167.24, 158.36, 155.73, 140.29, 139.49, 136.33, 135.83, 130.17, 129.97, 127.62, 124.00, 119.60, 118.55, 111.70, 60.42, 55.69, 55.62, 14.32; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₁₈H₂₀NO₄⁺, 314.1387; found 314.1387.

ethyl (*E*)-3-(2-fluoro-5-(5-methoxypyridin-3-yl)phenyl)acrylate **3p**. Pale yellow solid, 19.0 mg. Yield: 63%. TLC (Hexane:EtOAc, 50:50 v/v): RF = 0.40; ¹H NMR (600 MHz, CDCl₃): δ 8.41 (s, 1H), 8.33 (s, 1H), 7.84 (d, *J* = 16.2 Hz, 1H), 7.70 (dd, *J* = 6.8, 2.3 Hz, 1H), 7.56–7.53 (m, 1H), 7.31 (dd, *J* = 2.5, 2.0 Hz, 1H), 7.21 (dd, *J* = 10.1, 8.6 Hz, 1H), 6.61 (d, *J* = 16.2 Hz, 1H), 4.29 (q, *J* = 7.1 Hz, 2H), 3.93 (s, 3H), 1.35 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 166.58, 161.29 (d, *J*_{C-F} = 255.8 Hz), 155.78, 140.40, 136.71 (d, *J*_{C-F} = 1.5 Hz), 136.49, 135.82, 134.34 (d, *J*_{C-F} = 3.5 Hz), 130.33 (d, *J*_{C-F} = 8.9 Hz), 127.88 (d, *J*_{C-F} = 3.0 Hz), 123.12 (d, *J*_{C-F} = 12.2 Hz), 121.71 (d, *J*_{C-F} = 6.6 Hz), 118.94, 116.94 (d, *J*_{C-F} = 22.5 Hz), 60.74, 55.70, 14.29; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₁₇H₁₇FNO₃⁺, 302.1187; found 302.1187.

ethyl (*E*)-3-(2-methoxy-5-(quinolin-3-yl)phenyl)acrylate **3q**. Pale yellow solid, 24.7 mg. Yield: 74%. TLC (Hexane:EtOAc, 50:50 v/v): RF = 0.44; ¹H NMR (600 MHz, CDCl₃): δ 9.14 (d, *J* = 2.4 Hz, 1H), 8.24 (d, *J* = 2.4 Hz, 1H), 8.13 (d, *J* = 8.4 Hz, 1H), 8.05 (d, *J* = 16.2 Hz, 1H), 7.86 (d, *J* = 8.4 Hz, 1H), 7.83 (d, *J* = 2.4 Hz, 1H), 7.72–7.69 (m, 1H), 7.68 (dd, *J* = 8.4, 2.4 Hz, 1H), 7.57 (ddd, *J* = 7.8, 7.2, 0.6 Hz, 1H), 7.06 (d, *J* = 8.4 Hz, 1H), 6.64 (d, *J* = 16.2 Hz, 1H), 4.28 (q, *J* = 7.2 Hz, 2H), 3.95 (s, 3H), 1.35 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 167.26, 158.33, 149.52, 147.14, 139.53, 132.80, 132.53, 130.36, 130.11, 129.26, 129.18, 127.96, 127.85, 127.77, 127.04, 124.18, 119.66, 111.84, 60.45, 55.72, 14.34; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₂₁H₂₀NO₃⁺, 334.1438; found 334.1436.

ethyl (*E*)-3-(2-fluoro-5-(quinolin-3-yl)phenyl)acrylate **3r**. Pale yellow solid, 17.7 mg. Yield: 55%. TLC (Hexane:EtOAc, 50:50 v/v): RF = 0.65; ¹H NMR (600 MHz, CDCl₃): δ 9.13 (d, *J* =

2.2 Hz, 1H), 8.27 (d, J = 2.2 Hz, 1H), 8.15 (d, J = 8.5 Hz, 1H), 7.89 (d, J = 7.3 Hz, 1H), 7.88 (d, J = 16.2 Hz, 1H), 7.84 (dd, J = 6.8, 2.3 Hz, 1H), 7.75 (ddd, J = 8.3, 6.9, 1.4 Hz, 1H), 7.70–7.67 (m, 1H), 7.61 (ddd, J = 8.0, 6.9, 1.0 Hz, 1H), 7.27 (dd, J = 10.1, 8.5 Hz, 1H), 6.66 (d, J = 16.2 Hz, 1H), 4.30 (q, J = 7.1 Hz, 2H), 1.36 (t, J = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 166.60, 161.29 (d, $J_{C-F} = 256.1$ Hz), 149.36, 147.43, 136.76 (d, $J_{C-F} = 2.4$ Hz), 134.55 (d, $J_{C-F} = 3.5$ Hz), 133.28, 132.27, 130.47 (d, $J_{C-F} = 8.9$ Hz), 129.72, 129.27, 128.04 (d, $J_{C-F} = 3.5$ Hz), 127.96, 127.82, 127.28, 123.28 (d, $J_{C-F} = 12.4$ Hz), 121.76 (d, $J_{C-F} = 6.6$ Hz), 117.08 (d, $J_{C-F} = 22.5$ Hz), 60.76, 14.30; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₂₀H₁₇FNO₂⁺, 322.1238; found 322.1239.

ethyl (*E*)-3-(5-(isoquinolin-4-yl)-2-methoxyphenyl)acrylate **3s**. Colorless liquid, 27.7 mg. Yield: 83%. TLC (Hexane:EtOAc, 50:50 v/v): RF = 0.35; ¹H NMR (600 MHz, CDCl₃): δ 9.24 (s, 1H), 8.46 (s, 1H), 8.05 (d, *J* = 16.2 Hz, 1H), 8.04 (d, *J* = 7.8 Hz, 1H), 7.88 (d, *J* = 8.5 Hz, 1H), 7.68 (t, *J* = 6.9 Hz, 1H), 7.65 (d, *J* = 2.2 Hz, 1H), 7.63 (t, *J* = 7.5 Hz, 1H), 7.49 (dd, *J* = 8.5, 2.2 Hz, 1H), 7.08 (d, *J* = 8.5 Hz, 1H), 6.57 (d, *J* = 16.2 Hz, 1H), 4.25 (q, *J* = 7.1 Hz, 2H), 3.98 (s, 3H), 1.32 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 167.30, 158.09, 151.93, 142.75, 139.52, 134.22, 132.83, 132.26, 130.65, 130.45, 129.32, 128.40, 127.93, 127.20, 124.52, 123.63, 119.52, 111.39, 60.39, 55.70, 14.31; HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ calcd. for C₂₁H₂₀NO₃⁺, 334.1438; found 334.1440.

ethyl (*E*)-3-(2-fluoro-5-(isoquinolin-4-yl)phenyl)acrylate **3t**. Colorless oil, 16.7 mg. Yield: 52%. TLC (Hexane:EtOAc, 50:50 v/v): RF = 0.44; ¹H NMR (600 MHz, CDCl₃): δ 9.29 (s, 1H), 8.47 (s, 1H), 8.06 (d, *J* = 8.2 Hz, 1H), 7.87 (d, *J* = 16.2 Hz, 1H), 7.82 (d, *J* = 8.4 Hz, 1H), 7.70 (ddd, *J* = 8.3, 6.8, 1.4 Hz, 1H), 7.68–7.65 (m, 2H), 7.50–7.48 (m, 1H), 7.27 (dd, *J* = 10.3, 8.4 Hz, 1H), 6.59 (d, *J* = 16.2 Hz, 1H), 4.27 (q, *J* = 7.1 Hz, 2H), 1.33 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz,

CDCl₃): δ 166.61, 161.06 (d, $J_{C-F} = 256.8$ Hz), 152.48, 142.81, 136.72 (d, $J_{C-F} = 1.7$ Hz), 134.02, 133.47 (d, $J_{C-F} = 3.6$ Hz), 133.09 (d, $J_{C-F} = 8.9$ Hz), 131.61, 130.92, 130.55 (d, $J_{C-F} = 2.7$ Hz), 128.41, 128.05, 127.40, 124.24, 122.81 (d, $J_{C-F} = 12.2$ Hz), 121.62 (d, $J_{C-F} = 6.6$ Hz), 116.56 (d, $J_{C-F} = 22.3$ Hz), 60.70, 14.27; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₂₀H₁₇FNO₂⁺, 322.1238; found 322.1239.

ethyl (*E*)-3-(2-methoxy-5-(pyrimidin-5-yl)phenyl)acrylate **3u**. White solid, 20.2 mg. Yield: 71%. TLC (Hexane:EtOAc, 50:50 v/v): RF = 0.26; ¹H NMR (600 MHz, CDCl₃): δ 9.17 (s, 1H), 8.91 (s, 2H), 7.99 (d, *J* = 16.2 Hz, 1H), 7.69 (d, *J* = 2.4 Hz, 1H), 7.55 (dd, *J* = 8.4, 2.4 Hz, 1H), 7.06 (d, *J* = 8.4 Hz, 1H), 6.60 (d, *J* = 16.2 Hz, 1H), 4.27 (q, *J* = 7.2 Hz, 2H), 3.95 (s, 3H), 1.34 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 167.08, 158.88, 157.19, 154.44, 139.07, 133.44, 129.65, 127.34, 126.70, 124.51, 120.10, 112.07, 60.50, 55.75, 14.31; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₁₆H₁₇N₂O₃⁺, 285.1234; found 285.1235.

ethyl (*E*)-3-(2-fluoro-5-(pyrimidin-5-yl)phenyl)acrylate **3v**. Pale yellow solid, 10.9 mg. Yield: 40%. TLC (Hexane:EtOAc, 50:50 v/v): RF = 0.37; ¹H NMR (600 MHz, CDCl₃): δ 9.23 (s, 1H), 8.93 (s, 2H), 7.84 (d, *J* = 16.2 Hz, 1H), 7.71 (dd, *J* = 6.6, 2.4 Hz, 1H), 7.57–7.54 (m, 1H), 7.29–7.27 (m, 1H), 6.63 (d, *J* = 16.2 Hz, 1H), 4.29 (q, *J* = 7.2 Hz, 2H), 1.34 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 166.41, 161.71 (d, *J*_{C-F} = 256.7 Hz), 157.82, 154.76, 136.25 (d, *J*_{C-F} = 1.5 Hz), 132.98, 130.98 (d, *J*_{C-F} = 3.5 Hz), 130.02 (d, *J*_{C-F} = 9.2 Hz), 127.74 (d, *J*_{C-F} = 3.3 Hz), 123.70 (d, *J*_{C-F} = 12.7 Hz), 122.26 (d, *J*_{C-F} = 6.6 Hz), 117.48 (d, *J*_{C-F} = 22.8 Hz), 60.82, 14.27; HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ calcd. for C₁₅H₁₄FN₂O₂⁺, 273.1034; found 273.1036.

(*E*)-3-methoxy-5-(4-methoxy-3-(2-(phenylsulfonyl)vinyl)phenyl)pyridine **3w**. Pale yellow solid, 31.6 mg. Yield: 83%. TLC (EtOAc): RF = 0.58; ¹H NMR (600 MHz, CDCl₃): δ 8.38 (d, *J* = 1.8 Hz, 1H), 8.28 (d, *J* = 3.0 Hz, 1H), 7.98–7.96 (m, 2H), 7.94 (d, *J* = 15.6 Hz, 1H), 7.62–7.58 (m, 3H), 7.56–7.53 (m, 2H), 7.29 (dd, *J* = 2.7, 2.0 Hz, 1H), 7.15 (d, *J* = 15.6 Hz, 1H), 7.03 (d, *J* = 8.6 Hz, 1H), 3.94 (s, 3H), 3.92 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 158.81, 155.75, 140.92, 140.20, 137.94, 136.09, 135.91, 133.21, 131.03, 130.38, 129.43, 129.26, 128.73, 127.64, 121.77, 118.50, 111.89, 55.79, 55.67; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₂₁H₂₀NO₄S⁺, 382.1108; found 382.1105.

diethyl (*E*)-(2-methoxy-5-(5-methoxypyridin-3-yl)styryl)phosphonate **3x**. Colorless liquid, 36.3 mg. Yield: 96%. TLC (EtOAc): RF = 0.21; ¹H NMR (600 MHz, CDCl₃): δ 8.42 (s, 1H), 8.28 (d, *J* = 2.4 Hz, 1H), 7.83 (dd, *J* = 23.6, 17.8 Hz, 1H), 7.68 (d, *J* = 2.4 Hz, 1H), 7.56 (dd, *J* = 8.5, 2.4 Hz, 1H), 7.32 (dd, *J* = 2.6, 2.4 Hz, 1H), 7.01 (d, *J* = 8.5 Hz, 1H), 6.43 (dd, *J* = 19.1, 17.8 Hz, 1H), 4.18–4.12 (m, 4H), 3.93 (s, 3H), 3.92 (s, 3H), 1.36 (t, *J* = 6.9 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃): δ 158.17, 155.77, 143.50 (d, *J*_{C-P} = 7.9 Hz), 140.28, 136.39, 135.83, 130.13, 129.99, 127.30, 124.35 (d, *J*_{C-P} = 23.3 Hz), 118.62, 115.32 (d, *J*_{C-P} = 190.1 Hz), 111.76, 61.83 (d, *J*_{C-P} = 5.6 Hz), 55.68, 55.67, 16.41 (d, *J*_{C-P} = 6.5 Hz); HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ calcd. for C₁₉H₂₅NO₅P⁺, 378.1465; found 378.1467.

(*E*)-3-methoxy-5-(4-methoxy-3-(4-(trifluoromethyl)styryl)phenyl)pyridine **3y**. Pale yellow solid, 19.3 mg. Yield: 50%. TLC (Hexane:EtOAc, 50:50 v/v): RF = 0.41; ¹H NMR (600 MHz, CDCl₃): δ 8.47 (d, *J* = 1.8 Hz, 1H), 8.29 (d, *J* = 2.4 Hz, 1H), 7.78 (d, *J* = 1.8 Hz, 1H), 7.65–7.57 (m, 5H), 7.49 (dd, *J* = 8.4, 2.4 Hz, 1H), 7.37 (dd, *J* = 2.4, 1.8 Hz, 1H), 7.21 (d, *J* = 16.2 Hz, 1H), 7.02 (d, *J* = 8.4 Hz, 1H), 3.96 (s, 3H), 3.94 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 157.28, 155.76, 141.14, 140.50, 136.89, 135.49, 130.27, 129.18 (q, *J*_{C-F} = 32.3 Hz), 128.26, 128.06, 126.67, 126.32, 125.66, 125.57 (q, $J_{C-F} = 3.5$ Hz), 125.53, 124.22 (q, $J_{C-F} = 271.7$ Hz), 118.91, 111.51, 55.74, 55.68; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₂₂H₁₉F₃NO₂⁺, 386.1362; found 386.1365.

(*E*)-3-methoxy-5-(4-methoxy-3-(2-(perfluorophenyl)vinyl)phenyl)pyridine **3z**. Pale yellow solid, 35.1 mg. Yield: 86%. TLC (Hexane:EtOAc, 50:50 v/v): RF = 0.37; ¹H NMR (600 MHz, CDCl₃): δ 8.45 (d, *J* = 1.8 Hz, 1H), 8.28 (d, *J* = 2.7 Hz, 1H), 7.76 (d, *J* = 16.8 Hz, 1H), 7.72 (d, *J* = 2.3 Hz, 1H), 7.51 (dd, *J* = 8.5, 2.3 Hz, 1H), 7.35 (dd, *J* = 2.7, 1.8 Hz, 1H), 7.06 (d, *J* = 16.8 Hz, 1H), 7.01 (d, *J* = 8.5 Hz, 1H), 3.96 (s, 3H), 3.94 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 157.45, 155.74, 140.44, 136.68, 135.56, 132.07 (m), 130.32, 128.74, 126.14, 125.81, 118.85, 113.89, 111.55, 55.75, 55.65; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₂₁H₁₅F₅NO₂⁺, 408.1017; found 408.1009. The carbon resonances corresponding to the pentafluorobenzene (C₆F₅) in this compound appear as a complex series of multiplets between 146 ppm to 112 ppm as a result of ¹³C/¹⁹F coupling. Due to the complexities of the system, the peaks are not listed. HRMS were used to confirm the presence of this ring system.

tert-butyl ((2'-cyano-[1,1'-biphenyl]-2-yl)methyl)carbamate **S2**. White solid. TLC (Hexanes:EtOAc, 80:20 v/v): RF = 0.23; ¹H NMR (600 MHz, CDCl₃): δ 7.75 (d, *J* = 7.8 Hz, 1H), 7.64 (td, *J* = 7.6, 1.3 Hz, 1H), 7.49–7.46 (m, 2H), 7.44 (td, *J* = 7.4, 1.4 Hz, 1H), 7.40 (d, *J* = 7.8 Hz, 1H), 7.37 (td, *J* = 7.5, 1.4 Hz, 1H), 7.22 (dd, *J* = 7.6, 1.3 Hz, 1H), 4.78–4.43 (m, 1H), 4.26–4.07 (m, 2H), 1.40 (s, 9H); ¹³C NMR (151 MHz, CDCl₃): δ 155.57, 144.60, 137.50, 136.50,

132.85, 132.63, 130.49, 129.93, 129.21, 128.59, 127.93, 127.52, 118.09, 112.74, 79.44, 42.18, 28.37; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₁₉H₂₁N₂O₂⁺, 309.1598; found 309.1593.

