Legends to Supplemental Figures

3	Fig. S1. Circular representation of two chromosomes from "Ca. Azobacteroides							
4	pseudotrichonymphae" phylotype ProJPt-1. Concentric rings denote the following features							
5	(from outer to inner rings): nucleotide positions starting from base 1 of <i>dnaA</i> in chromosome							
6	1, and the predicted <i>oriC</i> in chromosome 2; protein-coding sequences (CDSs) (dark blue:							
7	CDSs on the forward strand (+), light blue: CDSs on the reverse strand (-), orange: rRNA							
8	genes, green: tRNA genes); G + C content (purple: <50%, gold: >50%); GC skew (G - C)/(G							
9	+ C) (purple: -, gold: +).							
10								
11	Fig. S2. Circular representation of five plasmids of "Ca. Azobacteroides							
12	pseudotrichonymphae" phylotype ProJPt-1. The concentric rings denote the following							
13	features (from outer to inner rings): nucleotide position starting from base 1 of <i>repA</i> ; protein-							
14	coding sequences (CDSs) (dark blue: CDSs on the forward strand [+], light blue: CDSs on the							
15	reverse strand [-]); G + C content (purple, $< 50\%$; gold $> 50\%$); GC skew (G - C)/(G + C)							
16	(purple, -; gold, +).							
17								
18	Fig. S3. Phylogenetic position of phylotype ProJPt-1 in "Ca. Azobacteroides							
19	pseudotrichonymphae" based on 16S rRNA gene sequences. A maximum likelihood tree was							
20	constructed using the GTR+ Γ +I nucleotide substitution model. Bootstrap confidence values							
21	(500 resamplings) are indicated on the internal branches. Paludibacter propionicigenes WB4,							
22	Bacteroides ovatus ATCC 8483, and Bacteroides fragilis BOB25 were used as outgroups.							
23								

25 shown in yellow wedges. Each of the green, blue, and orange broken lines represents identical intergenic regions between chromosomes 1 and 2. 26 27 28 Fig. S5. Synteny analysis between ProJPt-1 chromosomes and the CfPt1-2 chromosome. Red 29 lines indicate similarly-orientated corresponding regions, while blue lines indicate regions 30 that are oriented in opposite directions. The analysis was conducted using the Artemis 31 Comparison Tool (http://www.sanger.ac.uk/science/tools/artemis-comparison-tool-act). 32 33 Fig. S6. Alignment of the ProJPt-Bp1 phage genome from sample PJA1 with draft genomes 34 of ProJPt-Bp1 from samples PJA2, PJB1, and PJB2. Yellow wedges indicate tRNA gene loci. 35 Red lines show syntenic regions. The analysis was conducted using the Artemis Comparison 36 Tool (http://www.sanger.ac.uk/science/tools/artemis-comparison-tool-act). An ~3,100-bp 37 region surrounding nucleotide position 14,000, which contains a gene for a cadherin-like beta 38 sandwich domain protein (PJPA 015), was unique to the ProJPt-Bp1 genome from sample 39 PJA1. 40 41 Fig. S7. Neighbor-joining trees of phage-related genes based on deduced amino acid 42 sequences. (A) Protein inside capsid D (111 amino acids); (B) dUTPase (114 amino acids). 43 Sequences were aligned using ClustalW with a gap opening penalty of 10.0 and gap extension 44 penalty of 0.2. The Dayhoff amino acid substitution model was used. An asterisk in panel (A) 45 indicates the sequence from *Mollivirus sibericum*, the taxonomic assignment of which was 46 unclear. 47

Fig. S4. rRNA genes on ProJPt-1 chromosomes. Putative breakpoints of the rRNA operon are

24

2

Fig. S1. Circular representation of two chromosomes from "*Ca*. Azobacteroides pseudotrichonymphae" phylotype ProJPt-1. Concentric rings denote the following features (from outer to inner rings): nucleotide positions starting from base 1 of *dnaA* in chromosome 1, and the predicted *oriC* in chromosome 2; protein-coding sequences (CDSs) (dark blue: CDSs on the forward strand (+), light blue: CDSs on the reverse strand (–), orange: rRNA genes, green: tRNA genes); G + C content (purple: <50%, gold: >50%); GC skew (G – C)/(G + C) (purple: –, gold: +).

Fig. S2. Circular representation of five plasmids of "*Ca*. Azobacteroides pseudotrichonymphae" phylotype ProJPt-1. The concentric rings denote the following features (from outer to inner rings): nucleotide position starting from base 1 of *repA*; protein-coding sequences (CDSs) (dark blue: CDSs on the forward strand [+], light blue: CDSs on the reverse strand [-]); G + C content (purple, < 50%; gold > 50%); GC skew (G - C)/(G + C) (purple, -; gold, +).

