

Figure S1. Eight different versions of T6SS1 site two in clinical and AHPND strains of *V*. *parahaemolyticus*. RIMD2210633 *vp1415-vp1420* are labeled in blue and corresponding genes in AHPND strains are labeled in blue when they are conserved (>90% identity) and other colors when they are not conserved . The same color indicates identical or highly conserved genes (>90% identity amino acid).

Figure S2. AHPND-causing *V. parahaemolyticus* strains exhibit similar growth rate to the RIMD2210633 clinical strain. Growth of indicated *V. parahaemolyticus* strains in LB (1% NaCl) at 23°C (**A**) or MLB (3% NaCl) at 30°C (**B**) based on OD_{600nm} absorbance measurements. Data are mean \pm SD, n=3. Data are representative of three independent experiments.

Figure S3. T6SSs of AHPND-causing *V. parahaemolyticus* strains are not active at 37°C. **A.** Viability counts of *V. cholerae* prey before (0h) and after (4h) co-culture with indicated *V. parahaemolyticus* or *V. alginolyticus* attacker strains on MLB (3% NaCl) solid media at 37°C. Data are representative of three independent experiments. **B.** Expression (Cell) and secretion (Media) of T6SS1 component VgrG1 by the indicated *V. parahaemolyticus* strains grown in MLB (3% NaCl) at 30°C and 37°C + 20 μ M phenamil were analyzed by western blot using α -VgrG1 antibody. **C.** Expression (Cell) and secretion (Media) of T6SS2 component Hcp2 by the indicated *V. parahaemolyticus* strains grown in MLB (3% NaCl) at 30°C and 37°C + 20 μ M phenamil were analyzed by western blot using α -VgrG1 antibody. **C.** Expression (Cell) and secretion (Media) of T6SS2 component Hcp2 by the indicated *V. parahaemolyticus* strains grown in MLB (3% NaCl) at 30°C and 37°C + 20 μ M phenamil were analyzed by western blot using α -Hcp2 antibody. LC: loading control.

Α

1447 (11 11 11 11 11 11 11 11 11 11 11 11 11	
PirA	
pdb 3X0T A	Vibrio parahaemolyticus M0605
WP_045384433	Vibrio campbellii
WP 013050436	Shewanella violacea
WP_042569345	Yersinia intermedia
WP_013183676	Xenorhabdus nematophila
WP_041381204	Photorhabdus luminescens
WP_036768447	Photorhabdus asymbiotica
WP_025422633	Sodalis praecaptivus
WP_053075293	Pectobacterium carotovorum
WP_071784500	Serratia fonticola
WP_071661802	Candidatus Rickettsiella isopodorum
WP_059318262	Alcaligenes faecalis
pdb 3X0T A	Vibrio parahaemolyticus M0605
WP_045384433	Vibrio campbellii
WP_013050436	Shewanella violacea
WP_042569345	Yersinia intermedia
WP_013183676	Xenorhabdus nematophila
WP_041381204	Photorhabdus luminescens
WP_036768447	Photorhabdus asymbiotica
WP_025422633	Sodalis praecaptivus
WP_053075293	Pectobacterium carotovorum
WP_071784500	Serratia fonticola
WP_071661802	Candidatus Rickettsiella isopodorum
WP 059318262	Alcaligenes faecalis