4'-amino-3',5'-difluoro-[1,1'-biphenyl]-2-carbonitrile **S4**. White solid, 0.21 g. Yield: 46 %. TLC (Hexanes:EtOAc, 80:20 v/v): RF = 0.28; ¹H NMR (600 MHz, CDCl₃): δ 7.74 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.62 (td, *J* = 7.8, 1.2 Hz, 1H), 7.44 (d, *J* = 7.8 Hz, 1H), 7.42 (td, *J* = 7.8, 1.2 Hz, 1H), 7.11–7.05 (m, 2H), 3.91 (br, 2H); ¹³C NMR (151 MHz, CDCl₃): δ 151.63 (dd, *J*_{C-F} = 241.4, 8.6 Hz), 143.56 (t, *J*_{C-F} = 2.3 Hz), 133.89, 132.91, 129.76, 127.56, 126.63 (t, *J*_{C-F} = 8.8 Hz), 124.66 (t, *J*_{C-F} = 16.3 Hz), 118.50, 111.63 (dd, *J*_{C-F} = 16.9, 6.5 Hz), 110.98; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₁₃H₉F₂N₂⁺, 231.0728; found 231.0738.

N-(3-bromo-6-fluoro-2-methylphenyl)acetamide. White solid. TLC (Hexanes:EtOAc, 50:50 v/v): RF = 0.39; ¹H NMR (600 MHz, DMSO-*d*₆): δ 9.66 (br, 1H), 7.56 (dd, *J* = 8.4, 4.8 Hz, 1H), 7.12 (dd, *J* = 9.6, 8.4 Hz, 1H), 2.33 (s, 3H), 2.07 (s, 3H); ¹³C NMR (151 MHz, DMSO-*d*₆): δ 161.38, 156.97 (d, *J*_{C-F} = 246.4 Hz), 137.18, 131.00 (d, *J*_{C-F} = 8.3 Hz), 125.76 (d, *J*_{C-F} = 14.6 Hz), 118.65 (d, *J*_{C-F} = 3.0 Hz), 114.74 (d, *J*_{C-F} = 22.5 Hz), 22.48, 18.57 (dd, *J*_{C-F} = 2.1 Hz); HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₉H₁₀BrFNO⁺, 245.9924; found 245.9932.

3'-amino-2',4'-difluoro-[1,1'-biphenyl]-2-carbonitrile **S5**. Pale yellow solid, 0.093 g. Yield: 20 %. TLC (Hexanes:EtOAc, 80:20 v/v): RF = 0.28; ¹H NMR (600 MHz, CDCl₃): δ 7.77-7.76 (m, 1H), 7.64 (td, *J* = 7.8, 1.2 Hz, 1H), 7.48 (td, *J* = 7.8, 1.2 Hz, 1H), 7.47 (d, *J* = 7.8 Hz, 1H), 6.93 (ddd, *J* = 10.0, 8.5, 1.8 Hz, 1H), 6.70 (td, *J* = 7.8, 6.0 Hz, 1H), 3.87 (br, 2H); ¹³C NMR (151 MHz, CDCl₃): δ 152.27 (dd, *J*_{C-F} = 242.5, 6.8 Hz), 148.76 (dd, *J*_{C-F} = 242.2, 7.2 Hz), 139.29, 133.23, 132.55, 130.92 (d, *J*_{C-F} = 1.7 Hz), 128.16, 124.54 (dd, *J*_{C-F} = 16.5, 16.5 Hz), 121.89 (dd, *J*_{C-F} = 13.3, 3.5 Hz), 118.07 (dd, *J*_{C-F} = 8.6, 3.0 Hz), 118.05, 112.86, 111.02 (dd, *J*_{C-F} = 19.0, 3.3 Hz); HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₁₃H₉F₂N₂⁺, 231.0728; found 231.0734.

3'-amino-4'-fluoro-2'-methyl-[1,1'-biphenyl]-2-carbonitrile **S6**. Pale yellow solid, 1.79 g. Yield: 39 %. TLC (Hexanes:EtOAc, 80:20 v/v): RF = 0.25; ¹H NMR (600 MHz, CDCl₃): δ 7.73 (ddd, *J* = 7.8, 1.2, 0.6 Hz, 1H), 7.61 (td, *J* = 7.8, 1.2 Hz, 1H), 7.44 (td, *J* = 7.8, 1.2 Hz, 1H), 7.34 (ddd, *J* = 7.8, 1.2, 0.6 Hz, 1H), 6.95 (dd, *J* = 10.8, 8.4 Hz, 1H), 6.59 (dd, *J* = 8.4, 5.4 Hz, 1H), 3.79 (br, 2H), 2.00 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 151.53 (d, *J*_{C-F} = 239.6 Hz), 145.60, 134.36 (d, *J*_{C-F} = 3.2 Hz), 133.23 (d, *J*_{C-F} = 12.2 Hz), 133.72, 132.41, 130.77, 127.51, 122.76 (d, *J*_{C-F} = 3.8 Hz), 119.21 (d, *J*_{C-F} = 7.7 Hz), 118.12, 113.18, 112.34 (d, *J*_{C-F} = 19.5 Hz), 14.38 (d, *J*_{C-F} = 2.7 Hz); HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₁₄H₁₂FN₂⁺, 227.0979; found 227.0983.

N-(3-bromo-2-ethyl-6-fluorophenyl)acetamide **S8**. White solid, 1.55 g. Yield: 44 %. TLC (Hexanes:EtOAc, 50:50 v/v): RF= 0.43; rotameric mixture. ¹H NMR (600 MHz, CDCl₃): δ 7.53–7.44 (m, 1H), 6.98-6.94 (m, 1H), 6.86 (t, *J* = 8.8 Hz, 1H), 2.84–2.68 (m, 2H), 2.20–1.87 (m, 3H),

1.12–1.07 (m, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 169.49, 157.70 (d, $J_{C-F} = 249.3$ Hz), 143.30, 132.70 (d, $J_{C-F} = 8.0$ Hz), 123.82 (d, $J_{C-F} = 14.1$ Hz), 118.68 (d, $J_{C-F} = 3.1$ Hz), 114.73 (d, $J_{C-F} = 22.1$ Hz), 25.71, 23.08, 13.14; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₀H₁₂BrFNO⁺, 260.0081; found 260.0088.

S9

N-(3-bromo-2-butyl-6-fluorophenyl)acetamide **S9**. White solid, 0.36 g. Yield: 31 %. TLC (Hexanes:EtOAc, 50:50 v/v): RF = 0.54; rotameric mixture. ¹H NMR (600 MHz, CDCl₃): δ 7.52–7.50 (m, 1H), 6.93–6.89 (m, 1H), 6.77–6.68 (m, 1H), 2.79–2.71 (m, 2H), 2.22–1.87 (m, 3H), 1.51–1.37 (m, 4H), 0.95 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 169.17, 157.67 (d, *J*_{C-F} = 249.9 Hz), 142.19, 132.70 (d, *J*_{C-F} = 8.0 Hz), 123.92 (d, *J*_{C-F} = 13.9 Hz), 119.00 (d, *J*_{C-F} = 2.9 Hz), 114.74 (d, *J*_{C-F} = 22.2 Hz), 32.01 (d, *J*_{C-F} = 1.4 Hz), 30.94, 23.14, 22.80, 13.81; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₁₂H₁₆BrFNO⁺, 288.0394; found 288.0404.

3'-amino-2'-ethyl-4'-fluoro-[1,1'-biphenyl]-2-carbonitrile **S10**. Pale yellow solid, 0.78 g. Yield: 65 %. TLC (Hexanes:EtOAc, 80:20 v/v): RF = 0.27; ¹H NMR (600 MHz, CDCl₃): δ 7.73 (ddd, *J* = 7.8, 1.2, 0.6 Hz, 1H), 7.61 (td, *J* = 7.8, 1.2 Hz, 1H), 7.45 (td, *J* = 7.8, 1.2 Hz, 1H), 7.35 (ddd, *J* = 7.8, 1.2, 0.6 Hz, 1H), 6.94 (dd, *J* = 10.8, 8.4 Hz, 1H), 6.55 (dd, *J* = 8.4, 5.4 Hz, 1H), 3.82 (br, 2H), 2.46–2.40 (m, 1H), 2.36–2.30 (m, 1H), 1.03 (t, *J* = 7.8 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 151.91 (d, *J*_{C-F} = 239.8 Hz), 145.65, 134.05 (d, *J*_{C-F} = 3.2 Hz), 132.77 (d, *J*_{C-F} = 12.2 Hz), 132.69, 132.13, 130.63, 128.49 (d, *J*_{C-F} = 3.3 Hz), 127.58, 119.30 (d, *J*_{C-F} = 7.9 Hz), 118.02, 113.32, 112.42 (d, *J*_{C-F} = 19.3 Hz), 21.70 (d, *J*_{C-F} = 2.7 Hz), 12.73; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₁₅H₁₄FN₂⁺, 241.1136; found 241.1143.

3'-amino-2'-butyl-4'-fluoro-[1,1'-biphenyl]-2-carbonitrile **S11**. Pale yellow oil, 0.18 g. Yield: 57 %. TLC (Hexanes:EtOAc, 80:20 v/v): RF = 0.35; ¹H NMR (600 MHz, CDCl₃): δ 7.73 (ddd, *J* = 7.8, 1.2, 0.6 Hz, 1H), 7.61 (td, *J* = 7.8, 1.2 Hz, 1H), 7.45 (td, *J* = 7.8, 1.2 Hz, 1H), 7.35 (ddd, *J* = 7.8, 1.2, 0.6 Hz, 1H), 6.94 (dd, *J* = 10.8, 8.4 Hz, 1H), 6.55 (dd, *J* = 8.4, 5.4 Hz, 1H), 3.80 (br, 2H), 2.44–2.39 (m, 1H), 2.33–2.27 (m, 1H), 1.49–1.41 (m, 1H), 1.37–1.30 (m, 1H), 1.17 (sextet, *J* = 7.2 Hz, 2H), 0.74 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 151.91 (d, *J*_{C-F} = 239.8 Hz), 145.70, 134.29 (d, *J*_{C-F} = 3.2 Hz), 132.90 (d, *J*_{C-F} = 12.2 Hz), 132.67, 132.08, 130.78, 127.53, 127.40 (d, *J*_{C-F} = 3.3 Hz), 119.37 (d, *J*_{C-F} = 7.7 Hz), 118.03, 113.39, 112.40 (d, *J*_{C-F} = 19.5 Hz), 30.25, 28.14 (d, *J*_{C-F} = 2.6 Hz), 22.70, 13.59; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₁₇H₁₈FN₂⁺, 269.1449; found 269.1459.

methyl 6-((3,5-bis(trifluoromethyl)phenyl)carbamoyl)picolinate **S12**. White solid, 1.93 g. Yield: 25 %. TLC (Hexanes:EtOAc, 80:20 v/v): RF = 0.13; ¹H NMR (600 MHz, CDCl₃): δ 10.38 (br, 1H), 8.49 (dd, *J* = 7.8, 1.1 Hz, 1H), 8.34 (s, 2H), 8.32 (dd, *J* = 7.8, 1.1 Hz, 1H), 8.12 (t, *J* = 7.8 Hz, 1H), 7.66 (s, 1H), 4.08 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 164.62, 161.74, 149.13, 146.64, 139.22, 138.97, 132.44 (q, *J*_{C-F} = 33.5 Hz), 128.11, 125.79, 123.14 (q, *J*_{C-F} = 272.9 Hz), 119.79–119.71 (m), 117.84–117.74 (m), 53.17; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₁₆H₁₁F₆N₂O₃⁺, 393.0668; found 393.0667.

6-((3,5-bis(trifluoromethyl)phenyl)carbamoyl)picolinic acid **S13**. White solid. ¹H NMR (600 MHz, CD₃CN): δ 10.41 (br, 1H), 8.47 (s, 2H), 8.47 (dd, J = 7.7, 1.1 Hz, 1H), 8.36 (dd, J = 7.7, 1.1 Hz, 1H), 8.23 (t, J = 7.8 Hz, 1H), 7.78 (s, 1H); ¹³C NMR (151 MHz, CD₃CN): δ 164.99, 162.97, 149.57, 146.80, 141.39, 140.71, 132.58 (q, $J_{C-F} = 33.2$ Hz), 128.42, 127.59, 124.44 (q, $J_{C-F} = 272.1$ Hz), 121.73–121.36 (m), 118.57–118.32 (m); HRMS (ESI-TOF) *m/z*: [M-H]⁻ calcd. for C₁₅H₇F₆N₂O₃⁻, 377.0366; found 377.0372.

 N_2 -(3,5-bis(trifluoromethyl)phenyl)- N_6 -((2'-cyano-[1,1'-biphenyl]-2-yl)methyl)pyridine-2,6dicarboxamide **S14**. White solid. TLC (Hexanes:EtOAc, 33:67 v/v): RF = 0.45; ¹H NMR (600 MHz, DMSO- d_6): δ 11.18 (br, 1H), 9.68 (t, J = 6.2 Hz, 1H), 8.57 (s, 2H), 8.38-8.35 (m, 1H), 8.28-8.25 (m, 2H), 7.91 (s, 1H), 7.89 (ddd, J = 7.7, 1.3, 0.5 Hz, 1H), 7.74 (td, J = 7.7, 1.4 Hz, 1H), 7.61-7.58 (m, 2H), 7.53 (td, J = 7.6, 1.1 Hz, 1H), 7.49 (td, J = 7.6, 1.4 Hz, 1H), 7.42 (td, J = 7.5, 1.3 Hz, 1H), 7.29 (dd, J = 7.6, 1.3 Hz, 1H), 4.60-4.49 (m, 2H); ¹³C NMR (151 MHz, DMSO- d_6): δ 162.88, 162.51, 148.70, 147.61, 143.87, 139.95, 139.93, 137.19, 136.66, 133.00, 132.95, 130.75 (q, $J_{C-F} = 32.9$ Hz), 130.53, 129.89, 128.84, 128.25, 128.14, 127.11, 125.41, 125.15, 123.26 (q, $J_{C-F} = 272.8$ Hz), 120.86–120.80 (m), 118.03, 117.26–117.21 (m), 111.90, 40.60; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₂₉H₁₉F₆N₄O₂⁺, 569.1407; found 569.1407.

 N_2 -(3,5-bis(trifluoromethyl)phenyl)- N_6 -(2'-cyano-3,5-difluoro-[1,1'-biphenyl]-4-yl)pyridine-2,6-dicarboxamide **S15**. White solid, 0.99 g. Yield: 84 %. TLC (Hexanes:EtOAc, 33:67 v/v): RF = 0.60; ¹H NMR (600 MHz, DMSO- d_6): δ 11.27 (br, 1H), 10.95 (br, 1H), 8.56 (s, 2H), 8.48 (dd, J = 7.7, 1.2 Hz, 1H), 8.44 (dd, J = 7.8, 1.2 Hz, 1H), 8.37 (t, J = 7.7 Hz, 1H), 8.02 (dd, J = 7.9, 1.2 Hz, 1H), 7.91 (s, 1H), 7.86 (td, J = 7.7, 1.4 Hz, 1H), 7.77 (d, J = 7.9 Hz, 1H), 7.67 (td, J = 7.7, 1.2 Hz, 1H), 7.63-7.61 (m, 2H); ¹³C NMR (151 MHz, DMSO- d_6): δ 162.31, 157.91 (dd, J_{C-F} = 250.1, 5.7 Hz), 148.05, 147.56, 141.70 (t, J_{C-F} = 1.8 Hz), 140.48, 139.83, 138.70 (t, J_{C-F} = 10.0 Hz), 133.86, 133.65, 130.78 (q, J_{C-F} = 33.1 Hz), 130.19, 129.23, 126.07, 126.04, 123.22 (q, J_{C-F} = 272.9 Hz), 121.20–121.12 (m), 118.08, 117.48–117.40 (m), 114.28 (t, J_{C-F} = 17.1 Hz), 112.93 (dd, J_{C-F} = 20.7, 4.4 Hz), 110.48; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₂₈H₁₅F₈N₄O₂⁺, 591.1062; found 591.1062.

 N_2 -(3,5-bis(trifluoromethyl)phenyl)- N_6 -(2'-cyano-2,4-difluoro-[1,1'-biphenyl]-3-yl)pyridine-2,6-dicarboxamide **S16**. Pale yellow solid, 0.52 g. Yield: 87 %. TLC (Hexanes:EtOAc, 33:67 v/v): RF = 0.55; ¹H NMR (600 MHz, CDCl₃): δ 10.43 (br, 1H), 9.76 (br, 1H), 8.54 (dd, J = 7.8, 1.1 Hz, 1H), 8.50 (dd, J = 7.7, 1.1 Hz, 1H), 8.36 (s, 2H), 8.16 (t, J = 7.8 Hz, 1H), 7.69 (ddd, J = 7.8, 1.4, 0.6 Hz, 1H), 7.62 (td, J = 7.7, 1.4 Hz, 1H), 7.55 (s, 1H), 7.46 (td, J = 7.7, 1.2 Hz, 1H), 7.38 (d, J = 7.8 Hz, 1H), 7.22 (td, J = 8.2, 5.6 Hz, 1H), 6.79 (td, J = 8.8, 1.4 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃): δ 162.29, 162.15, 158.18 (dd, J_{C-F} = 254.5, 4.0 Hz), 154.95 (dd, J_{C-F} = 254.4, 4.7 Hz), 148.12, 147.97, 139.66, 138.76, 138.08, 133.11, 132.99, 132.18 (q, J_{C-F} = 33.5 Hz), 130.90, 129.67 (dd, J_{C-F} = 9.6, 3.7 Hz), 128.72, 126.45, 126.16, 122.97 (q, J_{C-F} = 272.9 Hz), 122.66 (dd, J_{C-F} = 14.6, 3.7 Hz), 120.42–120.37 (m), 118.39, 118.00–117.90 (m), 113.91 (t, J_{C-F} = 16.8 Hz), 112.36, 111.74 (dd, J_{C-F} = 20.4, 3.7 Hz); HRMS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₂₈H₁₅F₈N₄O₂⁺, 591.1062; found 591.1062.