Fig. S3. Phylogenetic position of phylotype ProJPt-1 in "*Ca*. Azobacteroides pseudotrichonymphae" based on 16S rRNA gene sequences. A maximum likelihood tree was constructed using the GTR+ Γ +I nucleotide substitution model. Bootstrap confidence values (500 resamplings) are indicated on the internal branches. *Paludibacter propionicigenes* WB4, *Bacteroides ovatus* ATCC 8483, and *Bacteroides fragilis* BOB25 were used as outgroups.

rRNA operon in the ProJPt-1 Chromosome 2

Fig. S4. rRNA genes on ProJPt-1 chromosomes. Putative breakpoints of the rRNA operon are shown in yellow wedges. Each of the green, blue, and orange broken lines represents identical intergenic regions between chromosomes 1 and 2.

Fig. S5. Synteny analysis between ProJPt-1 chromosomes and the CfPt1-2 chromosome. Red lines indicate similarly-orientated corresponding regions, while blue lines indicate regions that are oriented in opposite directions. The analysis was conducted using the Artemis Comparison Tool (http://www.sanger.ac.uk/science/tools/artemis-comparison-tool-act).

Fig. S6. Alignment of the ProJPt-Bp1 phage genome from sample PJA1 with draft genomes of ProJPt-Bp1 from samples PJA2, PJB1, and PJB2. Yellow wedges indicate tRNA gene loci. Red lines show syntenic regions. The analysis was conducted using the Artemis Comparison Tool (http://www.sanger.ac.uk/science/tools/artemis-comparison-tool-act). An ~3,100-bp region surrounding nucleotide position 14,000, which contains a gene for a cadherin-like beta sandwich domain protein (PJPA_015), was unique to the ProJPt-Bp1 genome from sample PJA1.

Fig. S7. Neighbor-joining trees of phage-related genes based on deduced amino acid sequences. (A) Protein inside capsid D (111 amino acids); (B) dUTPase (114 amino acids). Sequences were aligned using ClustalW with a gap opening penalty of 10.0 and gap extension penalty of 0.2. The Dayhoff amino acid substitution model was used. An asterisk in panel (A) indicates the sequence from *Mollivirus sibericum*, the taxonomic assignment of which was unclear.

Gene_id*	start	stop	strand	predicted functions	Source**
PJPA_001	444	1	-	hypothetical protein	
PJPA_002	1040	444	-	hypothetical protein	
PJPA_003	1774	1049	-	hypothetical protein	
PJPA_004	2351	2010	-	hypothetical protein	
PJPA_005	2947	2399	-	hypothetical protein	
PJPA_tRN	A 4241	4168	-	tRNA-Gln (CAG)	tRNA-scan
PJPA_006	5052	5672	+	hypothetical protein	
PJPA_007	5961	6296	+	hypothetical protein	
PJPA_008	6867	7556	+	hypothetical protein	
PJPA_009	7613	8083	+	hypothetical protein	
PJPA_010	8218	8805	+	hypothetical protein	
PJPA_011	8935	9546	+	ND2 superfamily protein	NCBI CDD
PJPA_012	9543	13154	+	hypothetical protein	
PJPA_013	13236	14219	+	hypothetical protein	
PJPA_014	14392	14715	+	hypothetical protein	
PJPA_015	14719	19752	+	Cadherin-like beta sandwich domain protein	NCBI CDD
PJPA_016	19949	21370	+	major outer envelope glycoprotein	NCBI CDD
PJPA_017	21348	24266	+	hypothetical protein	
PJPA_018	24273	27320	+	DUF4417-cotaining protien	NCBI CDD
PJPA_019	27317	30310	+	hypothetical protein	
PJPA_020	30609	32669	+	conserved hypothetical protein	
PJPA_021	32705	33322	+	hypothetical protein	
PJPA_022	33319	34041	+	hypothetical protein	
PJPA_023	34043	35188	+	hypothetical protein	
PJPA_024	35249	36301	+	hypothetical protein	
PJPA_025	36316	37275	+	hypothetical protein	
PJPA_026	37304	38458	+	VIP2; Actin-ADP-ribosylating toxin family protein	NCBI CDD
PJPA_027	38476	39948	+	putative structural protein	NR, refseq
PJPA_028	40082	40786	+	hypothetical protein	
PJPA_029	40783	41565	+	hypothetical protein	
PJPA_030	41569	42618	+	hypothetical protein	
PJPA_031	42615	43562	+	hypothetical protein	
PJPA_032	43562	46435	+	putative structural protein	NR, refseq
PJPA_033	46435	53412	+	hypothetical protein	
PJPA_034	53414	54700	+	hypothetical protein	
PJPA_035	54716	57367	+	hypothetical protein	
PJPA_036	57371	62218	+	Epstein-Barr virus nuclear antigen 3B domain protein	NCBI CDD
PJPA_037	62221	63048	+	hypothetical protein	
PJPA_038	63048	67547	+	hypothetical protein	
PJPA_039	67548	69068	+	hypothetical protein	
PJPA_040	69068	70708	+	hypothetical protein	
PJPA_041	70708	81153	+	putative structural protein	NR, refseq
PJPA_042	81153	85808	+	hypothetical protein	
PJPA_043	85805	86413	+	hypothetical protein	
PJPA_044	86410	92667	+	hypothetical protein	
PJPA_045	93306	94583	-	hypothetical protein	
PJPA_046	94941	94501	-	deoxyuridine 5'-triphosphate nucleotidohydrolase	NR, refseq

Table S1. Predicted genes on the ProJPt-Bp1 phage genome.

