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ABSTRACT

Supplement Material
Text S1 Turnover rate at unattached kinetochores
We want to calculate the average time that a particle needs in order to enter a sub-volume in the reaction vessel (in our case, this
is the time it takes for an O-Mad2 particle to hit an unattached kinetochore). The radii of the nucleus and kinetochore are R and
r, respectively, and C-Mad2 diffuses with a coefficient D. Applying a spherical Taylor expansion to an average hitting time
model, and applying Neumann boundary conditions, leads to the following formula:

〈T 〉 ≈ R3

3Dr
(1)

We can use this formula to calculate how long it takes for all O-Mad2 particles to diffuse to a kinetochore. In particular, we
can calculate the average hitting time, which is the time needed for half the particles to diffuse to a kinetochore before that time.
It is the half-time of the following reaction:

O-Mad2
k3×[KinU ]−−−−−−⇀ C-Mad2 (2)

Using the relationship between the half-time and the reaction rate

k =
ln(2)
t1/2

(3)

we can estimate the maximum turnover rate of C-Mad at the kinetochores. Assuming a nucleus radius of 6µm, a kinetochore
radius of 0.1µm and the Mad2 diffusion coefficient of 16.61µm2s−1, we find a half-time of 43 s, which is consistent with
experimental findings and results in a turnover rate of 0.016s−1 at each kinetochore.

Text S2 Calculating diffusion coefficients
In addition to the reactions and their governing laws, a particle simulation also needs spatial information. It requires knowledge
of the shape and size of every protein and their relative diffusion coefficients. For the sake of simplicity, we model all proteins
as spheres with uniform densities. Given the mass, which is known from lab-experiments, and assuming a uniform spherical
particle, we can calculate the radius of the sphere using

ri = 0.066m1/3
i (4)

in which mi refers to lab-measured mass of the molecule in Da and ri is the radius of the molecule in nm. Following the
Stokes-Einstein equation we can calculate the diffusion coefficient using

Di =
kBT

6πηri
(5)



where

Di = diffusion coefficient in m2s−1

kB = Boltzmann-Constant (1.380×10−23J/K)

T = temperature in K
ri = radius of the assumed spherical-particle in m

η = viscosity of the medium in Ns/m2(0.891×10−3 in water;

6.75×10−3 in nucleus)

Text S3 Coarse-graining
Typical time-steps in particle simulations are 10−9s, which would imply 1.2×1011 time-steps to realize the full metaphase
(around 20 real-time minutes). Realistic particle numbers are around 1,000,000 per species, which leads to an infeasible large
time requirement for simulating the full system. For reference, simulating 1,751 particles for a total of 8×107 time-steps takes
around one week. For this reason, we introduce two coarse-graining techniques: (1) pseudo particles and (2) scaling of the time.
One approach to reducing the amount of particles is to enlarge their reaction-surface and decrease their number. Every particle
has a radius ri and a surface where it interacts with other particles. As particles are assumed to be spherical, this surface is
4
3 πr2

i . A number of particles can be merged to one bigger one:

Ni→ N̂i,with Ni� N̂i (6)
ri→ r̂i,with ri < r̂i (7)

where Ni is the number of particles of type i, N̂i is the reduced number and r̂i is the increased radius of pseudo-particle i.
Under the constraint that the reaction surface must be conserved, the formula for the new radius is given by

Ni4πr2
i = N̂i4π r̂2

i (8)

⇒ r̂i = ri

√
Ni

N̂i
(9)

It is also possible to reduce the time in the same manner. A process taking time T can be reduced to T̂ using a factor ft so
that

T → T̂ = ftT, with T � T̂ (10)

To ensure that all reactions reach the steady state in time T̂ (if such a state exists), every reaction rate has to be multiplied
by the factor f :

ki→ k̂i = f ki (11)

In a reaction system with relevant spatial characteristics, the time-scaling means that a given particle may no longer be able
to cover the distance d between point P = (px, py, pz) and Q = (qx,qy,qz). Thus, the diffusion coefficients for each type of
particle must also be modified. In n-dimensional space the mean-square-displacement (MSD) is an estimate for the average
distance a particle has moved and is calculated using

MSDi = 2dT Di (12)

where

d = dimension of the simulation space
T = simulated time

Di = diffusion-coefficient of particle i
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The square root of the MSD is used as the mean distance that the particle has moved from its origin

disti =
√

MSDi (13)

and this disti must also conserved through the time-scaling process:

√
2dT Di = disti =

√
2dT̂ D̂i (14)

D̂iT̂ = T Di (15)

D̂i ftT = T Di (16)

D̂i = ftDi (17)

This theoretical result is valid given the limited range of diffusion coefficients of ≈ 0.5−30µm2s−1. If the compression-
factor f exceeds 100 (which is quite a low factor) then the diffusion coefficient can no longer be adapted in this way, because
the displacements of particles in each time-step would become large and the system would become unstable.

