#### **1** Supplementary information

#### 2 Materials and methods

#### 3 Study field and soil sampling

The paddy field examined in this study is located at Niigata Agricultural Research Institute (Nagaoka, Niigata, Japan: 37°26'N, 138°52'E). The soil type, cropping history, and soil physicochemical properties of the field were described previously (Itoh *et al.*, 2013). Field managements such as tilling, water management, fertilization, herbicide spraying in 2012, when we examined in this study, was basically same as those reported in our previous study (Itoh *et al.*, 2013).

10 Six transparent acrylic cores ( $10 \times 15$  cm; inner diameter  $\times$  depth) were 11 randomly placed in the plow layer (0 to 10 cm) at the furrow of the paddy field just after 12puddling on May 7th in 2012. Soil samples were collected at 2 time points, Jun 18th 13 (waterlogged condition), and Oct 1st (drained condition), which showed the lowest and 14highest Eh in cultivation season, respectively (Fig. S1). At each sampling event, 3 cores were collected after removing the surface water, if any, and immediately frozen in 1516 liquid nitrogen, transported to the laboratory with dry ice, and stored at -80°C until use. 17Shallow and deep layers from a depth of 0 to 1 cm and 5 to 7 cm, respectively, were cut 18 out from each frozen cylindrical soil by a sterilized knife. Each of soil samples 19 contained three independent replicates.

20

Soil and sediment samples from a depth of 0 to 10 cm used for quantitative

PCR (qPCR) analyses were collected from paddy fields, upland fields, and river in
various districts across the Japan (Table S3), and stored at -80°C until DNA extraction.

23

### 24 Preparation of soil RNA and DNA

Four soil samples with triplicates (12 samples in total), which were shallow 2526(S1, S3) and deep (S2, S4) layer samples obtained from soil cores collected in 27waterlogged (S1, S2) and drained (S3, S4) seasons, were subjected to RNA and DNA 28extraction and applied for metatranscriptomics and metagenomics in this study. Soil 29RNA and DNA were simultaneously extracted from 2 g (wet weight) of each soil 30 sample using PowerSoil Total RNA Isolation Kit (MoBio Laboratories, Solana Beach, CA, USA) with PowerSoil DNA Elution Accessory Kit (MoBio Laboratories) (Itoh et 31 32 al., 2013). Crude RNA was purified using the TURBO DNA-free Kit (Applied 33 Biosystems, Foster City, CA, USA) and RNA Clean & Concentrator (Zymo Research) as described previously (Itoh et al., 2013). No contamination of DNA in prepared RNA 34was confirmed by PCR amplification using specific primers for bacterial 16S rRNA 35 gene as described in *qPCR* section below. Crude DNA was purified using the RNase A 36 37 (TAKARA BIO INC., Otsu, Shiga, Japan) and DNA Clean & Concentrator according to the manufacture's instruction (Zymo Research). Purity of the prepared RNA and DNA 38 were determined using the NanoDrop ND-1000 spectrophotometer (NanoDrop 39 Technologies, Wilmington, DE, USA) as described previously (Itoh et al., 2013), and 40

RNA integrity was confirmed using the Agilent 2100 Bioanalyzer (Agilent
Technologies, Palo Alto, CA, USA) with the RNA 6000 Pico Kit (Agilent
Technologies). The quantity of the prepared RNA and DNA were measured using Qubit
2.0 Fluorometer (Invitrogen, Carlsbad, CA, USA) with Qubit RNA Assay Kits
(Invitrogen) and Qubit dsDNA HS Assay Kits (Invitrogen), respectively.

For qPCR analyses, soil and sediments DNA were extracted from 0.5 g (wet weight) of each sample using ISOIL for Beads Beating (Nippon Gene, Toyama, Japan) added with 0.02 g skim milk for improvement of extraction efficiency (Takada-Hoshino *et al.*, 2004). Purity and quantity of the prepared DNA was determined using the NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies).

51

#### 52 Shotgun metatranscriptomic and metagenomic sequencing

53In order to perform the simultaneous assessment of community structure and function of soil microbes based on rRNA and mRNA (Urich et al., 2008), total RNA 54was subjected to construction of complementary DNA (cDNA) libraries using the 55NEBNext Ultra RNA Library Prep Kit for Illumina (New England Biolabs Inc., Beverly, 5657Massachusetts, USA). For metagenomic sequencing, prepared soil DNA was sheared 58into 300 bp fragments by the Covaris M220 (Covaris Inc., Woburn, MA, USA), and 59then DNA libraries for metagenomic sequencing was constructed using the fragmented DNA with the NEBNext Ultra DNA Library Prep Kit for Illumina (New England 60

Biolabs Inc.). Size distribution of cDNA and DNA libraries were checked on the
Agilent 2100 Bioanalyzer (Agilent Technologies). Paired-end sequencing for all
libraries was performed on an Illumina MiSeq sequencer (Illumina, San Diego, CA,
USA) using a MiSeq Reagent kit v2 (Illumina) according to the manufacture's
instruction.