	10	DVAUDUM	IDDUGGU	D D D D D D D D D D D D D D D D D D D	DITOD	ICDOUD	TRAMO	ng n	mTON	ONGA DI	NA COM	UNKOUU
	10	DISHDWIT	EPNGGVI	VWD_KUT	PIIPE	CINVD	TANTG	RG-EL	TIQI	EVCUDI	MAGGWK	-VAKSHV
	16	DISKDWAY	A DNDCVI	MVE-KNT	DITES.	IGUNIT	UTNTC	DF-FN	ITTUT	ENADDI	FIAGGWA	-CACTT
	26	DADUDTEL	APROGIN	TULY DOM	DITER	CDDMUM	TENDO	A ANUT	TRACY	VMOUCI	E TROME	LYMOTH
	30	TNEDDATI	FDUCCUL	SVLI-RSI	DITEL	CDDNVV	VANCO	DACCU	IDAVE	VMener	-ISQWP	-FCCCTT
	20	ROOFGVK	/DDNGGOL	CKEV-TAT	DTTDE	CORNIL	VANDG	TADUT	TAKY	VMGUGI	-TOEVE	-EDNGVD
	33	VDICDITI	CDDCCVL	NED-TOT	DITER	CDDCID	VUNTC	TACCI	TAKE	VMCUCI	-TOLIF	FEGETD
	30	VTEGEMEI	FPRSSI	DATR-TDT	DITER	CRCREV	VANAG	TUPPO	TAVE	VWGHGI	-TSEWF	-ESOSID
	38	VCTSNVT	KAKGGTE	TVR-VDT	DITER	TRRSLE	TENDG	RANET	TATE	VWGHGI	E-TSKWE	-DECSLT
	27	HPRGDEVA	GARSSLE	TFR-TDT	PTTPE	TRRPLE	LYNNG	RADEL	TAKE	YWSHSI	F-TNKWF	-FEGSIT
1	36	SEVYNEGI	PPNSSKI	DVLN-ONR	GTTPG	AHKOYR	VTNIG	RK-DI	TAOT	RWGTAN	JOWM	GVMGKOT
20	31	LSGGTET	PKHGSVC	DAAK-YST	PVTPE	THKSYW	TENAG	KANKI	KAVE	YWSHS	I-TSSWF	-EYSSVE
		ODDDDDUUI	DDDUAD	HODTUUT	Duch ou	Danami						
	V-Q	PCDETIHL	DEPUNAL	HQRIVVI	NNGASI	KGFCTI	IIH					
	TDI	ARGEIVNEI	UDCMAE	NOBITAY	NUGSSI	TAFCNO	IIPS-					
	V_I	UCDERI	ICDCMCL	VCKUULT	NUTCDI	VA VUTA	ETV					
	V-I	KACEDCUL	JCDCMCL	VCKWUTY	NDTDK	DAEVTC	VNI					
	V-I	NUCECVUL	ISPGNSL	VOVUUTE	NUTRO	UNEUTU	DEN					
	V-I	CIGEDRUIN	UDNNCE	VCKEVIV	NUTDE	VALVIV	NIV					
	T - 1	ARGTDGTV	ADDSNSL	VSKTVTV	NDTDD	VALUTA	VTL					
	V-1	KRGDSGIL	APGNSE	YSKYTTE	NKTDV	TANETA	RLV					
	V-I	KKYERGVL	TPSSSF	YSKYVTH	NNTDT	TAYTSA	YTT					
1	T-1	PPGETKIVE	RNEGRAY	CTCLOLI	NETPSI	RSTVGA	SYAGW	1				
	V-C	SIGEEKKLO	DAPSNSL	YSKVVLF	NGTDO	NATVSV	TVAK-					
	100											

В

PirB	
pdb 3X0U A	Vibrio parahaemolyticus M0605
WP_045384430	Vibrio campbellii
WP_013050437	Shewanella violacea
WP_042569344 WP_038219741	Yenorhabdus nematophila
WP_011148522	Photorhabdus luminescens
WP_065823474	Photorhabdus asymbiotica
WP_025422632	Sodalis praecaptivus
WP_048258972	Pectobacterium carotovorum
WP_071661803	Candidatus Rickettsiella isopodorum
WP_059318263	Alcaligenes faecalis
pore formatic	n
pdb 3X0U A	Vibrio parahaemolyticus M0605
WP_045384430	Vibrio campbellii
WP_013050437	Snewanella Violacea
WP_038219741	Xenorhabdus nematophila
WP 011148522	Photorhabdus luminescens
WP_065823474	Photorhabdus asymbiotica
WP_025422632	Sodalis praecaptivus
WP_048258972	Pectobacterium carotovorum
WP_024551415 WP_071661803	Candidatus Bickettsiella isonodorum
WP 059318263	Alcaligenes faecalis
pore formatic	n
pdb 3X0U A	Vibrio parahaemolyticus M0605
WP_045384430	Vibrio campbellii
WP_013050437	Shewanella violacea
WP_042569344	Yenorhabdus nematorhila
WP_038219741 WP_011148522	Photorhabdus luminescens
WP 065823474	Photorhabdus asymbiotica
WP_025422632	Sodalis praecaptivus
WP_048258972	Pectobacterium carotovorum
WP_024531413	Serratia fonticola
WP_071661803	Alcaligenes faecalis
wr_033310203	Wibnic nemeboomelutions M0605
WP 045384430	Vibrio campbellii
WP 013050437	Shewanella violacea
WP_042569344	Yersinia intermedia
WP_038219741	Xenorhabdus nematophila
WP_011148522	Photorhabdus luminescens
WP_065823474	Photornabdus asympiotica Sodalis praecaptivus
WP_048258972	Pectobacterium carotovorum
WP 024531413	Serratia fonticola
WP_071661803	Candidatus Rickettsiella isopodorum 1
WP_059318263	Alcaligenes faecalis
pdb 3X0U A	Vibrio parahaemolyticus M0605
WP_045384430	Vibrio campbellii Shewapella violacea
WP_042569344	Yersinia intermedia
WP 038219741	Xenorhabdus nematophila
WP_011148522	Photorhabdus luminescens
WP_065823474	Photorhabdus asymbiotica
WP_025422632	Sodalis praecaptivus
WP_046256972 WP_024531413	Serratia fonticola
WP 071661803	Candidatus Rickettsiella isopodorum 1
WP_059318263	Alcaligenes faecalis
pdb 3X0U A	Vibrio parahaemolyticus M0605
WP_045384430	Vibrio campbellii
WP_013050437	Shewanella violacea
WP_042569344	Tersinia intermedia Yeporbabdus pematophila
WP 011148522	Photorhabdus luminescens
WP 065823474	Photorhabdus asymbiotica
WP_025422632	Sodalis praecaptivus
WP_048258972	Pectobacterium carotovorum
WP_024531413	Serratia fonticola
WP_059318263	Alcaligenes faecalis
	,