 N_2 -(3,5-bis(trifluoromethyl)phenyl)- N_6 -(2'-cyano-4-fluoro-2-methyl-[1,1'-biphenyl]-3yl)pyridine-2,6-dicarboxamide **S17**. White solid, 0.88 g. Yield: 51 %. TLC (Hexanes:EtOAc, 33:67 v/v): RF = 0.58; ¹H NMR (600 MHz, DMSO- d_6): δ 11.32 (br, 1H), 10.93 (br, 1H), 8.54 (s, 2H), 8.47 (dd, J = 7.7, 1.3 Hz, 1H), 8.43 (dd, J = 7.7, 1.2 Hz, 1H), 8.36 (t, J = 7.7 Hz, 1H), 8.00 (d, J = 7.7 Hz, 1H), 7.91 (s, 1H), 7.83 (td, J = 7.7, 1.4 Hz, 1H), 7.65 (td, J = 7.7, 1.2 Hz, 1H), 7.53 (d, J = 7.7 Hz, 1H), 7.43–7.37 (m, 2H), 2.10 (s, 3H); ¹³C NMR (151 MHz, DMSO- d_6): δ 162.37, 161.99, 158.01 (d, J_{C-F} = 248.7 Hz), 148.15, 147.92, 143.64, 140.37, 139.85, 136.48 (d, J_{C-F} = 0.8 Hz), 134.94 (d, J_{C-F} = 3.3 Hz), 133.37, 133.13, 130.77 (q, J_{C-F} = 32.9 Hz), 130.75, 129.89 (d, J_{C-F} = 8.8 Hz), 128.60, 125.87, 125.80, 123.93 (d, J_{C-F} = 13.3 Hz), 123.21 (q, J_{C-F} = 273.0 Hz), 121.26–121.18 (m), 117.86, 117.46–117.41 (m), 113.46 (d, J_{C-F} = 20.8 Hz), 111.98, 15.56 (d, J_{C-F} = 2.1 Hz); HRMS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₂₉H₁₈F₇N₄O₂⁺, 587.1312; found 587.1313.

 N_2 -(3,5-bis(trifluoromethyl)phenyl)- N_6 -(2'-cyano-2-ethyl-4-fluoro-[1,1'-biphenyl]-3-yl)pyridine-2,6-dicarboxamide **S18**. White solid, 0.20 g. Yield: 27 %. TLC (Hexanes:EtOAc, 33:67 v/v): RF = 0.61; ¹H NMR (600 MHz, CDCl₃): δ 10.39 (br, 1H), 9.54 (br, 1H), 8.58 (dd, J = 7.8, 1.1 Hz, 1H), 8.55 (dd, J = 7.8, 1.2 Hz, 1H), 8.36 (s, 2H), 8.20 (t, J = 7.8 Hz, 1H), 7.73 (dd, J = 7.8, 1.4 Hz, 1H), 7.65 (dd, J = 7.7, 1.4 Hz, 1H), 7.60 (s, 1H), 7.49 (td, J = 7.7, 1.3 Hz, 1H), 7.38 (d, J = 7.8 Hz, 1H), 7.09 (dd, J = 8.5, 5.3 Hz, 1H), 6.85 (t, J = 8.8 Hz, 1H), 2.57–2.51 (m, 1H), 2.33– 2.27 (m, 1H), 0.87 (t, J = 7.6 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 162.64, 162.48, 158.28 (d, J_{C-F} = 251.4 Hz), 148.61, 147.99, 144.40, 142.32, 139.80, 138.75, 134.58 (d, J_{C-F} = 3.6 Hz), 132.88, 132.77, 132.35 (q, J_{C-F} = 33.6 Hz), 130.75, 130.48 (d, J_{C-F} = 8.6 Hz), 128.21, 126.58, 126.03, 122.96 (q, $J_{C-F} = 273.0$ Hz), 122.74 (d, $J_{C-F} = 13.3$ Hz), 120.31–120.23 (m), 118.41, 118.08–118.00 (m), 113.52 (d, $J_{C-F} = 21.0$ Hz), 112.72, 22.77 (d, $J_{C-F} = 1.9$ Hz), 14.26; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₃₀H₂₀F₇N₄O₂⁺, 601.1469; found 601.1469.

 N_2 -(3,5-bis(trifluoromethyl)phenyl)- N_6 -(2-butyl-2'-cyano-4-fluoro-[1,1'-biphenyl]-3-yl)pyridine-2,6-dicarboxamide **S19**. White solid. TLC (Hexanes:EtOAc, 33:67 v/v): RF = 0.65; ¹H NMR (600 MHz, DMSO- d_6): δ 11.39 (br, 1H), 10.88 (br, 1H), 8.55 (s, 2H), 8.47 (dd, J = 7.7, 1.1 Hz, 1H), 8.44 (dd, J = 7.8, 1.2 Hz, 1H), 8.37 (t, J = 7.7 Hz, 1H), 8.00 (dd, J = 7.7, 1.4 Hz, 1H), 7.91 (s, 1H), 7.82 (td, J = 7.7, 1.3 Hz, 1H), 7.65 (td, J = 7.7, 1.2 Hz, 1H), 7.55 (d, J = 7.9 Hz, 1H), 7.40 (t, J = 8.7 Hz, 1H), 7.36 (dd, J = 8.6, 5.5 Hz, 1H), 2.63-2.59 (m, 1H), 2.40-2.35 (m, 1H), 1.40-1.33 (m, 1H), 1.32-1.24 (m, 1H), 1.00-0.93 (m, 2H), 0.47 (t, J = 7.3 Hz, 3H); ¹³C NMR (151 MHz, DMSO- d_6): δ 162.45, 162.41, 158.33 (d, J_{C-F} = 249.0 Hz), 148.16, 147.86, 143.55, 141.05, 140.47, 139.90, 134.91 (d, J_{C-F} = 3.5 Hz), 133.09, 133.01, 130.84 (q, J_{C-F} = 32.9 Hz), 130.80, 130.34 (d, J_{C-F} = 8.8 Hz), 128.63, 125.85, 125.76, 123.65 (d, J_{C-F} = 13.5 Hz), 123.19 (q, J_{C-F} = 272.9 Hz), 120.79–120.74 (m), 117.88, 117.41–117.34 (m), 113.60 (d, J_{C-F} = 21.0 Hz), 111.29, 30.98, 28.21, 21.83, 12.92; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₃₂H₂₄F₇N₄O₂⁺, 629.1782; found 629.1783.

methyl 6-((3,5-di-*tert*-butylphenyl)carbamoyl)picolinate **S21**. Pale yellow solid, 0.202 g. Yield: 71 %. TLC (Hexanes:EtOAc, 67:33 v/v): RF = 0.48; ¹H NMR (600 MHz, CDCl₃): δ 9.91 (br, 1H), 8.50 (dd, J = 7.8, 1.1 Hz, 1H), 8.27 (dd, J = 7.8, 1.1 Hz, 1H), 8.07 (t, J = 7.7 Hz, 1H), 7.65 (d, J = 1.7 Hz, 2H), 7.25 (t, J =1.7 Hz, 1H), 4.07 (s, 3H), 1.37 (s, 18H); ¹³C NMR (151 MHz,

CDCl₃): δ 164.90, 161.13, 151.70, 150.46, 146.50, 138.83, 136.75, 127.37, 125.48, 118.92, 114.84, 53.02, 35.02, 31.46; HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ calcd. for C₂₂H₂₉FN₂O₃⁺, 369.2173; found 369.2172.

6-((3,5-di-*tert*-butylphenyl)carbamoyl)picolinic acid. White solid. ¹H NMR (600 MHz, DMSO*d*₆): δ 10.79 (br, 1H), 8.41 (dd, J = 7.4, 1.5 Hz, 1H), 8.33 (dd, J = 7.7, 1.5 Hz, 1H), 8.30 (dd, J = 7.7, 7.4 Hz, 1H), 7.70 (d, J = 1.7 Hz, 2H), 7.24 (t, J =1.7 Hz, 1H), 1.33 (s, 18H); ¹³C NMR (151 MHz, DMSO-*d*₆): δ 164.78, 161.37, 150.86, 149.42, 146.08, 140.16, 137.39, 126.92, 125.82, 118.18, 115.21, 34.67, 31.27; HRMS (ESI-TOF) *m*/*z*: [M-H]⁻ calcd. for C₂₁H₂₅N₂O₃⁻, 353.1871; found 353.1877.

 N_2 -(2'-cyano-4-fluoro-2-methyl-[1,1'-biphenyl]-3-yl)- N_6 -(3,5-di-*tert*-butylphenyl)pyridine-2,6-dicarboxamide **S22**. White solid. TLC (Hexanes:EtOAc, 33:67 v/v): RF = 0.58; ¹H NMR (600 MHz, DMSO-*d*₆): δ 11.04 (br, 1H), 10.91 (br, 1H), 8.43 (dd, *J* = 7.7, 1.3 Hz, 1H), 8.37 (dd, *J* = 7.7, 1.3 Hz, 1H), 8.32 (t, *J* = 7.7 Hz, 1H), 8.00 (ddd, *J* = 7.8, 1.4, 0.5 Hz, 1H), 7.83 (td, *J* = 7.7, 1.4 Hz, 1H), 7.65 (td, *J* = 7.7, 1.2 Hz, 1H), 7.60 (d, *J* = 1.7 Hz, 2H), 7.52 (ddd, *J* = 7.8, 1.3, 0.6 Hz, 1H), 7.40 (t, *J* = 8.8 Hz, 1H), 7.37 (dd, *J* = 8.6, 5.6 Hz, 1H), 7.26 (t, *J* = 1.7 Hz, 1H), 2.11 (s, 3H), 1.32 (s, 18H); ¹³C NMR (151 MHz, DMSO-*d*₆): δ 162.18, 161.55, 158.00 (d, *J*_{C-F} = 248.6 Hz), 150.78, 149.07, 148.12, 143.68, 140.05, 137.08, 136.37 (d, *J*_{C-F} = 0.9 Hz), 134.89 (d, *J*_{C-F} = 3.3 Hz), 133.37, 133.11, 130.74, 129.71 (d, *J*_{C-F} = 8.7 Hz), 128.60, 125.37, 125.15, 124.04 (d, *J*_{C-F} = 13.4 Hz), 118.59, 117.83, 116.60, 113.44 (d, *J*_{C-F} = 20.9 Hz), 111.99, 34.64, 31.24, 15.52 (d, *J*_{C-F} = 2.2 Hz); HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ calcd. for C₃₅H₃₆FN₄O₂⁺, 563.2817; found 563.2818.

methyl 6-((2'-cyano-2-ethyl-4-fluoro-[1,1'-biphenyl]-3-yl)carbamoyl)picolinate **S23**. White solid, 3.54 g. Yield: 89 %. ¹H NMR (600 MHz, CDCl₃): δ 9.66 (br, 1H), 8.49 (d, *J* = 7.6 Hz, 1H), 8.32 (d, *J* = 7.7 Hz, 1H), 8.08 (t, *J* = 7.8 Hz, 1H), 7.78 (d, *J* = 7.9 Hz, 1H), 7.66 (td, *J* = 7.6, 1.4 Hz, 1H), 7.50 (td, *J* = 7.7, 1.2 Hz, 1H), 7.43 (d, *J* = 7.7 Hz, 1H), 7.19–7.14 (m, 2H), 4.03 (s, 3H), 2.67–2.61 (m, 1H), 2.53–2.47 (m, 1H), 0.98 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 164.88, 162.39, 158.40 (d, *J*_{C-F} = 252.1 Hz), 149.33, 146.74, 144.54, 141.72, 138.79, 134.36 (d, *J*_{C-F} = 3.7 Hz), 132.84, 132.46, 130.83, 130.08 (d, *J*_{C-F} = 8.5 Hz), 128.02, 127.70, 125.72, 122.98 (d, *J*_{C-F} = 13.3 Hz), 117.88, 113.95 (d, *J*_{C-F} = 21.0 Hz), 113.30, 52.94, 22.88, 14.33; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₁₆H₁₁F₆N₂O₃⁺, 404.1405; found 404.1406.

 N_2 -(2'-cyano-2-ethyl-4-fluoro-[1,1'-biphenyl]-3-yl)- N_6 -(2,6-dimethoxyphenyl)pyridine-2,6-dicarboxamide **S24**. Pale yellow solid, 1.20 g. Yield: 64 %. TLC (Hexanes:EtOAc, 33:67 v/v): RF = 0.13; ¹H NMR (600 MHz, CDCl₃): δ 9.25 (br, 1H), 8.98 (br, 1H), 8.54 (dd, J = 7.6, 1.1 Hz, 1H), 8.50 (dd, J = 7.7, 1.2 Hz, 1H), 8.14 (t, J = 7.7 Hz, 1H), 7.76 (ddd, J = 7.8, 1.3, 0.5 Hz, 1H), 7.66 (td, J = 7.7, 1.4 Hz, 1H), 7.50 (td, J = 7.7, 1.3 Hz, 1H), 7.44 (d, J = 7.7 Hz, 1H), 7.24 (t, J = 8.5 Hz, 1H), 7.19 (dd, J = 8.6, 5.7 Hz, 1H), 7.17 (t, J = 8.5 Hz, 1H), 6.65 (d, J = 8.5 Hz, 2H), 3.86 (s, 6H), 2.68–2.61 (m, 1H), 2.55–2.49 (m, 1H), 0.99 (t, J = 7.6 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 162.47, 161.29, 158.45 (d, J_{C-F} = 251.8 Hz), 155.48, 149.34, 148.09, 144.49, 141.77, 139.26, 134.45 (d, J_{C-F} = 3.7 Hz), 132.79, 132.56, 130.82, 130.25 (d, J_{C-F} = 8.6 Hz), 128.08, 128.01, 126.07, 125.50, 122.87 (d, J_{C-F} = 13.3 Hz), 117.90, 114.00 (d, J_{C-F} = 20.9 Hz),

113.43, 113.26, 104.40, 56.11, 22.94 (d, $J_{C-F} = 2.2 \text{ Hz}$), 14.41; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₃₀H₂₆FN₄O₄⁺, 525.1933; found 525.1932.

*N*₂-(2,6-dimethoxyphenyl)-*N*₆-(2-ethyl-6-fluorophenyl)pyridine-2,6-dicarboxamide **S25**. White solid. TLC (Hexanes:EtOAc, 50:50 v/v): RF = 0.20; ¹H NMR (600 MHz, CDCl₃): δ 9.16 (br, 1H), 8.98 (br, 1H), 8.52 (dd, *J* = 7.7, 1.1 Hz, 1H), 8.48 (dd, *J* = 7.9, 1.3 Hz, 1H), 8.12 (t, *J* = 7.8 Hz, 1H), 7.29–7.23 (m, 2H), 7.12 (d, *J* = 7.5 Hz, 1H), 7.04 (ddd, *J* = 9.6, 8.2, 1.3 Hz, 1H), 6.66 (d, *J* = 8.5 Hz, 2H), 3.86 (s, 6H), 2.73 (q, *J* = 7.6 Hz, 2H), 1.25 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 162.17, 161.31, 157.93 (d, *J*_{C-F} = 248.5 Hz), 155.42, 149.20, 148.27, 143.32, 139.22, 128.46 (d, *J*_{C-F} = 8.6 Hz), 128.00, 125.93, 125.49, 124.11 (d, *J*_{C-F} = 3.2 Hz), 122.10 (d, *J*_{C-F} = 12.9 Hz), 113.55 (d, *J*_{C-F} = 20.5 Hz), 113.53, 104.43, 56.11, 24.74 (d, *J*_{C-F} = 2.0 Hz), 14.25; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₂₃H₂₃FN₃O₄⁺, 424.1667; found 424.1663.

T11. Yellow solid, 0.195 g. Yield: 86 %. ¹H NMR (600 MHz, CD₃CN): δ 8.15 (t, J = 7.8 Hz, 1H), 7.81 (s, 2H), 7.75 (dd, J = 7.8, 1.3 Hz, 1H), 7.71 (ddd, J = 7.8, 1.4, 0.6 Hz, 1H), 7.68–7.65 (m, 2H), 7.59–7.56 (m, 2H), 7.50 (ddd, J = 8.3, 1.3, 0.6 Hz, 1H), 7.44 (td, J = 7.6, 1.4 Hz, 1H), 7.35 (td, J = 7.6, 1.3 Hz, 1H), 7.34 (td, J = 7.7, 1.3 Hz, 1H), 7.23 (dd, J = 7.5, 1.4 Hz, 1H), 4.48–4.38 (m, 2H); ¹³C NMR (151 MHz, CD₃CN): δ 169.45, 168.56, 151.73, 150.75, 148.22, 144.95, 141.56, 138.85, 136.98, 132.21, 132.07, 130.15 (q, $J_{C-F} = 32.9$ Hz), 129.98, 129.60, 128.04, 127.97, 127.26, 126.37–126.35 (m), 125.97, 124.96, 124.95, 123.21 (q, $J_{C-F} = 272.8$ Hz), 118.17, 112.12, 48.68; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₃₁H₂₀F₆N₅O₂Pd⁺, 714.0551; found 714.0551. The signals of CH₃CN for ¹H NMR and ¹³C NMR were omitted because the bound CH₃CN was replaced by CD₃CN.