66

#### 67 Informatics and statistics

68 Resulting paired-end sequences were joined together as described previously 69 (Itoh et al., 2014). Fastq-formatted data for the combined sequences were converted to 70fasta-formatted data with a Q-score cutoff of >30 using a PRINSEQ lite ver. 0.20.3 71(Schmieder and Edwards, 2011). Ribosomal RNA sequences in metatranscriptomic data were determined by BLAT search against the M5RNA database (e-value of  $<10^{-5}$ , 72alignment length of >50 bp) on the MG-RAST server ver. 3.6 (Meyer et al., 2008). 7374Protein-coding genes transcripts were retrieved from metatrascriptomic data through BLAT search against the M5nr database (Wilke *et al.*, 2012) (e-value of  $<10^{-5}$ , 75alignment length of >30 aa) on the MG-RAST server ver. 3.6 (Meyer et al., 2008). 76 77From all of these assigned transcripts, sequences assigned as functional genes involved in reductive nitrogen transformation, i.e. nar, nir, nor, nos, nrf, and nif were collected 7879 and compared to the NCBI nr database in December 2015 by BLASTX search for more precise assignment (e-value of  $<10^{-5}$ ). Domain structure of query-tophit references was 80

81 confirmed by NCBI conserved domain search (Marchler-Bauer et al., 2015), in order to 82 assign based on not only reference name but also domain structure. To minimize the 83 bias owing to differences of sequencing depth among libraries, the trimmed mean of M 84 values (TMM) normalization method available in the edge R Bioconductor package was applied and used to calculate the normalized ratio of taxonomic composition of rRNA 85 and functional genes involved in reductive nitrogen transformations (Robinson et al., 86 2010). Mann-Whitney U test was performed using R software ver. 3.0.1 (R 87 88 Development Core Team, 2008) to analyze qPCR results.

89

90 *qPCR* 

91 qPCR was performed to amplify 16S rRNA genes of all bacteria, Geobacter, 92and Aaneromyxobacter using the StepOnePlus System (Life Technologies, Carlsbad, 93 CA, USA) with the SYBR Premix EX Tag II (TAKARA BIO INC.). The reaction mixture was comprised of 1× SYBR Premix Ex Tag II, 0.2 µM forward and reverse 94primer pairs (338F and 518R for all bacteria (Klammer, et al., 2008), 494F and 95 Geo825R for Geobacter (Holmes et al., 2002; Anderson et al., 1998), Ade399F and 96 97 Ade466R for Anaeromyxobacter (Thomas, 2009)), 0.5 µg/µl BSA, and soil DNA as a 98 template. The PCR conditions were as follows: initial denaturation at 95°C for 30 s, 99 followed by 40 cycles of 95°C for 5 s, 55°C for 30 s (for all bacteria) or 50°C for 20 s (for Geobacter and Anaeromyxobacter), and 72°C for 30 s. Copies numbers of 16S 100

| 101 | rRNA genes of all bacteria, Geobacter, and Anaeromyxobacter were calculated on the  |
|-----|-------------------------------------------------------------------------------------|
| 102 | basis of the standard curve constructed using a dilution series of the targeted PCR |
| 103 | products of Pseudomonas stutzeri JCM 5965, Geobacter sulfurreducens JCM 18752, or   |
| 104 | Anaeromyxobacter dehalogenas 2CP-C ATCC BAA-259, respectively.                      |
| 105 |                                                                                     |
| 106 | Nucleotide sequence accession number                                                |
| 107 | All of metatranscriptomic and metagenomic sequences reported in this study          |
| 108 | were deposited in the MG-RAST database (http://metagenomics.anl.gov/, Meyer et al., |
| 109 | 2008). Deposit IDs were summarized in Tables S4 and S5.                             |
| 110 |                                                                                     |

#### 111 **References**

- 112 Anderson, R.T., J. N. Rooney-Verga, C.V. Gaw, and D.R. Lovley. 1998. Anaerobic
- 113 benzene oxidation in the Fe(III) reduction zone of petroleum-contaminated aquifers.
- 114 Environ. Sci. Technol. 32: 1222–1229.
- 115 Bazylinski, D.A., A.J. Dean, D. Schüler, E.J. Phillips, and D.R. Lovley. 2000.

116 N<sub>2</sub>-dependent growth and nitrogenase activity in the metal-metabolizing bacteria,

117 *Geobacter* and *Magnetospirillum* species. Environ. Microbiol. 2: 266–273.