An alternative way to make the particle move from P to Q in the scaled time T̂ is to decrease the distance between the points
by scaling the space (the reaction volume). A space of dimensions X, Y, Z can be transformed using

S = (X ,Y,Z)→ (X̂ ,Ŷ , Ẑ) = Ŝ (18)

where every individual point is transformed according to

p = (x,y,z)→ f (p) = (
x
fs
,

y
fs
,

z
fs
) (19)

This transformation represents a consistent spatial dilation of all axis by an as yet unknown factor fs. Given that dilatations
are length-conserving, the distance in the new space is scaled directly by the factor fs according to

d =
d̂
fs

(20)

One distance of interest is the MSD (described above), which gives the average displacement of a particle by diffusion. The
relation between this distance and the time-compression-factor is

MSD =
√

6DT

ˆMSD =
√

6DT̂

⇒MSD = ft ˆMSD

⇒ d2 = ft d̂2

which can be incorporated into Equation (20) to give

fs =
√

ft (21)

Those two scalings in time and space ensure that a particle which took δ seconds to move a distance η in the original
system, needs ftδ seconds to cover a distance from fsη in the scaled system.

References
1. Ibrahim, B., Diekmann, S., Schmitt, E. & Dittrich, P. In-silico modeling of the mitotic spindle assembly checkpoint. PLoS

ONE 3 (2008).

3/6



0.005

0.010

0.015

0.020

0.025

0.005 0.010 0.015 0.020 0.025 0.005 0.010 0.015 0.020 0.025

0.005

0.010

0.015

0.020

0.025

1000

1200

1400

1600

1800

3200

3700

4200

4700

5200

A B

Figure S1. Parameter study for the most crucial reaction rates, that are k3 and k8. The colorbars on the right of each panel
present the half-time of Securin degradation in seconds. The x-axis varies the rate of the labeled reaction (k3) while the y-axis
alters reaction rate k8. A: Normal mitosis, where all kinetochores attach in an average time of 20−30 minutes, corresponding
to ≈ 1500 seconds. Looking at the presented heatmap this corresponds to a value of > 0.015 for k3 and < 0.015 for k8. B:
Disturbed mitosis, where one chromosome is unable to attach. It shows that single kinetochores are able to extend metaphase
for several hours (the shown values are only half-times of Securin). The rates for a reliable arrest in mitosis coincide with the
ones in panel A. Both panels together suggest that k3 value should be around 0.015 as it was theoretically determined to be a
maximum of 0.016 (cf. Text S1) and k8 should not exceed 0.015. In other terms have both kinetochores a strong enough
influence to maintain the SAC as their reaction rates are similar.
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Figure S2. Shown is the schematic reaction volume used for the spatially-stochastic simulation. The whole nuclear space
with a radius of 6µm is modeled, but all species are hold in the green area. This space exclusion is necessary to guarantee fast
turnover from O-Mad2 to C-Mad2. All our model only take place in the green area, which can be seen as a well-mixed soup.
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Figure S3. Simulation outcome of all mutation experiments. Rows correspond to the species BubR1:Bub3, Mad2 and Cdc20,
respectively. Columns present an initial 10-fold over-expression, 40% depletion and 5% depletion, respectively. Axis and
labels of the curves coincides with the ones in figure 3 and 4. Last kinetochores attachment is after 1500 seconds. Outcome of
the classification can be found in the manuscript.
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Table S1. Kinetic Parameters of the full SAC model

Classification Parameter Value Remark
Attachment kattach 0.0035s−1 Metaphase around 20min
Activation

k2 100µM−1s−1 in-silico parameter study1

k−2 0.08s−1 in-silico parameter study1

k3 > 0.015s−1 per kinetochore; taken from Howell et.
al.2 and theoretical calculation

k−3 0.2s−1 taken from Howell et. al.2

k4 10.0µM−1s−1 in-silico parameter study3

k5 10.0µM−1s−1 in-silico parameter study4

k−5 0.02s−1 in-silico parameter study4

k6 0.001µM−1s−1 taken from Musacchio5

k−6 0.01s−1 in-silico parameter study3

k7 0.01µM−1s−1 in-silico parameter study4

k−7 0.2s−1 in-silico parameter study4

kT 1 0.01µM−1s−1 taken from DeAntoni et. al6

k−T 1 0.02s−1 taken from DeAntoni et. al6

kT 2 10µM−1s−1 taken from DeAntoni et. al6

Silencing
k1 5µM−1s−1 in-silico parameter study1

k−1 0.08s−1 in-silico parameter study1

k8 < 0.015s−1 per kinetochore; this study
k9 < 0.015s−1 per kinetochore; this study
k10 0.2s−1 in-silico parameter study4

kD 0.05s−1 taken from Dick et. al7

Table S2. Spatial Parameters of the SAC Model

Species Mass in kDa Diffusion in µm2s−1 Initial Concentration in
µM

Source Concen-
tration

O-Mad2 26.06 16.61 0.15 2, 8, 9

C-Mad2 26.06 16.61 0.01875 2, 8, 9

Cdc20 54.72 12.97 0.13 8, 9

BubR1:Bub3 242.00 7.92 0.22 8, 9

APC/C 836.5 5.23 0.09 9

Kinetochores initial amount is 92 and they do not diffuse. Other species particles start from zero. Their mass and diffusion
coefficient combine from the basic blocks.

Table S3. Kinetic Parameters of the coarse-grained SAC model

Classification Parameter Value Remark
Attachment kattach 0.0035s−1 Metaphase around 20min
SAC Activation

kM1 > 0.015s−1 per kinetochore; taken from Howell et.
al.2 and theoretical calculation

kM2 100µM−1s−1 in-silico parameter study1

k−M2 0.08s−1 in-silico parameter study1

SAC Silencing
kM3 < 0.015s−1 per kinetochore; this study
kD 0.05s−1 taken from Dick et. al7
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