T12. Yellow solid, 0.102 g. Yield: 46 %. ¹H NMR (600 MHz, CD₃CN): δ 8.33 (t, J = 7.8 Hz, 1H), 7.92 (dd, J = 7.9, 1.3 Hz, 1H), 7.89 (s, 2H), 7.88 (dd, J = 7.8, 1.3 Hz, 1H), 7.85 (ddd, J = 7.7, 1.3, 0.5 Hz, 1H), 7.75 (td, J = 7.7, 1.4 Hz, 1H), 7.68 (s, 1H), 7.62 (ddd, J = 7.9, 1.3, 0.5 Hz, 1H), 7.57 (td, J = 7.7, 1.2 Hz, 1H), 7.27–7.24 (m, 2H); ¹³C NMR (151 MHz, CD₃CN): δ 170.07, 169.57, 158.64 (dd, $J_{C-F} = 247.9$, 6.4 Hz), 152.90, 151.11, 149.64, 143.78, 143.75 (t, $J_{C-F} = 2.1$ Hz), 137.57 (t, $J_{C-F} = 10.0$ Hz), 134.72, 134.36, 131.70 (q, $J_{C-F} = 32.9$ Hz), 131.04, 129.72, 127.82, 127.77–127.70 (m), 127.40, 124.96 (t, $J_{C-F} = 16.9$ Hz), 124.63 (q, $J_{C-F} = 272.0$ Hz), 119.33, 113.24 (dd, $J_{C-F} = 20.9$, 5.5 Hz), 111.88; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₃₀H₁₆F₈N₅O₂Pd⁺, 736.0206; found 736.0207. The signals of CH₃CN for ¹H NMR and ¹³C NMR were omitted because the bound CH₃CN was replaced by CD₃CN.

T13. Yellow solid, 0.133 g. Yield: 91 %. ¹H NMR (600 MHz, CD₃CN): δ 8.31 (t, J = 7.8 Hz, 1H), 7.91 (dd, J = 7.8, 1.3 Hz, 1H), 7.87–7.86 (m, 4H), 7.76 (td, J = 7.8, 1.4 Hz, 1H), 7.67 (s, 1H), 7.60–7.56 (m, 2H), 7.33 (td, J = 8.1, 6.0 Hz, 1H), 7.16 (td, J = 9.0, 1.5 Hz, 1H); ¹³C NMR (151 MHz, CD₃CN): δ 170.06, 169.74, 159.39 (dd, $J_{C-F} = 249.2$, 4.8 Hz), 155.82 (dd, $J_{C-F} = 235.7$, 5.5 Hz), 152.91, 151.12, 149.64, 143.74, 139.58, 134.21, 134.17, 132.05, 131.70 (q, $J_{C-F} = 32.9$ Hz), 129.82, 128.92 (dd, $J_{C-F} = 9.8$, 3.9 Hz), 127.77, 127.74–127.66 (m), 127.36, 125.13 (t, $J_{C-F} = 17.2$ Hz), 124.62 (q, $J_{C-F} = 272.0$ Hz), 123.58 (dd, $J_{C-F} = 15.4$, 3.7 Hz), 118.96, 113.60, 112.52 (dd, $J_{C-F} = 21.4$, 3.8 Hz); HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ calcd. for C₃₀H₁₆F₈N₅O₂Pd⁺, 736.0206; found 736.0203. The signals of CH₃CN for ¹H NMR and ¹³C NMR were omitted because the bound CH₃CN was replaced by CD₃CN.

T14. Yellow solid, 0.77 g. Yield: 79 %. rotameric mixture. ¹H NMR (600 MHz, CD₃CN): δ 8.32–8.26 (m, 1H), 7.90 (dd, J = 7.8, 1.3 Hz, 1H), 7.87–7.82 (m, 4H), 7.76–7.71 (m, 1H), 7.70–7.66 (m, 1H), 7.55 (td, J = 7.6, 1.1 Hz, 1H), 7.48–7.37 (m, 1H), 7.15–7.10 (m, 2H), 2.19–2.17 (m, 3H); ¹³C NMR (151 MHz, CD₃CN) rotameric mixture, resonances for the minor rotamer are enclosed in parenthesis []: δ 170.05 [172.45], 169.23 [169.14], 158.51 (d, $J_{C-F} = 245.2$ Hz) [158.48], 152.89 [152.84], 151.87 [151.92], 149.77 [149.84], 145.81 [145.53], 143.59, 136.61 [136.49], 135.85 (d, $J_{C-F} = 3.5$ Hz), 134.98 (d, $J_{C-F} = 13.3$ Hz) [134.86], 134.02 [134.32], 133.77 [133.82], 131.76 [131.97], 131.68 (q, $J_{C-F} = 32.9$ Hz), 129.11 [129.08], 128.75 (d, $J_{C-F} = 8.6$ Hz), 127.60–127.55 (m), 127.46, 127.14 [127.24], 124.63 (q, $J_{C-F} = 272.0$ Hz), 119.19 [119.04], 113.70 (d, $J_{C-F} = 21.5$ Hz), 16.02 (d, $J_{C-F} = 2.5$ Hz) [16.20]; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₃₁H₁₈F₇N₅O₂Pd⁺, 732.0456; found 732.0456. The signals of CH₃CN for ¹H NMR and ¹³C NMR were omitted because the bound CH₃CN was replaced by CD₃CN.

T15. Yellow solid, 0.128 g. Yield: 86 %. rotameric mixture. ¹H NMR (600 MHz, CD₃CN): δ 8.33–8.26 (m, 1H), 7.91–7.89 (m, 1H), 7.87–7.82 (m, 4H), 7.75–7.69 (m, 1H), 7.67(s, 1H), 7.58–7.55 (m, 1H), 7.51–7.37 (m, 1H), 7.13–7.09 (m, 2H), 2.95–2.83 (m, 1H), 2.55–2.39 (m, 1H), 1.02–0.98 (m, 3H); ¹³C NMR (151 MHz, CD₃CN) rotameric mixture, resonances for the minor rotamer are enclosed in parenthesis []: δ 170.07, 169.81 [169.57], 158.71 (d, *J*_{C-F} = 245.3 Hz) [158.65], 152.86, 151.90 [151.96], 149.75 [149.84], 145.70 [145.43], 143.63 [143.65], 142.34 [142.31], 135.73 (d, *J*_{C-F} = 3.6 Hz) [135.65], 134.75 (d, *J*_{C-F} = 13.4 Hz) [134.61], 133.82 [134.03], 133.74 [133.57], 131.91 [132.06], 131.70 (q, *J*_{C-F} = 32.9 Hz) [131.69], 129.21, 129.16–129.13

(m), 127.66–127.54 (m), 127.46 [127.48], 127.17 [127.25], 124.63 (q, $J_{C-F} = 272.1 \text{ Hz}$) [124.64], 119.22 [119.05], 113.84 (d, $J_{C-F} = 21.6 \text{ Hz}$) [113.86], 23.64 (d, $J_{C-F} = 2.3 \text{ Hz}$), 14.65 [14.73]; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₃₂H₂₁F₇N₅O₂Pd⁺, 746.0613; found 746.0613. The signals of CH₃CN for ¹H NMR and ¹³C NMR were omitted because the bound CH₃CN was replaced by CD₃CN.

T16. Yellow solid. rotameric mixture. ¹H NMR (600 MHz, CD₃CN): δ 8.33–8.27 (m, 1H), 7.91– 7.67 (m, 7H), 7.59–7.34 (m, 2H), 7.25–6.95 (m, 2H), 3.28–2.79 (m, 1H), 2.55–2.36 (m, 1H), 1.55–1.27 (m, 2H), 1.22–1.06 (m, 2H), 0.65–0.59 (m, 3H); ¹³C NMR (151 MHz, CD₃CN) rotameric mixture, resonances for the minor rotamer are enclosed in parenthesis []: δ 170.05 [170.76, 170.34], 169.68 [169.47], 158.68 (d, $J_{C-F} = 245.3$ Hz) [158.8, 158.63], 152.88 [152.86, 152.45], 151.91 [151.96, 151.72], 149.72 [150.26, 149.82], 145.76 [145.80, 145.49], 143.67 [143.69, 142.85], 141.25, 135.90 (d, $J_{C-F} = 3.6$ Hz) [136.10, 135.86], 134.82 (d, $J_{C-F} = 13.3$ Hz) [134.71], 133.77 [134.14, 134.01], 133.71 [133.52, 133.15], 132.02 [132.17, 131.78], 131.71 (q, $J_{C-F} = 32.9$ Hz) [132.40, 131.70], 129.19–129.04 (m), 127.66–127.54 (m), 127.47 [127.24], 127.16 [126.96, 126.68], 124.63 (q, $J_{C-F} = 272.0$ Hz) [124.64, 124.61], 119.27 [119.52, 119.08], 113.79 (d, $J_{C-F} = 21.7$ Hz) [114.46, 113.96], 32.43 [33.11, 32.54], 29.85 (d, $J_{C-F} = 2.2$ Hz) [29.96, 29.80], 23.48 [23.36, 23.22], 13.82 [13.84, 13.74]; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₃₄H₂₄F₇N₅O₂Pd ⁺, 774.0926; found 774.0934. The signals of CH₃CN for ¹H NMR and ¹³C NMR were omitted because the bound CH₃CN was replaced by CD₃CN.

T17. Orange solid, 0.202 g. Yield: 95 %. rotameric mixture. ¹H NMR (600 MHz, CD₃CN): δ 8.27–8.22 (m, 1H), 7.85–7.77 (m, 3H), 7.75–7.68 (m, 1H), 7.57–7.51 (m, 1H), 7.49–7.35 (m, 1H), 7.23–7.21 (m, 1H), 7.13–6.98 (m, 4H), 2.16 (s, 3H), 1.29 (s, 18H); ¹³C NMR (151 MHz, CD₃CN) rotameric mixture, resonances for the minor rotamer are enclosed in parenthesis []: δ 169.62 [172.51], 169.20 [169.11], 158.41 (d, $J_{C-F} = 245.0$ Hz), 154.05 [154.01], 151.95 [151.99], 151.67 [151.62], 147.55 [147.61], 145.88 [145.60], 143.21, 136.41 (d, $J_{C-F} = 1.4$ Hz), 135.82 (d, $J_{C-F} = 3.5$ Hz), 135.28 (d, $J_{C-F} = 1.3.4$ Hz), 134.05, 133.74 [133.77], 131.75 [131.97], 129.07 [129.04], 128.37 (d, $J_{C-F} = 8.5$ Hz), 126.90, 126.40 [126.50], 121.55, 119.58 [119.49], 119.17, 113.62, 113.64 (d, $J_{C-F} = 21.7$ Hz) [113.67], 35.42, 31.76, 20.65, 16.06 (d, $J_{C-F} = 2.5$ Hz) [16.22]; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₃₇H₃₇FN₅O₂Pd⁺, 708.1961; found 708.1961. The signals of CH₃CN for ¹H NMR and ¹³C NMR were omitted because the bound CH₃CN was replaced by CD₃CN.

T18. Yellow solid, 0.836 g. Yield: 83 %. rotameric mixture. ¹H NMR (600 MHz, CD₃CN): δ 8.28–8.24 (m, 1H), 7.85–7.76 (m, 3H), 7.74–7.67 (m, 1H), 7.57–7.53 (m, 1H), 7.52–7.32 (m, 1H), 7.14–7.10 (m, 1H), 7.08–7.01 (m, 2H), 6.63–6.60 (m, 2H), 3.81–3.80 (m, 3H), 3.79–3.79 (m, 3H), 3.02–2.81 (m, 1H), 2.52–2.32 (m, 1H), 1.03–0.97 (m, 3H); ¹³C NMR (151 MHz, CD₃CN) rotameric mixture, resonances for the minor rotamer are enclosed in parenthesis []: δ 169.61 [169.34], 168.78, 158.51 (d, $J_{C-F} = 245.1$ Hz) [158.47], 156.11, 156.09, 152.88 [152.83], 152.31 [152.37], 145.87 [145.63], 143.23, 141.88 (d, $J_{C-F} = 1.4$ Hz), 135.61 (d, $J_{C-F} = 3.6$ Hz) [135.52], 135.37 (d, $J_{C-F} = 13.6$ Hz) [135.27], 133.82 [134.00], 133.61 [133.52], 131.84 [132.07], 129.10 [129.05], 128.45 (d, $J_{C-F} = 8.7$ Hz), 126.99 [126.97], 126.62, 126.57, 125.38 [125.53], 119.01 [119.10], 113.82 [113.89], 113.71 (d, $J_{C-F} = 21.9$ Hz), 105.29, 105.28, 56.57, 56.55, 23.63 (d, $J_{C-F} = 2.3$ Hz), 14.7 [14.78]; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₃₂H₂₇FN₅O₄Pd⁺, 670.1076; found 670.1079. The signals of CH₃CN for ¹H NMR and ¹³C NMR were omitted because the bound CH₃CN was replaced by CD₃CN.

T19. Yellow solid, 0.138 g. Yield: 81 %. ¹H NMR (600 MHz, CD₃CN): δ 8.24 (t, *J* = 7.8 Hz, 1H), 7.78–7.75 (m, 2H), 7.13–7.10 (m, 2H), 7.04 (d, *J* = 7.7 Hz, 1H), 6.94 (ddd, *J* = 9.9, 8.2, 1.4 Hz, 1H), 6.61 (d, *J* = 8.4 Hz, 2H), 3.80 (s, 3H), 3.79 (s, 3H), 2.89–2.83 (m, 1H), 2.76–2.69 (m, 1H), 1.26 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (151 MHz, CD₃CN): δ 169.83, 169.36, 158.91 (d, *J*_{C-F} = 243.2 Hz), 150.67, 153.48, 153.90, 144.34, 143.78, 135.03 (d, *J*_{C-F} = 13.1 Hz), 127.59 (d, *J*_{C-F} = 8.6 Hz), 127.49, 127.12, 127.10, 126.25, 125.39 (d, *J*_{C-F} = 3.1 Hz), 114.30 (d, *J*_{C-F} = 21.4 Hz), 105.92, 105.89, 57.16, 57.15, 26.18 (d, *J*_{C-F} = 2.5 Hz), 15.60; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₂₅H₂₄FN₄O₄Pd⁺, 569.0811; found 569.0808. The signals of CH₃CN for ¹H NMR and ¹³C NMR were omitted because the bound CH₃CN was replaced by CD₃CN.

ethyl (*E*)-3-(quinolin-5-yl)acrylate **5a**. Pale yellow solid, 16.7 mg. Yield: 73%. TLC (Hexanes:EtOAc, 67:33 v/v): RF = 0.17; ¹H NMR (600 MHz, CDCl₃): δ 8.97 (dd, *J* = 4.1, 1.6 Hz, 1H), 8.54 (d, *J* = 8.6 Hz, 1H), 8.42 (d, *J* = 15.8 Hz, 1H), 8.16 (d, *J* = 8.4 Hz, 1H), 7.82 (d, *J* = 7.3 Hz, 1H), 7.50 (dd, *J* = 8.3,7.3 Hz, 1H), 7.49 (dd, *J* = 8.6, 4.1 Hz, 1H), 6.56 (d, *J* = 15.7 Hz, 1H), 4.33 (q, *J* = 7.1 Hz, 2H), 1.38 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 166.58, 150.68, 148.40, 139.89, 132.11, 131.75, 131.74, 129.03, 126.60, 125.28, 121.94, 121.59, 60.78, 14.36; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₁₄H₁₄NO₂⁺, 228.1019; found 228.1027.

ethyl (*E*)-3-(2-methoxyquinolin-5-yl)acrylate **5b**. White solid, 17.2 mg. Yield: 67%. TLC (Hexanes:EtOAc, 67:33 v/v): RF = 0.60; ¹H NMR (600 MHz, CDCl₃): δ 8.38–8.35 (m, 2H), 7.89 (d, *J* = 7.8 Hz, 1H), 7.64 (ddd, *J* = 7.2, 1.8, 0.6 Hz, 1H), 7.61 (t, *J* = 7.8 Hz, 1H), 6.98 (d, *J* = 9.0 Hz, 1H), 6.52 (d, *J* = 15.6 Hz, 1H), 4.31 (q, *J* = 7.2 Hz, 2H), 4.08 (s, 3H), 1.37 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 166.70, 162.39, 147.02, 140.49, 134.25, 131.83, 129.52, 129.12, 123.39, 122.71, 121.42, 113.67, 60.70, 53.44, 14.36; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₁₅H₁₆NO₃⁺, 258.1125; found 258.1135.

ethyl (*E*)-3-(8-methoxyquinolin-5-yl)acrylate **5c**. Yellow solid, 23.4 mg. Yield: 91%. TLC (CH₂Cl₂:MeOH, 90:10 v/v): RF = 0.47; ¹H NMR (600 MHz, CDCl₃): δ 8.98 (dd, *J* = 4.2, 1.8 Hz, 1H), 8.53 (dd, *J* = 8.4, 1.2 Hz, 1H), 8.35 (d, *J* = 15.6 Hz, 1H), 7.82 (d, *J* = 7.8 Hz, 1H), 7.53 (dd, *J* = 8.4, 4.2 Hz, 1H), 7.08 (d, *J* = 7.8 Hz, 1H), 6.48 (d, *J* = 15.6 Hz, 1H), 4.31 (q, *J* = 7.2 Hz, 2H), 4.13 (s, 3H), 1.37 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 166.95, 157.09, 149.44, 140.06, 139.70, 131.71, 127.67, 126.13, 123.72, 122.25, 119.25, 107.43, 60.59, 56.22, 14.39; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₁₅H₁₆NO₃⁺, 258.1125; found 258.1136.