- 118 Klammer, S., B. Knapp, H. Insam, M.T. Dell'Abate, and M. Ros. 2008. Bacterial
- 119 community patterns and thermal analyses of composts of various origins. Waste.
- 120 Manag. Res. 26: 173–187.
- 121 Itoh, H., S. Ishii, Y. Shiratori, K. Oshima, S. Otsuka, M. Hattori, and K. Senoo. 2013.
- Seasonal transition of active bacterial and archaeal communities in relation to water
  management in paddy soils. Micobes Environ. 28: 370–380.
- 124 Itoh, H., M. Aita, A. Nagayama, X.Y. Meng, Y. Kamagata, R. Navarro, T. Hori, S.
- 125 Ohgiya, and Y. Kikuchi. 2014. Evidence of environmental and vertical
  126 transmission of *Burkholderia Symbionts* in the oriental chinch bug, *Cavelerius*
- 127 *saccharivorus* (Heteroptera: Blissidae). Appl. Environ. Microbiol. 80: 5974–5083.
- 128 Holmes, D.E., K.T. Finneran, R.A. O'neil, and D.R.Lovley. 2002. Enrichment of
- 129 members of the family *Geobacteraceae* associated with stimulation of dissimilatory
- 130 metal reduction in uranium-contaminated aquifer sediments. Appl. Environ.

- 131 Microbiol. 68: 2300–2306.
- Marchler-Bauer, A., M.K. Derbyshire, N.R. Gonzales, et al. 2015. CDD: NCBI's
  conserved domain database. Nucleic Acids Res. 43: D222–226.
- 134 Methé, B. A., J. Webster, K. Nevin, J. Butler, and D.R. Lovley. 2005. DNA microarray
- 135 analysis of nitrogen fixation and Fe (III) reduction in *Geobacter sulfurreducens*.
- 136 Appl. Environ. Microbiol. 71: 2530–2538.
- 137 Meyer, F., D. Paarmann, M. D'Souza, et al. 2008. The metagenomics RAST server a
- public resource for the automatic phylogenetic and functional analysis ofmetagenomes. BMC Bioinformatics, 19: 386.
- 140 Nevin, K.P., D.E. Holmes, T.L. Woodard, S.F. Covalla, and D.R. Lovley. 2007.
- 141 Reclassification of *Trichlorobacter thiogenes* as *Geobacter thiogenes* comb. nov.
- 142 Int. J. Syst. Evol. Microbiol. 57: 463–466.
- 143 R-Development-Core-Team. 2008. R: A language and environment for statistical
- 144 computing. R Foundation for Statistical Computing, Vienna, Austria.
- 145 Robinson, M.D., D.J. McCarthy, and G.K. Smyth. 2010. edgeR: a Bioconductor
- package for differential expression analysis of digital gene expression data.
  Bioinformatics. 26: 139–140.
- 148 Sanford, R.A., J.R. Cole, and J.M. Tiedje. 2002. Characterization and Description of
- 149 Anaeromyxobacter dehalogenans gen. nov., sp. nov., an Aryl-Halorespiring
- 150 Facultative Anaerobic Myxobacterium. Appl. Environ. Microbiol. 68: 893–900.

- 151 Sanford, R.A., D.D. Wagner, Q. Wu, et al. 2012. Unexpected nondenitrifier nitrous
- 152 oxide reductase gene diversity and abundance in soils. Proc. Natl. Acad. Sci. USA.
- 153 109: 19709–19714.
- Schmieder, R., and R. Edwards. 2011. Quality control and preprocessing of
  metagenomic datasets. Bioinformatics. 27: 863–864.
- 156 Sung, Y., K.E. Fletcher, K.M. Ritalahti, R.P. Apkarian, N. Ramos-Hernandez, R.A.
- 157 Sanford, N.M. Mesbah, and F.E. Löffler. 2006. *Geobacter lovleyi* sp. nov. strain SZ,
- a novel metal-reducing and tetrachloroethene-dechlorinating bacterium. Appl.
- 159 Environ. Microbiol. 72: 2775–2782.
- 160 Takada-Hoshino, Y., and N. Matsumoto. 2004. An improved DNA extraction method
- 161 using skim milk from soils that strongly adsorb DNA. Microb. Environ. 19: 13–19.
- Thomas, S.H. 2009. Ecophysiology and diversity of *Anaeromyxobacter* spp. and
  implications for uranium bioremediation. Ph.D. thesis. Georgia Institute of
- 164 Technology, GA, USA.
- Urich, T., A. Lanzén, J. Qi, D.H. Huson, C. Schleper, and S.C. Schuster. 2008.
  Simultaneous assessment of soil microbial community structure and function
  through analysis of the meta-transcriptome. PloS One. 3: e2527.
- 168 Wilke, A., T. Harrison, J. Wilkening, D. Field, E.M. Glass, N. Kyrpides, K.
- 169 Mavrommatis, and F. Meyer. 2012. The M5nr: a novel non-redundant database
- 170 containing protein sequences and annotations from multiple sources and associated

tools. BMC Bioinformatics. 13: 141.

