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Supplementary Figure 1. PNP and SVP development from E9.5 to E12.5 in mouse embryos.  

(a) PNP development of the midbrain occurs from E9.5 to E12.5. Blood vessels are delineated 

by collagen type IV immunostaining (green). SVP development also occurs from E9.5 to E12.5 

through angiogenesis. On E9.5, a few sprouts are observed in the neuroepithelium. SVP 

develops significantly throughout the entire avascular area of the neuroepithelium during this 

period. (b) Midbrain cerebral vascular formation in the E10.5 mouse embryo. CD31 staining 

concurrently delineates the formation of the SVP and PNP (red). Dotted lines indicate the 

vascular front of the SVP. In the SVP at E10.5, the dorsal midline area (arrowhead) is still 

avascular. Nuclei are counterstained with Hoechst (blue). (c) Rendered Z-stack confocal image 

showing dense vascular networks (CD31, red). Reconstituted Z-surface image depicting SVP 

and PNP. 

 



Supplementary Figure 2
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Supplementary Figure 2. The phagocytes infiltrating the dorsal midline area are 

equivalent to the CD31+F4/80+ cells. 

(a) Ventricle side view of the E10.5 mouse brain. Relatively large, light-reflecting, complex 

cells are observed in the dorsal midline area. The right panel shows a high magnification image 

of the boxed area in the left panel. The localization, morphology, and number of phagocytes 

correspond to the CD31+F4/80+ cells observed in Figures 1c-f, 4a, 5a, 7a. (b) Hematoxylin and 

eosin stained parasagittal section of the E10.5 dorsal midline area. The boxed area is enlarged in 

the upper right panel and further magnified on the lower right. Arrows indicate phagocytes. (c) 

The phagocytes can be isolated under the microscope based on their distinct tissue localization 

and unique phagocyte morphology (see Figure 3a). Phagocytosed apoptotic cells are observed in 

the isolated phagocytes when they are either suspended (left) or adhered (right). p (red), 

phagocytosed apoptotic cells; n (blue), nuclei. 
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Supplementary Figure 3. CD31+F4/80+ cells express multiple macrophage surface 

markers. 

CD31+F4/80+ cells, which infiltrate the dorsal midline at E10.5, express multiple macrophage 

markers. (a) CD31+F4/80+ cells express CD206, an M2 macrophage marker. (b) CD31+F4/80+ 

cells express CD11b, a pan-marker for monocytes/macrophages. CD31 (red), F4/80 (cyan), 

CD206/CD11b (green), and nuclei (blue). 
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Supplementary Figure 4. Fractionation of phagocytes by flow cytometry using their CD31 

and F4/80 surface markers and subsequent in vitro culture. 

(a) CD31+F4/80+ cells fractionated from the E10.5 dorsal midline area by flow cytometry. The 

double positive fraction is less than 1%. (b) Cultured CD31+F4/80+ cells express the pericyte 

markers NG2 (red) and desmin (green). On 0DIV, fractionated CD31+F4/80+ cells exhibit a 

phagocytic morphology. On 1DIV, the CD31+F4/80+ cells proliferate and express desmin 

(green). On 2DIV, a couple of daughter cells migrate and express NG2 (red). Nuclei are 

counterstained with TO-PRO-3 (blue). 
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Supplementary Figure 5. E10.5 Csf1op/op mouse embryos do not display NG2+ cells at the 

dorsal midline area. 

(a) In WT littermates, NG2+ cells (green, equivalent to the CD31+F4/80+ cells) are observed in 

the dorsal midline area (dotted area) at E10.5. In contrast, no NG2+ cells are observed in the 

Csf1op/op mouse embryos. Nuclei are counterstained with Hoechst (blue). (b-d) CD31+F4/80+ 

cells may not be involved in SVP angiogenesis. There are no significant difference in SVP 

density on the lateral side (b) or dorsal side (c), or SVP branching point frequency (d) between 

the two genotypes (WT = 8; Csf1op/op = 7; 200 × 200 µm). All error bars indicate the mean ± 

s.e.m. 
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Supplementary Figure 6. E12.5 Csf1op/op embryos show no change in pericyte coverage of 

the SVP. 