ethyl (*E*)-3-(2-methylquinolin-5-yl)acrylate **5d**. White solid, 16.6 mg. Yield: 69%. TLC (Hexanes:EtOAc, 67:33 v/v): RF = 0.23; ¹H NMR (600 MHz, CDCl₃): δ 8.43–8.39 (m, 2H), 8.40 (d, *J* = 16.2 Hz, 1H), 8.06 (d, *J* = 8.4 Hz, 1H), 7.76 (d, *J* = 7.2 Hz, 1H), 7.69 (dd, *J* = 8.4, 7.2 Hz, 1H), 7.37 (d, *J* = 9.0 Hz, 1H), 6.54 (d, *J* = 15.6 Hz, 1H), 4.32 (q, *J* = 7.2 Hz, 2H), 2.76 (s, 3H), 1.38 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 166.68, 159.35, 148.04, 140.12, 131.80, 131.77, 130.96, 128.98, 124.85, 124.39, 122.55, 121.59, 60.74, 25.24, 14.36; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₁₅H₁₆NO₂⁺, 242.1176; found 242.1182.

ethyl (*E*)-3-(3-methylquinolin-5-yl)acrylate **5e**. Pale yellow solid, 19.8 mg. Yield: 82%. TLC (Hexanes:EtOAc, 67:33 v/v): RF = 0.20; ¹H NMR (600 MHz, CDCl₃): δ 8.81 (d, *J* = 2.4 Hz, 1H), 8.42 (d, *J* = 16.2 Hz, 1H), 8.28 (s, 1H), 8.11 (d, *J* = 8.4 Hz, 1H), 7.79 (d, *J* = 7.2 Hz, 1H), 7.64 (dd, *J* = 8.4, 7.8 Hz, 1H), 6.54 (d, *J* = 15.6 Hz, 1H), 4.33 (q, *J* = 7.2 Hz, 2H), 2.57 (s, 3H), 1.38 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 166.75, 152.62, 146.61, 140.14, 131.50, 131.50, 131.35, 130.42, 127.98, 126.45, 125.26, 121.45, 60.75, 19.05, 14.37; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₁₅H₁₆NO₂⁺, 242.1176; found 242.1183.

ethyl (*E*)-3-(6-fluoroquinolin-5-yl)acrylate **5f**. Pale yellow solid, 10.5 mg. Yield: 43 %. TLC (Hexanes:EtOAc, 67:33 v/v): RF = 0.19; ¹H NMR (600 MHz, CDCl₃): δ 8.93 (dd, *J* = 4.2, 1.2 Hz, 1H), 8.54 (d, *J* = 9.0 Hz, 1H), 8.17–8.12 (m, 2H), 7.56–7.50 (m, 2H), 6.73 (dd, *J* = 16.2, 0.6 Hz, 1H), 4.33 (q, *J* = 7.2 Hz, 2H), 1.38 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 166.79, 159.19 (d, *J*_{C-F} = 256.6 Hz), 149.78 (d, *J*_{C-F} = 2.3 Hz), 145.49, 133.47, 133.31 (d, *J*_{C-F} = 10.8 Hz), 131.92 (d, *J*_{C-F} = 6.6 Hz), 127.45 (d, *J*_{C-F} = 5.4 Hz), 125.97 (d, *J*_{C-F} = 12.2 Hz), 122.14, 119.81 (d, *J*_{C-F} = 27.6 Hz), 116.45 (d, *J*_{C-F} = 12.0 Hz), 60.89, 14.33; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₁₄H₁₃FNO₂⁺, 246.0925; found 246.0936.

ethyl (*E*)-3-(8-fluoroquinolin-5-yl)acrylate **5g**. White solid. Yield: 51% (calculated based on crude ¹H NMR). TLC (Hexanes:EtOAc, 67:33 v/v): RF = 0.20; ¹H NMR (600 MHz, CDCl₃): δ 9.03 (dd, *J* = 4.2, 1.2 Hz, 1H), 8.56 (dt, *J* = 9.0, 1.8 Hz, 1H), 8.35 (d, *J* = 15.6 Hz, 1H), 7.79 (dd, *J* = 7.8, 4.8 Hz, 1H), 7.58 (dd, *J* = 9.0, 4.2 Hz, 1H), 7.44 (dd, *J* = 10.2, 8.4 Hz, 1H), 6.52 (dd, *J* = 16.2, 0.6 Hz, 1H), 4.32 (q, *J* = 7.2 Hz, 2H), 1.38 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 166.49, 159.09 (d, *J*_{C-F} = 261.5 Hz), 150.77 (d, *J*_{C-F} = 1.6 Hz), 139.01 (d, *J*_{C-F} = 1.8 Hz), 138.53 (d, *J*_{C-F} = 11.6 Hz), 131.86 (d, *J*_{C-F} = 2.9 Hz), 128.13, 128.10 (d, *J*_{C-F} = 3.9 Hz), 125.41 (d, *J*_{C-F} = 8.3 Hz), 122.55, 121.67 (d, *J*_{C-F} = 2.1 Hz), 113.49 (d, *J*_{C-F} = 19.8 Hz), 60.83, 14.35; HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ calcd. for C₁₄H₁₃FNO₂⁺, 246.0925; found 246.0933.

ethyl (*E*)-3-(2-chloroquinolin-5-yl)acrylate **5h**. White solid, 14.9 mg. Yield: 57%. TLC (Hexanes:EtOAc, 67:33 v/v): RF = 0.51; ¹H NMR (600 MHz, CDCl₃): δ 8.47 (dd, *J* = 9.0, 1.2 Hz, 1H), 8.34 (d, *J* = 15.6 Hz, 1H), 8.06 (d, *J* = 8.4 Hz, 1H), 7.82 (d, *J* = 7.2 Hz, 1H), 7.75 (dd, *J* = 7.8, 7.2 Hz, 1H), 7.47 (d, *J* = 9.0 Hz, 1H), 6.55 (d, *J* = 15.6 Hz, 1H), 4.32 (q, *J* = 7.2 Hz, 2H), 1.38 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 166.38, 151.16, 148.16, 139.39, 134.73, 132.26, 130.65, 130.64, 125.54, 125.20, 122.87, 122.59, 60.89, 14.34; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₁₄H₁₃CINO₂⁺, 262.0629; found 262.0631.

ethyl (*E*)-3-(7-chloroquinolin-5-yl)acrylate **5i**. Pale yellow solid, 13.2 mg. Yield: 50%. TLC (Hexanes:EtOAc, 67:33 v/v): RF = 0.32; ¹H NMR (600 MHz, CDCl₃): δ 8.96 (dd, *J* = 4.2, 1.8 Hz, 1H), 8.48 (d, *J* = 9.0 Hz, 1H), 8.33 (d, *J* = 16.2 Hz, 1H), 8.14 (d, *J* = 2.4 Hz, 1H), 7.76 (d, *J* = 1.8 Hz, 1H), 7.49 (dd, *J* = 8.4, 4.2 Hz, 1H), 6.56 (d, *J* = 15.6 Hz, 1H), 4.33 (q, *J* = 7.2 Hz, 2H), 1.38 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 166.17, 151.67, 148.89, 138.55, 135.01,

133.76, 131.83, 130.26, 125.96, 125.05, 123.33, 121.69, 60.97, 14.32; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₄H₁₃ClNO₂⁺, 262.0629; found 262.0640.

ethyl (*E*)-3-(8-chloroquinolin-5-yl)acrylate **5**j. White solid. Yield: 27% (calculated based on crude ¹H NMR). TLC (Hexanes:EtOAc, 67:33 v/v): RF = 0.35; ¹H NMR (600 MHz, CDCl₃): δ 9.11 (dd, *J* = 4.1, 1.6 Hz, 1H), 8.57 (dd, *J* = 8.6, 1.6 Hz, 1H), 8.37 (d, *J* = 15.7 Hz, 1H), 7.87 (d, *J* = 7.9 Hz, 1H), 7.75 (d, *J* = 7.9 Hz, 1H), 7.58 (dd, *J* = 8.6, 4.1 Hz, 1H), 6.55 (d, *J* = 15.7 Hz, 1H), 4.33 (q, *J* = 7.1 Hz, 2H), 1.38 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 166.37, 151.15, 144.50, 139.03, 135.75, 132.41, 131.39, 129.33, 127.78, 125.10, 122.44, 122.37, 60.90, 14.34; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₁₄H₁₃ClNO₂⁺, 262.0629; found 262.0640.

methyl (*E*)-5-(3-ethoxy-3-oxoprop-1-en-1-yl)quinoline-3-carboxylate **5k**. White solid, 21.2 mg. Yield: 74%. TLC (Hexanes:EtOAc, 67:33 v/v): RF = 0.26; ¹H NMR (600 MHz, CDCl₃): δ 9.49 (d, *J* = 2.4 Hz, 1H), 9.18 (dd, *J* = 1.8, 0.6 Hz, 1H), 8.46 (d, *J* = 15.6 Hz, 1H), 8.20 (d, *J* = 8.4 Hz, 1H), 7.88 (d, *J* = 7.2 Hz, 1H), 7.84 (dd, *J* = 8.4, 7.2 Hz, 1H), 6.59 (d, *J* = 15.6 Hz, 1H), 4.35 (q, *J* = 7.2 Hz, 2H), 4.05 (s, 3H), 1.40 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 166.36, 165.65, 150.31, 149.96, 139.18, 134.38, 133.55, 131.51, 131.33, 126.01, 125.25, 123.30, 122.92, 60.94, 52.65, 14.35; HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ calcd. for C₁₆H₁₆NO₄⁺, 286.1074; found 286.1084.

ethyl (*E*)-3-(3-methoxyquinoxalin-5-yl)acrylate **5**I. White solid, 21.2 mg. Yield: 82%. TLC (Hexanes:EtOAc, 80:20 v/v): RF = 0.37; ¹H NMR (600 MHz, CDCl₃): δ 8.67 (d, *J* = 16.2 Hz, 1H), 8.52 (s, 1H), 8.05 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.96 (d, *J* = 7.2 Hz, 1H), 7.57 (ddd, *J* = 8.2, 7.5, 0.5 Hz, 1H), 6.84 (d, *J* = 16.2 Hz, 1H), 4.31 (q, *J* = 7.2 Hz, 2H), 4.16 (s, 3H), 1.37 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 167.24, 157.25, 139.93, 139.84, 138.95, 138.71, 131.16, 130.97, 128.71, 126.14, 120.25, 60.52, 54.02, 14.37; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₁₄H₁₅N₂O₃⁺, 259.1077; found 259.1085.

ethyl (*E*)-3-(2-methylbenzo[*d*]oxazol-7-yl)acrylate **5m**. White solid, 18.7 mg. Yield: 81%. TLC (Hexanes:EtOAc, 80:20 v/v): RF = 0.27; ¹H NMR (600 MHz, CDCl₃): δ 7.80 (d, *J* = 16.2 Hz, 1H), 7.67 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.38 (d, *J* = 7.8 Hz, 1H), 7.32 (t, *J* = 7.8 Hz, 1H), 6.89 (d, *J* = 16.2 Hz, 1H), 4.31 (q, *J* = 7.2 Hz, 2H), 2.71 (s, 3H), 1.38 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 167.00, 164.16, 149.14, 142.17, 138.84, 126.24, 124.47, 122.02, 121.19, 119.01, 60.69, 14.63, 14.37; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₁₃H₁₄NO₃⁺, 232.0968; found 232.0975.

ethyl (*E*)-3-(2-methylbenzo[*d*]thiazol-7-yl)acrylate **5n**. White solid, 16.7 mg. Yield: 68%. TLC (Hexanes:EtOAc, 80:20 v/v): RF = 0.27; ¹H NMR (600 MHz, CDCl₃): δ 7.99 (dd, *J* = 8.4, 1.2 Hz, 1H), 7.86 (d, *J* = 16.2 Hz 1H), 7.54 (d, *J* = 7.8 Hz, 1H), 7.49 (t, *J* = 7.8 Hz, 1H), 6.55 (d, *J* =

16.2 Hz, 1H), 4.31 (q, J = 7.2 Hz, 2H), 2.88 (s, 3H), 1.37 (t, J = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 167.17, 166.70, 154.43, 142.57, 134.53, 128.92, 126.28, 126.23, 124.17, 120.56, 60.79, 20.09, 14.34; HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ calcd. for C₁₃H₁₄NO₂S⁺, 248.0740; found 248.0749.

ethyl (*E*)-3-(benzo[*d*]thiazol-7-yl)acrylate **50**. White solid, 11.3 mg. Yield: 51%. TLC (Hexanes:EtOAc, 80:20 v/v): RF = 0.27; ¹H NMR (600 MHz, CDCl₃): δ 9.08 (s, 1H), 8.19 (dd, *J* = 7.8, 0.6 Hz, 1H), 7.93 (d, *J* = 16.2 Hz, 1H), 7.65 (d, *J* = 7.2 Hz, 1H), 7.58 (dd, *J* = 7.8, 7.2 Hz, 1H), 6.61 (d, *J* = 16.2 Hz, 1H), 4.32 (q, *J* = 7.2 Hz, 2H), 1.38 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 166.61, 154.30, 154.04, 142.32, 132.66, 129.40, 126.95, 126.57, 125.44, 120.86, 60.87, 14.34; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₁₂H₁₂NO₂S⁺, 234.0583; found 234.0594.

ethyl (S,E)-3-(4-ethyl-4-hydroxy-3,14-dioxo-3,4,12,14-tetrahydro-1*H*-pyrano[3',4':6,7] indolizino[1,2-*b*]quinolin-10-yl)acrylate **5p**. Pale yellow solid, 21.9 mg. Yield: 49%. TLC (CH₂Cl₂:MeOH, 90:10 v/v): RF = 0.41; ¹H NMR (600 MHz, DMSO-*d*₆): δ 9.10 (s, 1H), 8.47 (d, *J* = 15.7 Hz, 1H), 8.26 (d, *J* = 8.4 Hz, 1H), 8.18 (d, *J* = 7.3 Hz, 1H), 7.91 (dd, *J* = 8.5, 7.4 Hz, 1H), 7.37 (s, 1H), 6.82 (d, *J* = 15.7 Hz, 1H), 6.55 (s, 1H), 5.44 (s, 2H), 5.31 (s, 2H), 4.28 (q, *J* = 7.1 Hz, 2H), 1.94–1.83 (m, 2H), 1.33 (t, *J* = 7.1 Hz, 3H), 0.89 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (151 MHz, DMSO-*d*₆): δ 172.44, 165.88, 156.83, 152.83, 149.95, 148.11, 145.20, 139.36, 131.91, 131.38, 130.67, 130.03, 127.72, 126.62, 126.09, 122.20, 119.37, 96.94, 72.36, 65.26, 60.39, 50.56, 30.30, 14.25, 7.77; HRMS (ESI-TOF) m/z: $[M+H]^+$ calcd. for $C_{25}H_{23}N_2O_6^+$, 447.1551; found 447.1552.

9. NMR Spectra

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

2.503 2.403 2.503 2.403 2.1032 2.10333 2.10332 2.1033 2.10333 2.10332 2.10332 2.

2D NOESY of compound 3a

2D NOESY of compound 3h

- 0.001

2D NOESY of compound 5k

2D NOESY of compound 5p

10. X-Ray Crystallographic Data

Experimental Summary

The single crystal X-ray diffraction studies were carried out on a Bruker Kappa APEX-II CCD diffractometer equipped with Mo K_a radiation ($\lambda = 0.71073$ Å). A 0.217 x 0.183 x 0.155 mm piece of a colorless block was mounted on a Cryoloop with Paratone oil. Data were collected in a nitrogen gas stream at 100(2) K using ϕ and ϖ scans. Crystal-to-detector distance was 40 mm and exposure time was 5 seconds per frame using a scan width of 1.0°. Data collection was 99.8% complete to 25.00° in θ . A total of 13470 reflections were collected covering the indices, -20<=h<=20, -10<=k<=10, -12<=l<=18. 4124 reflections were found to be symmetry independent, with a R_{int} of 0.0336. Indexing and unit cell refinement indicated a *C*-centered, monoclinic lattice. The space group was found to be C2. The data were integrated using the Bruker SAINT software program and scaled using the SADABS software program. Solution by direct methods (SHELXT) produced a complete phasing model consistent with the proposed structure.

All nonhydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL-2014). All hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-2014.

Table S7. Crystal data and structure refinement for Yu38.