#### 174 Supplementary figure legends

175 Fig. S1

- 176 Seasonal changes of soil redox potential (Eh) and water management. Eh at 5 cm depth
- 177 was measured using 5 replicate platinum-tipped electrodes as described previously (Itoh
- 178 et al., 2013). Data in 2009 was derived from our previous study (Itoh et al., 2013).
- 179 Asterisks indicate soil samples used for metatranscriptomics in this study.
- 180

```
181 Fig. S2
```

- 182 Microbial diversity of RNT genes and rRNA gene detected in metagenomics of the
- 183 present study. Taxonomic distribution of nar, nir, nor, nos, nrf, and nif, and rRNA gene
- 184 at phylum- and proteobacterial class-level (A), and deltaproteobacterial genus-level (B).
- 185 Sample IDs indicate data derived from paddy soils in shallow (S1, S3) and deep (S2,

186 S4) layers under waterlogged (S1, S2) and drained (S3, S4) conditions.

187

188 Fig. S3

189 Nif gene clusters conserved in genome of *Anaeromyxobacter* spp. and diazotrophs.

190

### Fig. S1



# Fig. S2





- Gammaproteobacteria
- Alphaproteobacteria
- Betaproteobacteria
- Deltaproteobacteria

unclassified Deltaproteobacteria
 other genera
 Syntrophobacter
 Stigmatella
 Desulfatibacillium
 Desulfovibrio

Bdellovibrio

- Desulfobacca
- Haliangium
- Pelobacter
- Chondromyces
- Sorangium
- Geobacter
- Anaeromyxobacter

## Fig. S3

Anaeromyxobacter sp. Fw109-5 Anaeromyxobacter sp. K Geobacter metallireducens GS-15 Geobacter sulfurreducens ATCC51573 Anabaena sp. 90 Rhizobium etli CFN 42 Azoarcus sp. BH 72 Azotobacter vinelandii DJ



|                  |                              |                                           | References reporitng RNT activities          |                                                |  |  |  |
|------------------|------------------------------|-------------------------------------------|----------------------------------------------|------------------------------------------------|--|--|--|
| Organisms        | NOR (NO -> N <sub>2</sub> O) | NOS (N <sub>2</sub> O -> N <sub>2</sub> ) | DNRA ( $NO_{3^{-}} \rightarrow NH_{4^{+}}$ ) | Nitrogen fixation ( $N_2 \rightarrow NH_4^+$ ) |  |  |  |
| Geobacter        | ND <sup>a</sup>              | b                                         | Sung et al., 2006; Nevin et al., 2007        | Bazylinski et al., 2000; Methé et al., 2005    |  |  |  |
| Anaeromyxobacter | ND <sup>a</sup>              | Sanford et al., 2012                      | Sanford et al., 2002                         | ND <sup>a,c</sup>                              |  |  |  |

#### Table S1 RNT activities of Geobacter and Anaeromyxobacter reported in previous studies.

<sup>a</sup> ND, no data.

<sup>b</sup> None of *Geobacter* spp. harbor *nos* in their genome.

<sup>c</sup> Anaeromyxobacter sp. FW109-5 and K have similar *nif* cluster to that of *Geobacter metallireducens* GS-15 and *Geobacter sulfurreducens* ATCC51573 having nitrogen fixation activity (Bazylinski et al., 2000, Methé et al., 2005), shown in Fig. S3.