PJPA_047	96330	95398	-	hypothetical protein	
PJPA_048	96634	96287	-	solute carrier families 5 and 6-like protein	NCBI CDD
PJPA_049	97041	96631	-	phage protein inside capsid D	NR, refseq
PJPA_050	97633	97034	-	hypothetical protein	
PJPA_051	99091	98147	-	exonucleaase VIII	NR, refseq
PJPA 052	99407	99099	-	hypothetical protein	

* Red shows a tRNA gene; blue shows genes identified as phage-related in the METAVIR server.

**National Center for Biotechnology Information Conserved Domain Database (NCBI CDD);

"non-redundant" database (NR); NCBI curated database (refseq).

Amino acid CfPt1-2 ProJPt-1 ProJpt-Bp1 Amino acid CfPt1-2 ProJPt-1 ProJpt-Bp1 U С U 12.2 UUC Phe 20.0 53.[°] UCA Ser 18.7 26.9 32.1 UUU Phe UCC 9.9 3.2 3.7 80.0 87.8 46.3 Ser 7.7 UUA 36.2 50.7 29.7 UCG Ser 4.0 5.1 Leu UUG 28.0 20.6 13.3 UCU 34.6 38.7 20.5 Leu Ser С CCA 32.4 51.3 CUA 9.9 9.3 24.0 48.7 Leu Pro CUC Leu 4.1 1.7 8.6 CCC Pro 11.0 1.6 1.4 CUG 5.1 2.4 7.6 CCG Pro 10.1 7.3 8.9 Leu CUU 16.7 15.3 CCU 42.4 38.5 16.7 Pro 46.5 Leu Α AUA Ile 33.2 35.7 49.9 ACA Thr 38.1 44.8 48.8 25.2 AUC Ile 13.0 7.0 ACC Thr 10.2 4.0 14.3 AUU 57.3 24.9 9.5 11.4 53.8 ACG 5.5 Ile Thr AUG Met 100.0 100.0 100.0 ACU Thr 42.2 45.7 25.6 G **GUA** Val 38.4 38.8 37.9 GCA Ala 36.6 40.0 43.4 GUC Val 8.5 4.8 11.8 GCC Ala 11.0 5.5 6.8 9.9 GUG Val 14.1 GCG Ala 5.7 9.7 21.3 6.5 29.0 45.9 48.9 GUU 38.9 46.6 GCU 40.1 Val Ala Amino acid CfPt1-2 ProJPt-1 ProJpt-Bp1 G Amino acid CfPt1-2 ProJPt-1 ProJpt-Bp1 Α U UAC 20.7 19.0 43.7 UG 22.4 33.5 Tvr Cys 17.8 82.2 81.0 UGU 79.3 56.3 77.6 66.5 UAU Tyr Cys UAA 53.3 62.2 50.9 UGA STOP 27.9 23.7 29.8 STOP UAG STOP 18.8 14.0 19.3 UGG 100.0 100.0 100.0 Trp С CAC 19.5 17.2 27.6 14.9 4.6 His CGA Arg 16.2 CAU His 80.5 82.8 72.4 CGC Arg 7.3 6.4 6.8 77.9 84.9 47.4 CAA Gln CGG 5.3 3.1 3.8 Arg 30.6 33.4 30.0 CAG Gln 22.1 15.1 52.6 CGU Arg Α AAC 18.8 14.1 46.1 AGC 6.1 4.2 17.7 Asn Ser 81.2 85.9 53.9 AGU 23.022.9 21.0 AAU Asn Ser AAA Lys 78.2 88.2 33.5 AGA Arg 30.3 34.6 34.0 11.8 66.5 AGG 10.2 7.6 20.9 AAG Lys 21.8 Arg G 33.4 GAC Asp 18.5 13.8 38.7 GGA Gly 43.1 49.5 GAU 86.2 61.3 Gly 8.3 7.9 16.2 81.5 GGC Asp GAA Glu 79.9 85.8 48.0 GGG Gly 16.8 14.6 11.9 31.9 20.1 14.2 GGU 28.0 GAG 52.0 Gly 38.4 Glu

Table S2. Codon usage (%) in the CfPt1-2 chromosome, ProJPt-1 chromosomes, and theProJPt-Bp1 phage genome.

Blue indicates codons of which corresponding tRNA genes are present in both ProJPt-1 and CfPt1-2 genomes; green indicates those only in ProJPt-1; orange indicates those only in CfPt1-2; yellow indicates those in both CfPt1-2 and ProJPt-Bp1 (absent in ProJPt-1).