Report date	2015-02-20		
Identification code	ZHG-2-16		
Empirical formula	C16.50 H21 Cl N4 O4 S2		
Molecular formula	C16 H20 N4 O4 S2, 0.5(C H2	Cl2)	
Formula weight	438.94		
Temperature	100 K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	C 1 2 1		
Space group Unit cell dimensions	C 1 2 1 a = 16.294(2) Å	α= 90°.	
Space group Unit cell dimensions	C 1 2 1 a = 16.294(2) Å b = $8.7028(12)$ Å	α= 90°. β= 97.723(4)°.	
Space group Unit cell dimensions	C 1 2 1 a = 16.294(2) Å b = 8.7028(12) Å c = 14.4268(19) Å	$\alpha = 90^{\circ}.$ $\beta = 97.723(4)^{\circ}.$ $\gamma = 90^{\circ}.$	
Space group Unit cell dimensions Volume	C 1 2 1 a = 16.294(2) Å b = 8.7028(12) Å c = 14.4268(19) Å 2027.2(5) Å ³	$\alpha = 90^{\circ}.$ $\beta = 97.723(4)^{\circ}.$ $\gamma = 90^{\circ}.$	
Space group Unit cell dimensions Volume Z	C 1 2 1 a = 16.294(2) Å b = 8.7028(12) Å c = 14.4268(19) Å 2027.2(5) Å ³ 4	$\alpha = 90^{\circ}.$ $\beta = 97.723(4)^{\circ}.$ $\gamma = 90^{\circ}.$	

Density (calculated)	1.438 Mg/m ³
Absorption coefficient	0.425 mm ⁻¹
F(000)	916
Crystal size	0.217 x 0.183 x 0.155 mm ³
Crystal color, habit	Colorless Block
Theta range for data collection	2.523 to 26.403°.
Index ranges	-20<=h<=20, -10<=k<=10, -12<=l<=18
Reflections collected	13470
Independent reflections	4124 [R(int) = 0.0336]
Completeness to theta = 25.000°	99.8 %
Absorption correction	Semi-empirical from equivalents
Absorption correction Max. and min. transmission	Semi-empirical from equivalents 0.2602 and 0.2291
Absorption correction Max. and min. transmission Refinement method	Semi-empirical from equivalents 0.2602 and 0.2291 Full-matrix least-squares on F ²
Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters	Semi-empirical from equivalents 0.2602 and 0.2291 Full-matrix least-squares on F ² 4124 / 3 / 257
Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F ²	Semi-empirical from equivalents 0.2602 and 0.2291 Full-matrix least-squares on F ² 4124 / 3 / 257 1.021
Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F ² Final R indices [I>2sigma(I)]	Semi-empirical from equivalents 0.2602 and 0.2291 Full-matrix least-squares on F ² 4124 / 3 / 257 1.021 R1 = 0.0405, wR2 = 0.0918
Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data)	Semi-empirical from equivalents 0.2602 and 0.2291 Full-matrix least-squares on F ² 4124 / 3 / 257 1.021 R1 = 0.0405, wR2 = 0.0918 R1 = 0.0517, wR2 = 0.0989
Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter	Semi-empirical from equivalents 0.2602 and 0.2291 Full-matrix least-squares on F ² 4124 / 3 / 257 1.021 R1 = 0.0405, wR2 = 0.0918 R1 = 0.0517, wR2 = 0.0989 0.06(3)
Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Extinction coefficient	Semi-empirical from equivalents 0.2602 and 0.2291 Full-matrix least-squares on F ² 4124 / 3 / 257 1.021 R1 = 0.0405, wR2 = 0.0918 R1 = 0.0517, wR2 = 0.0989 0.06(3) n/a

	х	у	Z	U(eq)
S(1)	3889(1)	4576(1)	3259(1)	15(1)
S(2)	6058(1)	4696(1)	1789(1)	16(1)
O(1)	4623(2)	4035(3)	3823(2)	20(1)
O(2)	3364(2)	3502(3)	2699(2)	20(1)
O(3)	6632(2)	3597(3)	2251(2)	21(1)
O(4)	5293(2)	4160(3)	1285(2)	19(1)
N(1)	4101(2)	5899(4)	2573(2)	16(1)
N(2)	5894(2)	5937(4)	2560(2)	18(1)
N(3)	3105(2)	5964(4)	5641(2)	22(1)
N(4)	6660(2)	6299(5)	-639(2)	27(1)
C(1)	3281(2)	5430(4)	4057(3)	15(1)
C(2)	2526(3)	6092(5)	3737(3)	20(1)
C(3)	2054(3)	6681(5)	4386(3)	24(1)
C(4)	2365(3)	6574(5)	5326(3)	25(1)
C(5)	3554(3)	5396(4)	5012(3)	18(1)
C(6)	4621(3)	7215(5)	2901(3)	18(1)
C(7)	4111(3)	8697(5)	2802(3)	27(1)
C(8)	4637(3)	10097(5)	3116(3)	34(1)
C(9)	5366(3)	10203(5)	2560(3)	30(1)
C(10)	5892(3)	8743(5)	2658(3)	26(1)
C(11)	5378(3)	7307(5)	2377(3)	18(1)
C(12)	6570(3)	5694(5)	963(3)	18(1)
C(13)	7281(3)	6530(5)	1253(3)	26(1)
C(14)	7668(3)	7261(6)	583(3)	32(1)
C(15)	7343(3)	7109(6)	-348(3)	31(1)
C(16)	6277(3)	5611(5)	13(3)	21(1)
Cl(1S)	4117(1)	-166(3)	-107(1)	81(1)
C(1S)	5000	1022(9)	0	63(3)

Table S8. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for Yu38. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

S(1)-O(1)	1.432(3)
S(1)-O(2)	1.439(3)
S(1)-N(1)	1.585(3)
S(1)-C(1)	1.780(4)
S(2)-O(3)	1.436(3)
S(2)-O(4)	1.434(3)
S(2)-N(2)	1.599(3)
S(2)-C(12)	1.772(4)
N(1)-H(1)	0.89(3)
N(1)-C(6)	1.465(5)
N(2)-H(2)	0.87(2)
N(2)-C(11)	1.463(5)
N(3)-C(4)	1.339(6)
N(3)-C(5)	1.335(5)
N(4)-C(15)	1.336(6)
N(4)-C(16)	1.338(5)
C(1)-C(2)	1.381(5)
C(1)-C(5)	1.390(5)
C(2)-H(2A)	0.9500
C(2)-C(3)	1.387(6)
C(3)-H(3)	0.9500
C(3)-C(4)	1.385(6)
C(4)-H(4)	0.9500
C(5)-H(5)	0.9500
C(6)-H(6)	1.0000
C(6)-C(7)	1.529(6)
C(6)-C(11)	1.533(6)
C(7)-H(7A)	0.9900
C(7)-H(7B)	0.9900
C(7)-C(8)	1.523(6)
C(8)-H(8A)	0.9900
C(8)-H(8B)	0.9900
C(8)-C(9)	1.524(7)
C(9)-H(9A)	0.9900

Table S9. Bond lengths [Å] and angles [°] for Yu38.

C(9)-H(9B)	0.9900
C(9)-C(10)	1.528(6)
C(10)-H(10A)	0.9900
C(10)-H(10B)	0.9900
C(10)-C(11)	1.529(6)
C(11)-H(11)	1.0000
C(12)-C(13)	1.383(6)
C(12)-C(16)	1.392(5)
С(13)-Н(13)	0.9500
C(13)-C(14)	1.379(6)
C(14)-H(14)	0.9500
C(14)-C(15)	1.382(6)
C(15)-H(15)	0.9500
C(16)-H(16)	0.9500
Cl(1S)-C(1S)	1.761(5)
C(1S)-Cl(1S)#1	1.761(5)
C(1S)-H(1SA)	0.9900
C(1S)-H(1SB)	0.9900
O(1)-S(1)-O(2)	119.53(18)
O(1)-S(1)-N(1)	110.98(18)
O(1)-S(1)-C(1)	105.33(17)
O(2)-S(1)-N(1)	106.52(17)
O(2)-S(1)-C(1)	107.08(18)
N(1)-S(1)-C(1)	106.68(18)
O(3)-S(2)-N(2)	106.63(17)
O(3)-S(2)-C(12)	107.64(18)
O(4)-S(2)-O(3)	119.06(18)
O(4)-S(2)-N(2)	110.93(17)
O(4)-S(2)-C(12)	105.90(18)
N(2)-S(2)-C(12)	105.92(18)
S(1)-N(1)-H(1)	121(4)
C(6)-N(1)-S(1)	122.1(3)
C(6)-N(1)-H(1)	114(4)
S(2)-N(2)-H(2)	116(3)
C(11)-N(2)-S(2)	124.8(3)

C(11)-N(2)-H(2)	116(3)
C(5)-N(3)-C(4)	117.8(3)
C(15)-N(4)-C(16)	117.5(4)
C(2)-C(1)-S(1)	120.4(3)
C(2)-C(1)-C(5)	119.5(4)
C(5)-C(1)-S(1)	120.0(3)
C(1)-C(2)-H(2A)	120.7
C(1)-C(2)-C(3)	118.5(4)
C(3)-C(2)-H(2A)	120.7
C(2)-C(3)-H(3)	120.9
C(4)-C(3)-C(2)	118.2(4)
C(4)-C(3)-H(3)	120.9
N(3)-C(4)-C(3)	123.6(4)
N(3)-C(4)-H(4)	118.2
C(3)-C(4)-H(4)	118.2
N(3)-C(5)-C(1)	122.3(4)
N(3)-C(5)-H(5)	118.9
C(1)-C(5)-H(5)	118.9
N(1)-C(6)-H(6)	108.0
N(1)-C(6)-C(7)	110.2(3)
N(1)-C(6)-C(11)	110.5(3)
C(7)-C(6)-H(6)	108.0
C(7)-C(6)-C(11)	111.9(3)
C(11)-C(6)-H(6)	108.0
C(6)-C(7)-H(7A)	109.3
C(6)-C(7)-H(7B)	109.3
H(7A)-C(7)-H(7B)	107.9
C(8)-C(7)-C(6)	111.7(4)
C(8)-C(7)-H(7A)	109.3
C(8)-C(7)-H(7B)	109.3
C(7)-C(8)-H(8A)	109.7
C(7)-C(8)-H(8B)	109.7
C(7)-C(8)-C(9)	109.8(4)
H(8A)-C(8)-H(8B)	108.2
C(9)-C(8)-H(8A)	109.7
C(9)-C(8)-H(8B)	109.7

C(8)-C(9)-H(9A)	109.3
C(8)-C(9)-H(9B)	109.3
C(8)-C(9)-C(10)	111.6(4)
H(9A)-C(9)-H(9B)	108.0
C(10)-C(9)-H(9A)	109.3
C(10)-C(9)-H(9B)	109.3
C(9)-C(10)-H(10A)	109.2
C(9)-C(10)-H(10B)	109.2
C(9)-C(10)-C(11)	112.0(4)
H(10A)-C(10)-H(10B)	107.9
С(11)-С(10)-Н(10А)	109.2
С(11)-С(10)-Н(10В)	109.2
N(2)-C(11)-C(6)	110.5(3)
N(2)-C(11)-C(10)	109.7(3)
N(2)-C(11)-H(11)	108.5
C(6)-C(11)-H(11)	108.5
C(10)-C(11)-C(6)	111.1(3)
С(10)-С(11)-Н(11)	108.5
C(13)-C(12)-S(2)	120.3(3)
C(13)-C(12)-C(16)	119.2(4)
C(16)-C(12)-S(2)	120.4(3)
С(12)-С(13)-Н(13)	120.9
C(14)-C(13)-C(12)	118.2(4)
С(14)-С(13)-Н(13)	120.9
C(13)-C(14)-H(14)	120.5
C(13)-C(14)-C(15)	119.1(4)
C(15)-C(14)-H(14)	120.5
N(4)-C(15)-C(14)	123.4(4)
N(4)-C(15)-H(15)	118.3
C(14)-C(15)-H(15)	118.3
N(4)-C(16)-C(12)	122.5(4)
N(4)-C(16)-H(16)	118.7
С(12)-С(16)-Н(16)	118.7
Cl(1S)-C(1S)-Cl(1S)#1	108.1(4)
Cl(1S)-C(1S)-H(1SA)	110.1
Cl(1S)#1-C(1S)-H(1SA)	110.1

Cl(1S)#1-C(1S)-H(1SB)	110.1
Cl(1S)-C(1S)-H(1SB)	110.1
H(1SA)-C(1S)-H(1SB)	108.4

Symmetry transformations used to generate equivalent atoms:

#1 - x + 1, y, -z

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
S(1)	20(1)	13(1)	12(1)	-2(1)	0(1)	0(1)
S(2)	21(1)	14(1)	11(1)	0(1)	0(1)	-1(1)
O(1)	22(2)	19(1)	18(2)	1(1)	-1(1)	4(1)
O(2)	27(2)	17(2)	16(1)	-4(1)	0(1)	-4(1)
O(3)	26(2)	19(2)	18(2)	2(1)	1(1)	6(1)
O(4)	23(2)	16(1)	16(1)	-2(1)	-2(1)	-3(1)
N(1)	22(2)	16(2)	10(2)	-1(1)	-1(1)	0(1)
N(2)	22(2)	19(2)	10(2)	-1(1)	-2(1)	0(2)
N(3)	31(2)	22(2)	13(2)	-2(2)	2(2)	4(2)
N(4)	36(2)	32(2)	12(2)	-1(2)	3(2)	-8(2)
C(1)	20(2)	12(2)	14(2)	0(2)	2(2)	-2(2)
C(2)	25(2)	22(2)	11(2)	2(2)	-2(2)	5(2)
C(3)	28(2)	22(2)	23(2)	-2(2)	0(2)	8(2)
C(4)	34(3)	23(2)	20(2)	-5(2)	8(2)	5(2)
C(5)	24(2)	14(2)	14(2)	0(2)	-1(2)	0(2)
C(6)	26(2)	12(2)	14(2)	-3(2)	3(2)	0(2)
C(7)	30(2)	18(2)	34(3)	-3(2)	9(2)	3(2)
C(8)	45(3)	17(2)	39(3)	-4(2)	2(2)	2(2)
C(9)	38(3)	14(2)	36(3)	5(2)	-5(2)	-5(2)

Table S10. Anisotropic displacement parameters (Å²x 10³) for Yu38. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

158

C(10)	33(3)	19(2)	24(2)	4(2)	0(2)	-5(2)
C(11)	25(2)	15(2)	14(2)	0(2)	2(2)	0(2)
C(12)	23(2)	18(2)	12(2)	0(2)	1(2)	-1(2)
C(13)	29(2)	33(2)	15(2)	-4(2)	0(2)	-9(2)
C(14)	34(3)	39(3)	23(2)	-1(2)	3(2)	-16(2)
C(15)	39(3)	34(3)	20(2)	3(2)	9(2)	-14(2)
C(16)	26(2)	19(2)	17(2)	0(2)	1(2)	-3(2)
Cl(1S)	55(1)	132(2)	56(1)	-28(1)	10(1)	4(1)
C(1S)	128(9)	20(4)	31(4)	0	-20(5)	0

	Х	У	Z	U(eq)
H(1)	3800(30)	6040(70)	2020(30)	58(18)
H(2)	6260(20)	5950(50)	3060(20)	25(13)
H(2A)	2333	6142	3086	24
H(3)	1532	7146	4191	29
H(4)	2036	6953	5771	30
H(5)	4079	4953	5224	21
H(6)	4823	7059	3580	21
H(7A)	3868	8829	2140	32
H(7B)	3651	8615	3182	32
H(8A)	4843	10013	3792	41
H(8B)	4295	11038	3018	41
H(9A)	5715	11094	2784	36
H(9B)	5156	10373	1892	36
H(10A)	6154	8639	3315	31
H(10B)	6339	8832	2260	31
H(11)	5180	7360	1691	22
H(13)	7496	6598	1897	31
H(14)	8151	7861	758	38
H(15)	7619	7606	-804	37
H(16)	5786	5043	-180	25
H(1SA)	5013	1687	558	75
H(1SB)	4987	1687	-558	75

Table S11. Hydrogen coordinates ($x\ 10^4$) and isotropic displacement parameters (Å $^2x\ 10\ ^3$) for Yu38.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1)N(4)#1	0.89(3)	2.04(3)	2.918(5)	167(5)
N(2)-H(2)N(3)#2	0.87(2)	2.02(3)	2.873(5)	168(4)

Table S12. Hydrogen bonds for Yu38 [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,y,-z #2 -x+1,y,-z+1

Table S13. Crystal data and structure refinement for yu50. Identification code yu50 Empirical formula Formula weight 398.49 Temperature 100.0 K Wavelength Crystal system Space group P 21/n Unit cell dimensions

Volume Ζ Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F^2 Final R indices [I>2sigma(I)]

C16 H22 N4 O4 S2 0.71073 Å Monoclinic a = 10.4117(10) Å $\alpha = 90^{\circ}$. b = 6.0842(5) Åc = 14.2796(13) Å901.61(14) Å³ 2 1.468 Mg/m^3 0.326 mm⁻¹ 420 0.34 x 0.3 x 0.24 mm³ 2.334 to 28.329°. -10<=h<=13, -7<=k<=8, -19<=l<=15 6520 2228 [R(int) = 0.0370]99.6 % Semi-empirical from equivalents 0.1525 and 0.1227 Full-matrix least-squares on F² 2228 / 0 / 124 1.096 R1 = 0.0364, wR2 = 0.1009

 $\beta = 94.632(5)^{\circ}$. $\gamma = 90^{\circ}$.

R indices (all data) Extinction coefficient Largest diff. peak and hole R1 = 0.0392, wR2 = 0.1030 n/a 0.476 and -0.389 e.Å⁻³

	X	у	Z	U(eq)
S(1)	-96(1)	7356(1)	2040(1)	13(1)
O(1)	655(1)	9241(2)	2351(1)	16(1)
O(2)	-1464(1)	7578(2)	1866(1)	19(1)
N(1)	1714(1)	3077(2)	3819(1)	17(1)
N(2)	530(1)	6489(2)	1117(1)	14(1)
C(1)	743(2)	2371(3)	4303(1)	21(1)
C(2)	1420(2)	4544(3)	3137(1)	15(1)
C(3)	173(1)	5331(2)	2927(1)	13(1)
C(4)	149(1)	4549(2)	516(1)	13(1)
C(5)	-519(2)	3047(3)	4129(1)	22(1)
C(6)	-823(2)	4575(3)	3423(1)	18(1)
C(7)	-1020(2)	3337(3)	855(1)	17(1)
C(8)	1297(2)	2969(3)	579(1)	18(1)

Table S14. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for yu50. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

S(1)-O(1)	1.4383(11)
S(1)-O(2)	1.4327(12)
S(1)-N(2)	1.6056(13)
S(1)-C(3)	1.7734(15)
N(1)-C(1)	1.341(2)
N(1)-C(2)	1.338(2)
N(2)-C(4)	1.4945(19)
N(2)-H(2)	0.82(2)
C(1)-H(1)	0.9500
C(1)-C(5)	1.381(2)
C(2)-H(2A)	0.9500
C(2)-C(3)	1.393(2)
C(3)-C(6)	1.380(2)
C(4)-C(4)#1	1.579(3)
C(4)-C(7)	1.534(2)
C(4)-C(8)	1.531(2)
C(5)-H(5)	0.9500
C(5)-C(6)	1.389(2)
C(6)-H(6)	0.9500
C(7)-H(7A)	0.9800
C(7)-H(7B)	0.9800
C(7)-H(7C)	0.9800
C(8)-H(8A)	0.9800
C(8)-H(8B)	0.9800
C(8)-H(8C)	0.9800
O(1)-S(1)-N(2)	105.59(7)
O(1)-S(1)-C(3)	106.45(7)
O(2)-S(1)-O(1)	119.10(7)
O(2)-S(1)-N(2)	110.62(7)
O(2)-S(1)-C(3)	106.70(7)
N(2)-S(1)-C(3)	107.89(7)
C(2)-N(1)-C(1)	116.82(14)
S(1)-N(2)-H(2)	112.9(16)

Table S15. Bond lengths [Å] and angles [°] for yu50.