#### Tabel S2 GC content of norB, nosZ, nrfA, nifH, 16S rRNA gene, and genome of Anaeromyxobacter spp. and other genera.

|                              |                                                  |      |      |      | GC content % |          |        |               |
|------------------------------|--------------------------------------------------|------|------|------|--------------|----------|--------|---------------|
| Phylum/Proteobacterial class | Organisms                                        | norB | nosZ | nrfA | nifH         | 16S rRNA | genome | Accession No. |
| Deltaproteobacteria          | Anaeromyxobacter dehalogenans 2CP-1              | 71.2 | 67.4 | 70.1 | -            | 58.6     | 74.8   | CP001359      |
| Deltaproteobacteria          | Anaeromyxobacter dehalogenans 2CP-C              | 71.2 | 67.4 | 69.6 | -            | 58.6     | 74.9   | NC007760      |
| Deltaproteobacteria          | Anaeromyxobacter sp.Fw109-5                      | 70.6 | 67.2 | 68.6 | 67.4         | 58.6     | 73.5   | CP000769      |
| Deltaproteobacteria          | Anaeromyxobacter sp.K                            | 71.1 | 67.2 | 70.1 | 67.8         | 58.5     | 74.4   | CP001131      |
| Deltaproteobacteria          | Geobacter pickeringii G13                        | 66.0 | -    | 65.6 | 61.6         | 56.4     | 62.3   | CP009788      |
| Deltaproteobacteria          | Geobacter sulfurreducens KN400                   | -    | -    | 62.1 | 60.8         | 55.9     | 61.0   | CP002031      |
| Deltaproteobacteria          | Geobacter sp.M21                                 | 60.6 | -    | 61.8 | 61.8         | 55.0     | 60.5   | CP001661      |
| Deltaproteobacteria          | Geobacter bemidjiensis Bem                       | 59.6 | -    | 61.0 | 61.7         | 55.1     | 60.3   | CP001124      |
| Deltaproteobacteria          | Geobacter metallireducens GS-15                  | 65.1 | -    | 61.9 | 58.1         | 56.4     | 59.6   | CP000148      |
| Deltaproteobacteria          | Geobacter lovleyi SZ                             | -    | -    | 49.8 | 54.4         | 54.2     | 54.8   | CP001089      |
| Deltaproteobacteria          | Geobacter daltonii FRC-32                        | 55.5 | -    | 54.5 | 59.5         | 54.7     | 53.5   | CP001390      |
| Deltaproteobacteria          | Desulfovibrio vulgaris Miyazaki F                | -    | -    | 61.3 | 62.2         | 57.4     | 67.1   | CP001197      |
| Deltaproteobacteria          | Desulfobacterium autotrophicum HRM2              | -    | -    | -    | 53.5         | 52.2     | 48.8   | CP001087      |
| Deltaproteobacteria          | Desulfobacca acetoxidans DSM 11109               | -    | -    | -    | 53.7         | 55.7     | 52.9   | CP002629      |
| Deltaproteobacteria          | Syntrophobacter fumaroxidans MPOB                | 56.6 | -    | 59.1 | 58.9         | 57.0     | 59.9   | CP000478      |
| Deltaproteobacteria          | Desulfomonile tiedjei DSM 6799                   | 50.0 | 53.7 | -    | 50.8         | 55.9     | 50.1   | CP003360      |
| Bacteroidetes                | Bacteroides cellulosilyticus ASM 131834v1        | -    | -    | 47.6 | -            | 50.5     | 42.7   | CP012801      |
| Gammaproteobacteria          | Shewanella oneidensis MR-1                       | -    | -    | 44.9 | -            | 54.8     | 45.9   | NC004347      |
| Gammaproteobacteria          | Escherichia coli K-12 MG 1655                    | -    | -    | 52.3 | -            | 54.4     | 50.8   | NC000913      |