ım	 YEVUPNYAFRAMVSFGLSNIPYAGGFLSTLWNIFWPNTPNEPDIENIWEQLRDRIQDLVDESIIDAI YEVUPNYAFRAAVSSGLSNIPYAGGFLSLLWNIFWPNSPTE-DIENVWEQLRDRIQDLVDESIIDAI YEVUPNYAFRAAVSGLSNIPYAGGFLSLLWNIFWPNSPTE-DIENVWEQLRDRIQDLVDASIINAV FYMHAARVALTIGLKKIPYQSILSTUKLINPTGASGESLONLWEMERNEIGSMIDEATLHTI FDMISSAILBQAVLKGISFIPYGDYLSSIIGFFWRDQERDIWQEILGRVQQLIEDEVUKAII YEWDMSSIIRDAIIGIGFIPGPGSAISFLLGLFWRQQERDIWQEILGRVQQLVEDSIIRAV FEWDSSAILBQAVVKGLSYPHYGAISFLVGLFWRDKERDIWQEVVKGVQLVEDSILKAV ELEMVTDIVGNAIIGGISFIPTGPAISFLVGLFWPQKERDIWQEVKSVQLVEDSILKAV EQLUVGGILSSVLCKGVSFIPTVGPALSFMIGFFWPQKKENIWQQULDUDQUKTESELKVI YUVSGMLKSVLCKUSLSIPAGALSFNUGFFWPQKKENIWQQUDULVQOKIESELKVI YUVSGMLKSVLCKUSLSIPTVGPALSFMIGFFWPQKKENIWQQUDUVQCWHESSLKVI EVLFNAALKSVLIFGISKIPTVGGEGLALLDIFWPQKKENIWQCUKDULVQOKINESELKVI GDWEYSAILRSSVPFGLGQIPVVGKLSTIVGLFWPKKKENIWQCUKDELRCAKUNDIALDING
ım	NGILDSKIKETROKIQDINETIENE-GYAAAKDDYIGLVTHYLIGLEENEKRELDGDEWLGYAILPILAT NGILDSKIKETROKIQDINLTIERE-GYAAAKDDYIGLVTHYLIGLEENEKRELDGDEWLGYAILPILAT NGILDSKIKETROKIQDINLTIERE-GYAAKDDYINLISNYIGLEEQEKFESEGSEFIAYATMPLLSI KGILGDIGLIKGKASVVAALQDHEPTERASLEMSVSVHLD-SVORKETTEDHKTNYHLIPNYSA QGILNGDIGEIKGKMEHVORMLESSPEGTOESHDAYMELARIV-SIDEKFKSFDHKTNYHLIPNYSA KGILSGNINLEKEKMESYITISLEKALGTOGERADDYHLARSVY-GKESTEFIDHKTNYGILPNYSN KGILSGNINLEKEKMESVITHSEKALGTOGERADDYHLARSVY-GKESSIFIDHKTNYGILPNYSN KGILSGNINKKHKEKAVITHVORMLEFIFGSREAHDAYMSLARVI-GYEKFSFDDKTNYGILPNYST TGILSGDIAYKKHKMEAVATMMEKSFFFFTRATFNILADEFY-GFORKFNSK-EDSTNYLLPNYSI TGILSGDIAYKKHKMEAVATMMEKSFFFTFTRATFNILADEFY-GFORKFSFDDSTNYLLPNYSI TGILSGDIAYKKHKMEAVATMMEKSFFFTFTRATFNILADEFY-GFORKFSFFDDTTNYLLPNYSI LILSGDIAYMOTKAGSVAYMMENFFNSFTTKSFNILADEDJ-GFNNKFKSFDDTTNYLLPNYSI CGILNGELRELQKKMEYVARLLESFSGEPSCEGYNNLOFTIV-GENKFRFFDDTTNYLLPNYSI