C(4)-N(2)-S(1)	128.64(11)
C(4)-N(2)-H(2)	114.5(16)
N(1)-C(1)-H(1)	118.0
N(1)-C(1)-C(5)	123.96(15)
C(5)-C(1)-H(1)	118.0
N(1)-C(2)-H(2A)	118.7
N(1)-C(2)-C(3)	122.69(14)
C(3)-C(2)-H(2A)	118.7
C(2)-C(3)-S(1)	118.87(12)
C(6)-C(3)-S(1)	121.06(12)
C(6)-C(3)-C(2)	120.05(14)
N(2)-C(4)-C(4)#1	106.50(14)
N(2)-C(4)-C(7)	112.27(12)
N(2)-C(4)-C(8)	106.96(12)
C(7)-C(4)-C(4)#1	111.16(15)
C(8)-C(4)-C(4)#1	111.53(15)
C(8)-C(4)-C(7)	108.37(12)
C(1)-C(5)-H(5)	120.4
C(1)-C(5)-C(6)	119.16(15)
C(6)-C(5)-H(5)	120.4
C(3)-C(6)-C(5)	117.31(15)
C(3)-C(6)-H(6)	121.3
C(5)-C(6)-H(6)	121.3
C(4)-C(7)-H(7A)	109.5
C(4)-C(7)-H(7B)	109.5
C(4)-C(7)-H(7C)	109.5
H(7A)-C(7)-H(7B)	109.5
H(7A)-C(7)-H(7C)	109.5
H(7B)-C(7)-H(7C)	109.5
C(4)-C(8)-H(8A)	109.5
C(4)-C(8)-H(8B)	109.5
C(4)-C(8)-H(8C)	109.5
H(8A)-C(8)-H(8B)	109.5
H(8A)-C(8)-H(8C)	109.5
H(8B)-C(8)-H(8C)	109.5

Symmetry transformations used to generate equivalent atoms:

#1 -x,-y+1,-z

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
S(1)	12(1)	12(1)	14(1)	0(1)	0(1)	1(1)
O(1)	18(1)	13(1)	18(1)	-2(1)	1(1)	-2(1)
O(2)	12(1)	20(1)	23(1)	2(1)	-1(1)	4(1)
N(1)	16(1)	16(1)	18(1)	1(1)	-1(1)	0(1)
N(2)	13(1)	14(1)	14(1)	-2(1)	0(1)	-3(1)
C(1)	22(1)	20(1)	20(1)	7(1)	1(1)	0(1)
C(2)	14(1)	16(1)	14(1)	0(1)	0(1)	-1(1)
C(3)	14(1)	13(1)	13(1)	-1(1)	-1(1)	-1(1)
C(4)	15(1)	10(1)	13(1)	0(1)	-1(1)	-1(1)
C(5)	20(1)	23(1)	25(1)	7(1)	7(1)	-3(1)
C(6)	15(1)	19(1)	21(1)	1(1)	2(1)	0(1)
C(7)	20(1)	16(1)	15(1)	1(1)	-1(1)	-6(1)
C(8)	22(1)	14(1)	18(1)	1(1)	-3(1)	4(1)

Table S16. Anisotropic displacement parameters (Å²x 10³) for yu50. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	Х	У	Z	U(eq)
H(1)	936	1344	4795	25
H(2A)	2089	5071	2781	18
H(5)	-1172	2473	4488	27
H(6)	-1681	5080	3287	22
H(7A)	-808	2783	1493	26
H(7B)	-1248	2102	433	26
H(7C)	-1751	4351	855	26
H(8A)	2085	3782	472	27
H(8B)	1155	1819	102	27
H(8C)	1387	2296	1205	27
H(2)	1280(20)	6880(40)	1095(16)	25(6)

Table S17. Hydrogen coordinates ($x\;10^4$) and isotropic displacement parameters (Å $^2x\;10\;^3$) for yu50.

Table S18. Crystal data and structure refinement for Yu83.

Report date	2016-11-16		
Identification code	yu83		
Empirical formula	C14 H14 N2 O3		
Molecular formula	C14 H14 N2 O3		
Formula weight	258.27		
Temperature	100.0 K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P 1 21/c 1		
Unit cell dimensions	a = 4.5660(3) Å	α= 90°.	
	b = 26.0435(11) Å	β= 91.036(2)°.	
	c = 10.8149(5) Å	$\gamma = 90^{\circ}$.	
Volume	1285.84(12) Å ³		
Z	4		
Density (calculated)	1.334 Mg/m ³		
Absorption coefficient	0.095 mm ⁻¹		
F(000)	544		
Crystal size	0.22 x 0.08 x 0.08 mm ³		
Crystal color, habit	colorless needle		
Theta range for data collection	1.564 to 25.347°.		
Index ranges	-5<=h<=5, -31<=k<=25, -12<=	=1<=13	
Reflections collected	9029		
Independent reflections	2354 [R(int) = 0.0274]		
Completeness to theta = 25.242°	99.6 %		
Absorption correction	Semi-empirical from equivalen	ts	
Max. and min. transmission	0.6463 and 0.6125		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	2354 / 0 / 174		
Goodness-of-fit on F ²	1.038		
Final R indices [I>2sigma(I)]	R1 = 0.0444, wR2 = 0.0990		
R indices (all data)	R1 = 0.0607, wR2 = 0.1065		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.151 and -0.175 e.Å ⁻³		

	Х	у	Z	U(eq)
O(3)	9390(3)	6042(1)	1371(1)	40(1)
O(1)	-2599(3)	5798(1)	6904(1)	47(1)
O(2)	6637(3)	5501(1)	2472(1)	48(1)
N(1)	688(3)	6272(1)	5776(1)	32(1)
N(2)	-861(4)	7117(1)	7280(2)	42(1)
C(4)	1152(4)	7170(1)	6357(2)	35(1)
C(11)	6729(4)	6393(1)	2967(2)	34(1)
C(14)	12273(5)	5822(1)	-358(2)	49(1)
C(2)	-1230(4)	6241(1)	6645(2)	36(1)
C(3)	-2026(5)	6666(1)	7396(2)	44(1)
C(7)	5181(4)	7302(1)	4500(2)	36(1)
C(8)	3985(4)	6818(1)	4644(2)	30(1)
C(5)	2454(4)	7650(1)	6175(2)	41(1)
C(9)	1909(4)	6748(1)	5599(2)	29(1)
C(13)	10356(5)	5610(1)	631(2)	42(1)
C(12)	7516(4)	5929(1)	2283(2)	32(1)
C(1)	-1833(5)	5360(1)	6163(2)	54(1)
C(10)	4819(4)	6382(1)	3875(2)	31(1)
C(6)	4440(5)	7714(1)	5262(2)	42(1)

Table S19. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for Yu83. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O(3)-C(13)	1.453(2)		
O(3)-C(12)	1.349(2)	C(12)-O(3)-C(13)	116.00(15)
O(1)-C(2)	1.343(2)	C(2)-O(1)-C(1)	116.45(16)
O(1)-C(1)	1.441(3)	C(2)-N(1)-C(9)	115.92(16)
O(2)-C(12)	1.205(2)	C(3)-N(2)-C(4)	116.23(17)
N(1)-C(2)	1.299(2)	N(2)-C(4)-C(5)	118.83(17)
N(1)-C(9)	1.376(2)	N(2)-C(4)-C(9)	121.01(18)
N(2)-C(4)	1.376(3)	C(5)-C(4)-C(9)	120.16(18)
N(2)-C(3)	1.296(3)	C(12)-C(11)-H(11)	119.1
C(4)-C(5)	1.401(3)	C(10)-C(11)-H(11)	119.1
C(4)-C(9)	1.417(3)	C(10)-C(11)-C(12)	121.84(17)
C(11)-H(11)	0.9500	H(14A)-C(14)-H(14B)	109.5
C(11)-C(12)	1.464(3)	H(14A)-C(14)-H(14C)	109.5
C(11)-C(10)	1.325(3)	H(14B)-C(14)-H(14C)	109.5
C(14)-H(14A)	0.9800	C(13)-C(14)-H(14A)	109.5
C(14)-H(14B)	0.9800	C(13)-C(14)-H(14B)	109.5
C(14)-H(14C)	0.9800	C(13)-C(14)-H(14C)	109.5
C(14)-C(13)	1.500(3)	O(1)-C(2)-C(3)	115.10(18)
C(2)-C(3)	1.425(3)	N(1)-C(2)-O(1)	121.79(18)
C(3)-H(3)	0.9500	N(1)-C(2)-C(3)	123.11(19)
C(7)-H(7)	0.9500	N(2)-C(3)-C(2)	122.68(19)
C(7)-C(8)	1.384(3)	N(2)-C(3)-H(3)	118.7
C(7)-C(6)	1.398(3)	C(2)-C(3)-H(3)	118.7
C(8)-C(9)	1.426(3)	C(8)-C(7)-H(7)	118.9
C(8)-C(10)	1.462(2)	C(8)-C(7)-C(6)	122.15(19)
C(5)-H(5)	0.9500	C(6)-C(7)-H(7)	118.9
C(5)-C(6)	1.363(3)	C(7)-C(8)-C(9)	117.81(16)
C(13)-H(13A)	0.9900	C(7)-C(8)-C(10)	122.38(17)
C(13)-H(13B)	0.9900	C(9)-C(8)-C(10)	119.80(16)
C(1)-H(1A)	0.9800	C(4)-C(5)-H(5)	120.0
C(1)-H(1B)	0.9800	C(6)-C(5)-C(4)	120.02(18)
C(1)-H(1C)	0.9800	C(6)-C(5)-H(5)	120.0
C(10)-H(10)	0.9500	N(1)-C(9)-C(4)	121.01(17)
C(6)-H(6)	0.9500	N(1)-C(9)-C(8)	119.46(16)

Table S20. Bond lengths [Å] and angles [°] for Yu83.

C(4)-C(9)-C(8)	119.53(17)
O(3)-C(13)-C(14)	107.18(16)
O(3)-C(13)-H(13A)	110.3
O(3)-C(13)-H(13B)	110.3
C(14)-C(13)-H(13A)	110.3
C(14)-C(13)-H(13B)	110.3
H(13A)-C(13)-H(13B)	108.5
O(3)-C(12)-C(11)	110.84(15)
O(2)-C(12)-O(3)	122.79(17)
O(2)-C(12)-C(11)	126.37(18)
O(1)-C(1)-H(1A)	109.5
O(1)-C(1)-H(1B)	109.5
O(1)-C(1)-H(1C)	109.5
H(1A)-C(1)-H(1B)	109.5
H(1A)-C(1)-H(1C)	109.5
H(1B)-C(1)-H(1C)	109.5
C(11)-C(10)-C(8)	125.93(17)
С(11)-С(10)-Н(10)	117.0
C(8)-C(10)-H(10)	117.0
C(7)-C(6)-H(6)	119.8
C(5)-C(6)-C(7)	120.32(19)
C(5)-C(6)-H(6)	119.8

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(3)	46(1)	34(1)	40(1)	-10(1)	16(1)	-3(1)
O(1)	45(1)	52(1)	45(1)	6(1)	13(1)	-6(1)
O(2)	59(1)	30(1)	56(1)	0(1)	20(1)	-2(1)
N(1)	29(1)	37(1)	29(1)	3(1)	1(1)	3(1)
N(2)	38(1)	52(1)	36(1)	-8(1)	4(1)	7(1)
C(4)	31(1)	43(1)	30(1)	-5(1)	0(1)	8(1)
C(11)	38(1)	31(1)	33(1)	-2(1)	5(1)	-2(1)
C(14)	56(1)	54(1)	38(1)	-5(1)	11(1)	11(1)
C(2)	29(1)	47(1)	33(1)	5(1)	2(1)	2(1)
C(3)	35(1)	62(1)	34(1)	-1(1)	10(1)	6(1)
C(7)	42(1)	33(1)	33(1)	3(1)	5(1)	3(1)
C(8)	32(1)	32(1)	28(1)	2(1)	1(1)	4(1)
C(5)	42(1)	38(1)	43(1)	-11(1)	1(1)	7(1)
C(9)	28(1)	33(1)	28(1)	1(1)	-2(1)	5(1)
C(13)	44(1)	37(1)	47(1)	-16(1)	9(1)	2(1)
C(12)	32(1)	34(1)	31(1)	1(1)	3(1)	0(1)
C(1)	61(2)	41(1)	60(1)	8(1)	12(1)	-8(1)
C(10)	32(1)	29(1)	30(1)	2(1)	2(1)	2(1)
C(6)	49(1)	30(1)	46(1)	-2(1)	1(1)	1(1)

Table S21. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for Yu83. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^{*} \ b^{*} \ U^{12}$]

	Х	у	Ζ	U(eq)
H(11)	7612	6710	2754	40
H(14A)	12924	5542	-892	74
H(14B)	13983	5990	25	74
H(14C)	11165	6073	-854	74
H(3)	-3470	6617	8007	52
H(7)	6549	7356	3861	44
H(5)	1953	7932	6689	49
H(13A)	8649	5431	255	51
H(13B)	11467	5363	1153	51
H(1A)	-2197	5438	5287	81
H(1B)	-3027	5064	6402	81
H(1C)	244	5278	6296	81
H(10)	3910	6062	4041	37
H(6)	5326	8040	5143	50

Table S22. Hydrogen coordinates ($x\ 10^4$) and isotropic displacement parameters (Å $^2x\ 10\ ^3$) for Yu83.

Table S23.	Crystal	data and	structure	refinement	for Yu80.	

Report date	2016-10-16		
Identification code	yu80_a		
Empirical formula	C13 H13 N O3		
Molecular formula	C13 H13 N O3		
Formula weight	231.24		
Temperature	100.0 K		
Wavelength	1.54178 Å		
Crystal system	Monoclinic		
Space group	P 1 21/n 1		
Unit cell dimensions	a = 7.3728(16) Å	α= 90°.	
	b = 21.871(4) Å	β= 116.594(5)°.	
	c = 7.9223(17) Å	$\gamma = 90^{\circ}$.	
Volume	1142.3(4) Å ³		
Z	4		
Density (calculated)	1.345 Mg/m ³		
Absorption coefficient	0.792 mm ⁻¹		
F(000)	488		
Crystal size	0.1 x 0.02 x 0.02 mm ³		
Crystal color, habit	colorless needle		
Theta range for data collection	4.042 to 66.596°.		
Index ranges	-7<=h<=8, -25<=k<=26, -8<=l<=9		
Reflections collected	7761		
Independent reflections	2016 [R(int) = 0.0572]		
Completeness to theta = 66.597°	99.4 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.5210 and 0.3801		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	2016 / 0 / 156		
Goodness-of-fit on F ²	1.031		
Final R indices [I>2sigma(I)]	R1 = 0.0445, wR2 = 0.1067		
R indices (all data)	R1 = 0.0682, wR2 = 0.1167		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.179 and -0.242 e.Å ⁻³		

	X	у	Z	U(eq)
O(1)	2209(2)	4321(1)	2588(2)	18(1)
O(2)	3070(3)	5704(1)	8578(2)	30(1)
O(3)	1372(2)	6112(1)	5685(2)	19(1)
N(1)	2750(3)	3437(1)	1410(2)	21(1)
C(1)	635(4)	4251(1)	-823(3)	27(1)
C(2)	1895(3)	3964(1)	1025(3)	20(1)
C(3)	3408(3)	3961(1)	4105(3)	16(1)
C(4)	3761(3)	3416(1)	3399(3)	18(1)
C(5)	4933(3)	2959(1)	4615(3)	19(1)
C(6)	5714(3)	3077(1)	6534(3)	21(1)
C(7)	5331(3)	3628(1)	7210(3)	20(1)
C(8)	4156(3)	4094(1)	6023(3)	17(1)
C(9)	3771(3)	4656(1)	6805(3)	18(1)
C(10)	2646(3)	5128(1)	5857(3)	18(1)
C(11)	2412(3)	5664(1)	6873(3)	19(1)
C(12)	1220(3)	6686(1)	6537(3)	20(1)
C(13)	35(3)	7118(1)	4943(3)	23(1)