| Gammaproteobacteria          | Thioalkalivibrio nitratireducens DSM 14787       | 61.0 | 64.7 | 62.6 | -            | 56.3     | 66.5   | CP003989      |
| Gammaproteobacteria          | Salmonella enterica, serovar Typhimurium SL 1344 | -    | -    | 54.0 | -            | 54.4     | 52.2   | NC016810      |
| Epsilonproteobacteria        | Sulfurospirillum deleyianum DSM 6946             | -    | -    | 40.7 | -            | 49.2     | 39.0   | CP001816      |
| Epsilonproteobacteria        | Wolinella succinogenes DSM 1740                  | -    | 48.3 | 49.0 | 49.0         | 51.7     | 48.5   | BX571656      |
| Firmicutes                   | Clostridium aceticum ASM 104271v1                | -    | -    | 40.3 | 37.5         | 54.5     | 35.3   | CP009687      |
| Firmicutes                   | Desulfitobacterium dehalogenans ATCC 51507       | 45.9 | 47.4 | 50.2 | 53.6         | 53.9     | 45.0   | CP003348      |
| Cyanobacteria                | Anabaena cylindrica PCC 7122                     | -    | -    | -    | 42.3         | 53.7     | 38.8   | CP003659      |
| Cyanobacteria                | Anabaena sp. 90                                  | -    | -    | -    | 44.1         | 53.3     | 38.1   | CP003284      |
| Cyanobacteria                | Nostoc sp. PCC 7120                              | -    | -    | -    | 47.4         | 53.9     | 41.3   | BA000019      |
| Cyanobacteria                | Cyanothece sp. ATCC 51142                        | -    | -    | -    | 45.1         | 54.5     | 38.0   | CP000806      |
| Actinobacteria               | Frankia sp. Ccl 3                                | -    | -    | -    | 64.1         | 60.4     | 70.1   | CP000249      |
| Alphaproteobacteria          | Bradyrhizobium japonicum USDA 6                  | 59.8 | 60.9 | -    | 55.0         | 55.6     | 63.7   | AP012206      |
| Alphaproteobacteria          | Sinorhizobium meliloti 1021                      | 60.6 | 60.4 | -    | 58.2         | 55.4     | 62.0   | NC003047      |
| Alphaproteobacteria          | Rhizobium etli CFN 42                            | 58.9 | -    | -    | 59.8         | 55.7     | 61.3   | CP000133      |
| Alphaproteobacteria          | Mesorhizobium loti MAFF 303099                   | -    | -    | -    | 60.5         | 56.1     | 62.5   | BA000012      |
| Alphaproteobacteria          | Azospirillum thiophilum ASM 130559v1             | 62.7 | -    | -    | 64.3         | 57.8     | 68.2   | CP012401      |
| Alphaproteobacteria          | Rhodobacter sphaeroides ATCC 17025               | 62.9 | 65.0 | -    | 63.8         | 56.0     | 68.5   | CP000661      |
| Betaproteobacteria           | Azoarcus sp.BH 72                                | 63.8 | 64.7 | -    | 62.6         | 55.5     | 67.9   | AM406670      |
| Betaproteobacteria           | Herbaspirillum seropedicae ASM 104094v1          | -    | -    | -    | 61.7         | 53.5     | 63.4   | CP011930      |
| Gammaproteobacteria          | Methylomonas denitrificans FJG 1                 | 55.1 | -    | -    | 49.3         | 53.3     | 51.7   | CP011476      |
| Gammaproteobacteria          | Azotobacter vinelandii DJ                        | -    | -    | -    | 59.0         | 55.8     | 65.7   | CP001157      |
| Gammaproteobacteria          | Klebsiella pneumoniae 342                        | 61.1 | -    | -    | 58.2         | 54.7     | 57.3   | CP003200      |