(a) There is no significant difference in NG2+ pericyte coverage in the dorsal midline area on 

E12.5 between Csf1op/op mice and WT littermates. Statistical analysis further confirms no 

significant difference in the lateral (b) or dorsal (c) areas (ns, WT = 5, Csf1op/op = 5, 400 × 400 

µm). All error bars indicate the mean ± s.e.m. 

 

  



Supplementary Figure 7
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Supplementary Figure 7. Microarray data regarding angiogenesis-related genes. 

Microarray data showing the ratio of angiogenesis-related genes expressed in the dorsal midline 

area of the Csf1op/op mouse embryo as compared with the WT littermate. Some genes are 

down-regulated; however, the expression levels of angiogenesis-related genes basically appear 

of a similar level to the WT littermate. 
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b WT Rag2-/-

WT Rag2-/- WT Rag2-/- WT Rag2-/-

WT Rag2-/- WT Rag2-/- WT Rag2-/-

C
el

l n
um

be
rs

Pe
rs

en
ta

ge
s

0
2
4
6
8

10
12 *

0

6

12

18

0

2
3
4
5
6
7

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

NG2+ F4/80+ CD31+

NG2+F4/80+ NG2+CD31+ NG2+CD31+F4/80+

C
el

l n
um

be
rs

C
el

l n
um

be
rs

Pe
rs

en
ta

ge
s

Pe
rs

en
ta

ge
s

1

a

c

100 µm

Rag2

Actb

Gapdh

AGM Yolk sac

WT Rag2-/- WT Rag2-/-
C

D
31

/F
4/

80
/N

G
2



Supplementary Figure 8. Rag2–/– mice exhibit no alteration in NG2+ cell recruitment to the 

dorsal midline area. 

(a) AGM and yolk sac Rag2 mRNA expression levels are confirmed by RT-PCR. (b) 

Immunofluorescence on E10.5 Rag2–/– mouse embryos. Compared to their WT littermates, 

Rag2–/– mice showed no significant difference in NG2+ cells (green, equivalent to the 

CD31+F4/80+ cells). (c) Statistical analysis of the cells infiltrating the dorsal midline area (WT = 

4, Rag2–/– = 5, 200 × 200 µm). Cell surface marker analysis-based immunostaining shows 

essentially no difference between the 2 genotypes, with the exception of the single positive 

CD31+ cell population (*, P < 0.05). All error bars indicate the mean ± s.e.m. 
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Supplementary Figure 9. NG2+ cells are not observed in the dorsal midline of Ncx1–/– mice 

and CD31+F4/80+NG2– cells can be fractionated from yolk sac. 

(a) Although TER-119+ embryonic erythrocytes (red) are recruited to the dorsal aorta region 

(cyan) encircled by αSMA+ cells (magenta) in the WT littermates, this event is not observed in 

Ncx1–/– mouse embryos on E10.5. (b) Compared to the embryos of WT littermates, Ncx1–/– 

mouse embryos also show no TER-119+ embryonic erythrocytes (red) in the cutaneous 

microvasculature (cyan). (c) In Ncx1–/– mice, no recruitment of the NG2+ cells (equivalent to the 

CD31+F4/80+ cells) can be observed in the dorsal midline (WT = 3, Ncx1–/– = 2, 200 × 200 µm). 

(d) In contrast, yolk sac hematopoiesis, as surveyed by the major hematopoietic population, 

shows relatively increased TER-119+ erythrocyte numbers (WT = 3, Ncx1–/– = 2, 50 × 50 µm). 

(e) CD31+F4/80+NG2– cells are fractionated from yolk sacs of mCherry+ embryos by flow 

cytometry. 
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Supplementary Figure 10. Two cerebrovascular pericyte recruitment mechanisms. 

Direct recruitment to the dorsal midline (right scheme), which was demonstrated in this study 

ad initium, and locomotion along the microvessels (left scheme), which is well established in 

the vascular biology field, are suggested as two methods of pericyte recruitment. 
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Supplementary Movie 1. Single-cell-tracing time-lapse analysis of target cell 

transdifferentiation. 

The single-cell-tracing time-lapse study shows that EGFP reporter cells proliferate and 

transdifferentiate to pericytes in vitro. 
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