Table S24. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for Yu80_a. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O(1)-C(2)	1.393(2)	C(2)-N(1)-C(4)	104.65(17)
O(1)-C(3)	1.377(2)	H(1A)-C(1)-H(1B)	109.5
O(2)-C(11)	1.217(2)	H(1A)-C(1)-H(1C)	109.5
O(3)-C(11)	1.337(2)	H(1B)-C(1)-H(1C)	109.5
O(3)-C(12)	1.453(2)	C(2)-C(1)-H(1A)	109.5
N(1)-C(2)	1.285(3)	C(2)-C(1)-H(1B)	109.5
N(1)-C(4)	1.410(3)	C(2)-C(1)-H(1C)	109.5
C(1)-H(1A)	0.9800	O(1)-C(2)-C(1)	115.09(18)
C(1)-H(1B)	0.9800	N(1)-C(2)-O(1)	115.05(18)
C(1)-H(1C)	0.9800	N(1)-C(2)-C(1)	129.86(19)
C(1)-C(2)	1.477(3)	O(1)-C(3)-C(4)	107.61(16)
C(3)-C(4)	1.390(3)	O(1)-C(3)-C(8)	128.12(18)
C(3)-C(8)	1.395(3)	C(4)-C(3)-C(8)	124.27(19)
C(4)-C(5)	1.388(3)	C(3)-C(4)-N(1)	108.72(18)
C(5)-H(5)	0.9500	C(5)-C(4)-N(1)	130.74(19)
C(5)-C(6)	1.388(3)	C(5)-C(4)-C(3)	120.53(18)
C(6)-H(6)	0.9500	C(4)-C(5)-H(5)	121.6
C(6)-C(7)	1.396(3)	C(6)-C(5)-C(4)	116.74(19)
C(7)-H(7)	0.9500	C(6)-C(5)-H(5)	121.6
C(7)-C(8)	1.394(3)	C(5)-C(6)-H(6)	119.2
C(8)-C(9)	1.460(3)	C(5)-C(6)-C(7)	121.7(2)
C(9)-H(9)	0.9500	C(7)-C(6)-H(6)	119.2
C(9)-C(10)	1.328(3)	C(6)-C(7)-H(7)	118.6
C(10)-H(10)	0.9500	C(8)-C(7)-C(6)	122.88(18)
C(10)-C(11)	1.474(3)	C(8)-C(7)-H(7)	118.6
C(12)-H(12A)	0.9900	C(3)-C(8)-C(9)	125.46(18)
C(12)-H(12B)	0.9900	C(7)-C(8)-C(3)	113.89(18)
C(12)-C(13)	1.505(3)	C(7)-C(8)-C(9)	120.65(17)
C(13)-H(13A)	0.9800	C(8)-C(9)-H(9)	116.3
C(13)-H(13B)	0.9800	C(10)-C(9)-C(8)	127.33(18)
C(13)-H(13C)	0.9800	C(10)-C(9)-H(9)	116.3
		C(9)-C(10)-H(10)	119.8
C(3)-O(1)-C(2)	103.97(15)	C(9)-C(10)-C(11)	120.40(17)
C(11)-O(3)-C(12)	116.47(15)	C(11)-C(10)-H(10)	119.8

Table S25. Bond lengths [Å] and angles [°] for Yu80_a.
O(2)-C(11)-O(3)	123.13(19)
O(2)-C(11)-C(10)	125.23(19)
O(3)-C(11)-C(10)	111.64(16)
O(3)-C(12)-H(12A)	110.4
O(3)-C(12)-H(12B)	110.4
O(3)-C(12)-C(13)	106.81(16)
H(12A)-C(12)-H(12B)	108.6
C(13)-C(12)-H(12A)	110.4
C(13)-C(12)-H(12B)	110.4
C(12)-C(13)-H(13A)	109.5
C(12)-C(13)-H(13B)	109.5
С(12)-С(13)-Н(13С)	109.5
H(13A)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	15(1)	21(1)	14(1)	0(1)	4(1)	0(1)
O(2)	40(1)	29(1)	16(1)	-2(1)	7(1)	8(1)
O(3)	20(1)	19(1)	16(1)	-1(1)	6(1)	2(1)
N(1)	18(1)	25(1)	20(1)	-3(1)	10(1)	-2(1)
C(1)	29(1)	33(1)	17(1)	1(1)	8(1)	1(1)
C(2)	18(1)	24(1)	18(1)	-4(1)	9(1)	-5(1)
C(3)	11(1)	19(1)	18(1)	1(1)	6(1)	-1(1)
C(4)	11(1)	24(1)	19(1)	-2(1)	7(1)	-2(1)
C(5)	13(1)	19(1)	25(1)	-1(1)	9(1)	1(1)
C(6)	12(1)	24(1)	24(1)	4(1)	6(1)	1(1)
C(7)	16(1)	26(1)	16(1)	0(1)	6(1)	-1(1)
C(8)	11(1)	20(1)	18(1)	-1(1)	5(1)	-3(1)
C(9)	15(1)	22(1)	16(1)	-3(1)	6(1)	-4(1)
C(10)	14(1)	22(1)	15(1)	0(1)	5(1)	-2(1)
C(11)	14(1)	23(1)	16(1)	1(1)	5(1)	-1(1)
C(12)	19(1)	20(1)	23(1)	-3(1)	11(1)	-1(1)
C(13)	21(1)	23(1)	28(1)	2(1)	13(1)	3(1)

Table S26. Anisotropic displacement parameters (Å²x 10³) for Yu80_a. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	Х	У	Z	U(eq)
H(1A)	-714	4341	-928	40
H(1B)	505	3971	-1836	40
H(1C)	1277	4631	-932	40
H(5)	5188	2584	4157	23
H(6)	6530	2777	7410	25
H(7)	5897	3687	8536	24
H(9)	4397	4687	8142	22
H(10)	1988	5121	4516	21
H(12A)	2587	6853	7338	24
H(12B)	513	6623	7332	24
H(13A)	690	7149	4108	35
H(13B)	-5	7523	5455	35
H(13C)	-1351	6964	4226	35

Table S27. Hydrogen coordinates ($x\ 10^4$) and isotropic displacement parameters (Å $^2x\ 10\ ^3$) for Yu80_a.

Table S28. Crystal data and structure refinement f	for Yu82.		
Report date	2016-11-09		
Identification code	yu82		
Empirical formula	C13 H13 N O2 S		
Molecular formula	C13 H13 N O2 S		
Formula weight	247.30		
Temperature	100.0 K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	a = 7.3791(8) Å	α= 71.415(3)°.	
	b = 7.9026(8) Å	β= 79.346(3)°.	
	c = 11.8080(12) Å	$\gamma = 66.702(3)^{\circ}$.	
Volume	598.08(11) Å ³		
Ζ	2		
Density (calculated)	1.373 Mg/m ³		
Absorption coefficient	0.259 mm ⁻¹		
F(000)	260		
Crystal size	0.25 x 0.2 x 0.08 mm ³		
Crystal color, habit	colorless plate		
Theta range for data collection	1.824 to 25.364°.		
Index ranges	-8<=h<=8, -6<=k<=9, -12<=l<=14		
Reflections collected	6836		
Independent reflections	2194 [R(int) = 0.0403]		
Completeness to theta = 25.242°	99.9 %		
Absorption correction	Semi-empirical from equivaler	nts	
Max. and min. transmission	0.5619 and 0.5134		
Refinement method	Full-matrix least-squares on F ²	2	
Data / restraints / parameters	2194 / 0 / 156		
Goodness-of-fit on F ²	1.052		
Final R indices [I>2sigma(I)]	R1 = 0.0336, wR2 = 0.0785		
R indices (all data)	R1 = 0.0422, wR2 = 0.0839		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.257 and -0.245 e.Å ⁻³		

	х	у	Z	U(eq)
S(1)	1934(1)	8359(1)	3857(1)	16(1)
O(1)	3399(2)	664(2)	6446(1)	23(1)
O(2)	1450(2)	3031(2)	7277(1)	17(1)
N(1)	3044(2)	10013(2)	1723(1)	18(1)
C(1)	894(3)	12327(3)	2844(2)	24(1)
C(2)	2006(3)	10369(2)	2688(2)	17(1)
C(3)	3441(2)	6887(2)	2970(1)	14(1)
C(4)	3878(2)	8045(2)	1856(2)	15(1)
C(5)	5082(2)	7217(3)	967(2)	18(1)
C(6)	5828(3)	5247(3)	1208(2)	18(1)
C(7)	5387(2)	4097(3)	2310(2)	18(1)
C(8)	4193(2)	4870(2)	3221(2)	15(1)
C(9)	3842(2)	3541(2)	4344(2)	16(1)
C(10)	2718(2)	3926(2)	5323(1)	16(1)
C(11)	2593(2)	2348(2)	6376(2)	15(1)
C(12)	1250(3)	1595(3)	8374(2)	18(1)
C(13)	-51(3)	2655(3)	9249(2)	24(1)

Table S29. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for Yu82. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

S(1)-C(2)	1.7533(18)	N(1)-C(4)-C(3)	115.59(14)
S(1)-C(3)	1.7346(16)	N(1)-C(4)-C(5)	123.96(15)
O(1)-C(11)	1.206(2)	C(5)-C(4)-C(3)	120.45(16)
O(2)-C(11)	1.3439(19)	C(4)-C(5)-H(5)	120.8
O(2)-C(12)	1.454(2)	C(6)-C(5)-C(4)	118.50(16)
N(1)-C(2)	1.294(2)	C(6)-C(5)-H(5)	120.8
N(1)-C(4)	1.395(2)	C(5)-C(6)-H(6)	119.4
C(1)-H(1A)	0.9800	C(5)-C(6)-C(7)	121.15(15)
C(1)-H(1B)	0.9800	C(7)-C(6)-H(6)	119.4
C(1)-H(1C)	0.9800	C(6)-C(7)-H(7)	119.0
C(1)-C(2)	1.491(2)	C(6)-C(7)-C(8)	122.04(16)
C(3)-C(4)	1.408(2)	C(8)-C(7)-H(7)	119.0
C(3)-C(8)	1.413(2)	C(3)-C(8)-C(9)	125.80(15)
C(4)-C(5)	1.397(2)	C(7)-C(8)-C(3)	116.51(16)
C(5)-H(5)	0.9500	C(7)-C(8)-C(9)	117.69(16)
C(5)-C(6)	1.381(3)	C(8)-C(9)-H(9)	115.6
C(6)-H(6)	0.9500	C(10)-C(9)-C(8)	128.89(16)
C(6)-C(7)	1.396(2)	C(10)-C(9)-H(9)	115.6
C(7)-H(7)	0.9500	C(9)-C(10)-H(10)	120.0
C(7)-C(8)	1.397(2)	C(9)-C(10)-C(11)	120.00(15)
C(8)-C(9)	1.459(2)	C(11)-C(10)-H(10)	120.0
C(9)-H(9)	0.9500	O(1)-C(11)-O(2)	123.49(15)
C(9)-C(10)	1.336(2)	O(1)-C(11)-C(10)	125.68(15)
C(10)-H(10)	0.9500	O(2)-C(11)-C(10)	110.83(14)
C(10)-C(11)	1.473(2)	O(2)-C(12)-H(12A)	110.4
C(12)-H(12A)	0.9900	O(2)-C(12)-H(12B)	110.4
C(12)-H(12B)	0.9900	O(2)-C(12)-C(13)	106.71(14)
C(12)-C(13)	1.497(2)	H(12A)-C(12)-H(12B)	108.6
C(13)-H(13A)	0.9800	C(13)-C(12)-H(12A)	110.4
C(13)-H(13B)	0.9800	C(13)-C(12)-H(12B)	110.4
C(13)-H(13C)	0.9800	C(12)-C(13)-H(13A)	109.5
		C(12)-C(13)-H(13B)	109.5
C(3)-S(1)-C(2)	89.62(8)	C(12)-C(13)-H(13C)	109.5
C(11)-O(2)-C(12)	115.62(13)	H(13A)-C(13)-H(13B)	109.5
C(2)-N(1)-C(4)	110.56(14)	H(13A)-C(13)-H(13C)	109.5
H(1A)-C(1)-H(1B)	109.5	H(13B)-C(13)-H(13C)	109.5
H(1A)-C(1)-H(1C)	109.5		
H(1B)-C(1)-H(1C)	109.5		
C(2)-C(1)-H(1A)	109.5		
C(2)-C(1)-H(1B)	109.5		
C(2)-C(1)-H(1C)	109.5		
N(1)-C(2)-S(1)	115.68(13)		
N(1)-C(2)-C(1)	124.49(16)		
C(1)-C(2)-S(1)	119.83(13)		
C(4)-C(3)-S(1)	108.55(12)		
C(4)-C(3)-C(8)	121.35(15)		
C(8)-C(3)-S(1)	130.10(13)		

Table S30. Bond lengths [Å] and angles [°] for Yu82.

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
S(1)	18(1)	13(1)	15(1)	-4(1)	1(1)	-4(1)
O(1)	29(1)	14(1)	21(1)	-4(1)	3(1)	-5(1)
O(2)	21(1)	14(1)	13(1)	-2(1)	2(1)	-6(1)
N(1)	18(1)	16(1)	18(1)	-2(1)	-2(1)	-7(1)
C(1)	27(1)	16(1)	28(1)	-6(1)	-2(1)	-7(1)
C(2)	18(1)	15(1)	19(1)	-3(1)	-5(1)	-6(1)
C(3)	12(1)	17(1)	13(1)	-4(1)	-2(1)	-6(1)
C(4)	14(1)	15(1)	16(1)	-2(1)	-4(1)	-7(1)
C(5)	17(1)	24(1)	12(1)	-2(1)	-1(1)	-10(1)
C(6)	18(1)	23(1)	16(1)	-9(1)	3(1)	-8(1)
C(7)	16(1)	16(1)	20(1)	-6(1)	-2(1)	-4(1)
C(8)	14(1)	17(1)	16(1)	-5(1)	-3(1)	-5(1)
C(9)	17(1)	14(1)	17(1)	-4(1)	-3(1)	-5(1)
C(10)	17(1)	12(1)	18(1)	-3(1)	-2(1)	-4(1)
C(11)	14(1)	16(1)	16(1)	-5(1)	-1(1)	-6(1)
C(12)	22(1)	16(1)	14(1)	1(1)	0(1)	-9(1)
C(13)	27(1)	25(1)	20(1)	-4(1)	2(1)	-12(1)

Table S31. Anisotropic displacement parameters (Å²x 10³) for Yu82. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	Х	у	Z	U(eq)
H(1A)	-528	12620	2857	36
H(1B)	1278	13265	2178	36
H(1C)	1203	12383	3601	36
H(5)	5380	7993	213	21
H(6)	6656	4663	614	22
H(7)	5916	2746	2444	21
H(9)	4503	2221	4385	19
H(10)	1999	5216	5339	19
H(12A)	2562	772	8691	21
H(12B)	647	776	8223	21
H(13A)	-1333	3483	8917	37
H(13B)	576	3441	9402	37
H(13C)	-247	1738	10001	37

Table S32. Hydrogen coordinates ($x\;10^4$) and isotropic displacement parameters (Å $^2x\;10\;^3$) for Yu82.

11. References

- 1. Ye, M. *et al.* Ligand-promoted C3-selective arylation of pyridines with Pd catalysts: gram-scale synthesis of (±)-Preclamol. J. Am. Chem. Soc. **133**, 19090–19093 (2011).
- 2. Kudo, N., Perseghini, M. & Fu, G. C. A versatile method for Suzuki cross-coupling reactions of nitrogen heterocycles. *Angew. Chem. Int. Ed.* **45**, 1282–1284 (2006).
- Gran, U., Wennerström, O. & Westman, G. Stereoselective reductions with macrocyclic NADH models. *Tetrahedron: Asymmetry* 11, 3027–3040 (2000).
- 4. Rudolf, S., Goebel, W. & Neumann, W. Reactions of pyridine-3-sulfonyl chloride with amines. *Acta Chim. Acad. Sci. Hung.* **64**, 267–271 (1970).
- 5. Thelemann, J. *et al.* Aryl bis-sulfonamide inhibitors of IspF from Arabidopsis thaliana and Plasmodium falciparum. *ChemMedChem* **10**, 2090–2098 (2015).
- Planas, O., Whiteoak, C. J., Company, A. & Ribas, X. Regioselective access to sultam motifs through cobalt-catalyzed annulation of aryl sulfonamides and alkynes using an 8aminoquinoline directing group. *Adv. Synth. Catal.* 357, 4003–4012 (2015).
- Royo, E., Betancort, J. M., Davis, T. J., Carroll, P. & Walsh, P. J. Synthesis, structure, and catalytic properties of bis[bis(sulfonamido)] titanium complexes. *Organometallics* 19, 4840–4851 (2000).
- Chen, L. *et al.* Structure-based design of 3-carboxy-substituted 1,2,3,4tetrahydroquinolines as inhibitors of myeloid cell leukemia-1 (Mcl-1). *Org. Biomol. Chem.* 14, 5505–5510 (2016).
- Mcnab, H. ¹³C Nuclear Magnetic Resonance Spectra of Quinoxaline Derivatives. J. Chem. Soc., Perkin Trans. 1, 357–363 (1982).
- Kimura, H., Torikai, K. & Ueda, I. Termal Cyclization of Nonconjugated Aryl-Yne-Carbodiimide Furnishing a Dibenzonaphthyridine Derivative. *Chem. Pharm. Bull.* 57, 393–396 (2009).
- Thansandote, P., Hulcoop, D. G., Langer, M. & Lautens, M. Palladium–Catalyzed Annulation of Haloanilines and Halobenzamides Using Norbornadiene as an Acetylene Synthon: A Route to Functionalized Indolines, Isoquinolinones, and Indoles. *J. Org. Chem.* 74, 1673–1678 (2009).
- Ong, W. Q. *et al.* Conputational prediction and experimental verification of pyridine– based helical oligoamides containing four repeating units per helical turn. *Chem. Commun.* 47, 6416–6418 (2011).