|                 |                          |                            |                 |             | No. of copies/g-sample        |                               |                               |  |  |
|-----------------|--------------------------|----------------------------|-----------------|-------------|-------------------------------|-------------------------------|-------------------------------|--|--|
| Sample ID       | Environment <sup>e</sup> | Collection site            | Collection year | Collector   | All bacteria                  | Geobacter                     | Anaeromyxobacter              |  |  |
| P1              | Paddy                    | Sapporo, Hokkiado pref.    | 2011            | T. Shinano  | 7.11 ± 0.73 × 10 <sup>9</sup> | 2.02 ± 0.47 × 10 <sup>8</sup> | 1.08 ± 0.18 × 10 <sup>8</sup> |  |  |
| P2              | Paddy                    | Kooriyama, Fukushima pref. | 2011            | H. Itoh     | 1.83 ± 0.22 × 10 <sup>9</sup> | $1.72 \pm 0.26 \times 10^7$   | $1.32 \pm 0.10 \times 10^{7}$ |  |  |
| P3ª             | Paddy                    | Nagaoka, Niigata pref.     | 2009            | H. Itoh     | 5.99 ± 0.98 × 10 <sup>9</sup> | 1.36 ± 0.22 × 10 <sup>8</sup> | $8.51 \pm 0.21 \times 10^7$   |  |  |
| P4 <sup>b</sup> | Paddy                    | Nagaoka, Niigata pref.     | 2009            | H. Itoh     | 3.48 ± 0.91 × 10 <sup>9</sup> | 1.15 ± 0.18 × 10 <sup>8</sup> | $2.46 \pm 0.24 \times 10^7$   |  |  |
| P5              | Paddy                    | Tsukuba, Ibaraki pref.     | 2011            | T. Hasegawa | 3.82 ± 0.32 × 10 <sup>9</sup> | $5.66 \pm 0.61 \times 10^7$   | 8.30 ± 1.00 × 10 <sup>7</sup> |  |  |
| P6              | Paddy                    | Tanashi, Tokyo pref.       | 2011            | H. Itoh     | 1.49 ± 0.20 × 10 <sup>9</sup> | $1.02 \pm 0.14 \times 10^{7}$ | 8.57 ± 0.18 × 10 <sup>6</sup> |  |  |
| P7              | Paddy                    | Nagoya, Aichi pref.        | 2011            | S. Asakawa  | 4.31 ± 0.39 × 10 <sup>9</sup> | 2.65 ± 0.15 × 10 <sup>8</sup> | $7.03 \pm 0.31 \times 10^{7}$ |  |  |
| P8              | Paddy                    | Tsu, Mie pref.             | 2011            | H. Obata    | 6.65 ± 1.03 × 10 <sup>9</sup> | $7.30 \pm 0.87 \times 10^{7}$ | $7.95 \pm 0.81 \times 10^{7}$ |  |  |
| U1              | Upland (arable)          | Sapporo, Hokkaido pref.    | 2016            | H. Itoh     | 3.01 ± 0.76 × 10 <sup>9</sup> | $1.77 \pm 0.10 \times 10^{7}$ | 4.21 ± 1.45 × 10 <sup>6</sup> |  |  |
| U2              | Upland (grass)           | Sapporo, Hokkaido pref.    | 2016            | H. Itoh     | 1.61 ± 0.11 × 10 <sup>9</sup> | 5.65 ± 0.69 × 10 <sup>6</sup> | 7.15 ± 0.29 × 10 <sup>5</sup> |  |  |
| U3              | Upland (forest)          | Sapporo, Hokkaido pref.    | 2016            | H. Itoh     | 1.16 ± 0.06 × 10 <sup>9</sup> | 2.92 ± 0.11 × 10 <sup>6</sup> | 5.36 ± 0.53 × 10 <sup>5</sup> |  |  |
| U4 <sup>c</sup> | Upland (arable)          | Nagaoka, Niigata pref.     | 2010            | H. Itoh     | 1.01 ± 0.19 × 10 <sup>9</sup> | 5.34 ± 0.99 × 10 <sup>6</sup> | 4.88 ± 0.31 × 10 <sup>6</sup> |  |  |
| U5 <sup>d</sup> | Upland (arable)          | Nagaoka, Niigata pref.     | 2009            | H. Itoh     | 1.37 ± 0.29 × 10 <sup>9</sup> | 2.47 ± 0.40 × 10 <sup>6</sup> | 3.72 ± 0.58 × 10 <sup>6</sup> |  |  |
| U6              | Upland (arable)          | Tsukuba, Ibaraki pref.     | 2011            | H. Akiyama  | $4.70 \pm 0.30 \times 10^{8}$ | 5.81 ± 0.65 × 10 <sup>5</sup> | 5.47 ± 0.15 × 10 <sup>5</sup> |  |  |
| U7              | Upland (grass)           | Bukyo-ku, Tokyo pref.      | 2016            | Y. Masuda   | 3.29 ± 0.22 × 10 <sup>9</sup> | 8.55 ± 0.42 × 10 <sup>6</sup> | 1.07 ± 0.07 × 10 <sup>6</sup> |  |  |
| U8              | Upland (arable)          | Kanonji, Kagawa pref.      | 2015            | H. Itoh     | 1.71 ± 0.36 × 10 <sup>9</sup> | $1.72 \pm 0.11 \times 10^{7}$ | $4.06 \pm 2.01 \times 10^4$   |  |  |
| RS1             | River sediment           | Joestu, Niigata pref.      | 2015            | H. Itoh     | $2.04 \pm 0.20 \times 10^{8}$ | 8.20 ± 0.35 × 10 <sup>6</sup> | 2.65 ± 0.23 × 10 <sup>6</sup> |  |  |
| RS2             | River sediment           | Shunan, Yamaguchi pref.    | 2015            | H. Itoh     | $6.85 \pm 0.46 \times 10^8$   | $1.86 \pm 0.14 \times 10^{7}$ | 2.44 ± 0.13 × 10 <sup>6</sup> |  |  |
| RS3             | River sediment           | Onga-gun, Fukuoka pref.    | 2015            | H. Itoh     | $6.23 \pm 0.26 \times 10^8$   | $2.23 \pm 0.10 \times 10^{7}$ | 3.21 ± 0.19 × 10 <sup>6</sup> |  |  |
| RS4             | River sediment           | Kanzaki, Saga pref.        | 2015            | H. Itoh     | $6.56 \pm 0.34 \times 10^8$   | $1.85 \pm 0.16 \times 10^{7}$ | 3.04 ± 0.21 × 10 <sup>6</sup> |  |  |
| RS5             | River sediment           | Kusu-gun, Oita pref.       | 2015            | H. Itoh     | $4.52 \pm 0.56 \times 10^8$   | $1.27 \pm 0.16 \times 10^7$   | $2.36 \pm 0.37 \times 10^{6}$ |  |  |
| RS6             | River sediment           | Tamana, Kumamoto pref.     | 2015            | H. Itoh     | 1.06 ± 0.05 × 10 <sup>9</sup> | $2.45 \pm 0.15 \times 10^7$   | 4.05 ± 0.29 × 10 <sup>6</sup> |  |  |

Table S3 Soli samples used in qPCR analyses.

<sup>a</sup> Collected from the same paddy field used for metatranscriptomics and metagenomics in this study.

<sup>b</sup> Two years after transformed from upland arabele field.

<sup>c</sup> One year after transformed from paddy field, P4.

<sup>d</sup> Two years after transformed from paddy field.

<sup>e</sup> All paddy soils were collected from waterlogged fields.

| Soil ID | Replicate — | No. of sequences                 |           |                      |     |     |     |     |     |     |           |
|---------|-------------|----------------------------------|-----------|----------------------|-----|-----|-----|-----|-----|-----|-----------|
|         |             | total (length <sup>a</sup> (bp)) | rRNA      | Protein coding genes | nar | nir | nor | nos | nif | nrf |           |
|         | 1           | 7,240,814 (175±35)               | 6,413,363 | 20,353               | 0   | 0   | 2   | 0   | 1   | 0   | 4675403.3 |
| S1      | 2           | 6,017,177 (173±37)               | 5,322,206 | 17,066               | 6   | 1   | 1   | 2   | 2   | 3   | 4675404.3 |
|         | 3           | 6,968,767 (176±38)               | 6,171,594 | 18,163               | 12  | 2   | 1   | 0   | 0   | 3   | 4675402.3 |
| S2      | 1           | 5,667,389 (182±37)               | 4,897,849 | 69,750               | 53  | 14  | 22  | 18  | 18  | 24  | 4678309.3 |
|         | 2           | 5,170,274 (186±37)               | 4,523,846 | 73,085               | 66  | 4   | 14  | 14  | 7   | 20  | 4678318.3 |
|         | 3           | 6,301,014 (187±36)               | 5,577,772 | 85,997               | 84  | 8   | 25  | 10  | 13  | 26  | 4678319.3 |
|         | 1           | 5,917,478 (196±35)               | 5,391,967 | 22,823               | 8   | 0   | 2   | 2   | 2   | 0   | 4675332.3 |
| S3      | 2           | 7,284,668 (200±34)               | 6,595,453 | 37,417               | 23  | 5   | 5   | 0   | 3   | 4   | 4675331.3 |
|         | 3           | 5,699,284 (191±35)               | 4,818,110 | 153,931              | 107 | 20  | 58  | 28  | 14  | 20  | 4675333.3 |
| S4      | 1           | 7,264,805 (187±33)               | 5,970,105 | 18,628               | 17  | 5   | 2   | 13  | 0   | 3   | 4669534.3 |
|         | 2           | 5,000,890 (191±34)               | 3,893,485 | 13,987               | 13  | 2   | 0   | 4   | 1   | 4   | 4669537.3 |
|         | 3           | 6,969,617 (177±33)               | 4,304,930 | 19,777               | 15  | 3   | 6   | 3   | 2   | 0   | 4669538.3 |

Table S4 Summary of metatranscriptomics in all soil samples.

ª ave.±std.

| Soil ID | Replicate — | Replicate No. of sequences       |       |                      |     |     |     |     |     |     |             |
|---------|-------------|----------------------------------|-------|----------------------|-----|-----|-----|-----|-----|-----|-------------|
|         |             | total (length <sup>a</sup> (bp)) | rRNA  | Protein coding genes | nar | nir | nor | nos | nif | nrf | - MG-RASTID |
|         | 1           | 1,956,714 (216±48)               | 3,492 | 594,728              | 435 | 70  | 125 | 52  | 81  | 59  | 4670910.3   |
| S1      | 2           | 1,752,612 (240±49)               | 2,384 | 672,120              | 582 | 78  | 208 | 75  | 96  | 92  | 4670906.3   |
|         | 3           | 1,442,786 (232±48)               | 2,242 | 493,372              | 427 | 55  | 140 | 66  | 67  | 55  | 4670911.3   |
| S2      | 1           | 1,220,590 (255±47)               | 1,313 | 514,192              | 321 | 45  | 178 | 74  | 136 | 77  | 4670909.3   |
|         | 2           | 2,016,318 (249±49)               | 2,048 | 829,603              | 457 | 14  | 293 | 123 | 234 | 148 | 4670907.3   |
|         | 3           | 371,215 (249±49)                 | 489   | 142,550              | 90  | 14  | 50  | 22  | 44  | 28  | 4670904.3   |
|         | 1           | 1,543,881 (239±49)               | 1,755 | 487,420              | 442 | 65  | 108 | 63  | 49  | 39  | 4670905.3   |
| S3      | 2           | 1,531,818 (247±46)               | 1,998 | 660,247              | 374 | 81  | 170 | 102 | 48  | 70  | 4670900.3   |
|         | 3           | 2,029,359 (237±47)               | 2,092 | 809,440              | 649 | 116 | 217 | 121 | 88  | 74  | 4670908.3   |
| S4      | 1           | 1,455,107 (248±47)               | 1,818 | 590,835              | 353 | 92  | 193 | 93  | 110 | 100 | 4670902.3   |
|         | 2           | 1,265,633 (241±47)               | 1,315 | 503,799              | 288 | 54  | 181 | 86  | 63  | 90  | 4670901.3   |
|         | 3           | 1,142,066 (244±48)               | 1,296 | 435,977              | 264 | 40  | 141 | 78  | 68  | 64  | 4670903.3   |

Table S5 Summary of metagenomics in all soil samples.

ª ave.±std.