ım	TVSLQIT MAGGLDYKDEFGFTDSDVHKLTRNIDKLYDDVSSYITELAAWADNDSYNNANQDNVYDE TVSLQIT MAGGLDYKDEFGFTDSDVHKLTRNIDKLYDDVSNYIQKLAAWADDDAYNNASQDNVYDE TVSLQISKLAFGLDNKANFGLDSADIDKCSRNIDEIYKDVKNYICKLAAWADDDAYNNASQDNVYDE TALMOINWHTGEFRKDDIGLNSNEVGLQRNIDLLYKUVKUSSYICKIYAKWSDBDSYSNANSENIYNE TILMOINWHTGEFRKDDIGLNSNEVGLQRNIDLLYKUVKUSSYICHIYTEYDNAWNGTATANITNN LALMOINWTVGIFRKDEIKLTDIEVNELKELIGKLSTSADKYINDYTKEYDNAWNGTATANITNN LALMOINWTVGIFRKDEIGLSDIEVENLRSYIKKLVSDAEHHVNRVYKLELDSVVSDSDVNRVADN TVMOQITMWVAGLERKKEIGLSDIEKENLRSYIKKLVSDAEHYINNIYDEELNDALNNSTADIYANN SLMLQVNWNSIGHKKSQEMGLTAREVEEMQDIIDRIVDRSSAYINNIYDEELNDALNNSTADIYANN TVMLELVWINGEEKRDGLSYIEVAKLEGYNETPTARKYIDDYDENLEDAYENSPGDDIVNN TVMLELVWINGELKKDDGLSYIEVAKLEGYNETPTARKYIDDYDENLEDAYENSPGDDIVNN TVMLKVSYITGIQKAELIGLNESQTTRLKKYLNRLHDSKGVNYYIKTUDRINATYDDAPDEIFDA
ım	VMGARSWCTVHGTHHLIWQKIKELKKVDVFVHSNLISTPAVGFPSGNFNYIATGTEDEIPQPLKPNMF VMGARSWCVHGVHHLLWEEIVNKKSADVTAHSNLISTPAVGFPSGNFNYIATGTEDEIPQPLKPNMF VMGSRAFCALMGFHIEIMSEIQSKKSLDFSIISTSVSVSVGVLTPNMTRMATAV-EVGPPLLPVMV VMYVHGYCRVHGIFYTEIIONICKNGSMTKGIYLKTLSYSTFFGBPTSQARILALKDEINMPEPFKPL LLSVRGYCLHGLGCLEVINHIQNN-SLEQSFYPKIISYSTFFGBPTSQARILALKDEINMPEPFKPL LLSVRGYCLHGLFVDIIKNIQSRGNNITGFYPRTISYSTFFGBPTSQARILALKDEINMPEPFKPL LLSVRGYCLHGLFVDIIKNIQSRGNNITGFYPRTISYSTFFGBPTSQARILALKPEKDMPEPFKPL VMSVHGHCRLHGIFYISIMPRISETESVNNRIYUVDVISYSTFFGBPTSQARILALKPEKDMPEPFKPL LLSVRGHCHHGIFYISIMPRISETESVNNRIYUVDVISYSTFFGRPTSARILALKPEKDMPEPFKPL VMSVGHCRCLHGIFYISIMPRISETESVNNRIYUVDVISYSTFFGRPTSARILALKPEKDMPEPFKPL MSVGHCRCLHGIFYISIMRKIKEAGSISKOFYUDUTISIFFGRQTPKVLKILALTDAEDMPPFRPNI VMSVGHCRCLHGIFYISIMKKIKEAGSISKOFYUDUTISYSTFFGQTPKLKILALTDAEDMPPFRPNI VMSVGHCRCLHGIFYISIMKKIKEAGSISKOFYUDUTISYSTFFGQTPKLKILALTDAEDMPPFRPNI MYTRSFTAHGIFYIPINKWVELHSLDMECYDVUSYSYKJGRQTPLAKAATAVE-MTQPLTPDL MFAVRGYSLLHGVFAVEVNIRDL-DFDKRFNINVISYSTAVGTITGGMIAQALTPDSEMAQPLCPEVF
ım	-GERRNRIVKIESWNSIEINYYNWGRIKLTYENGEVVELGKAHKYDEHYQS-IELNGAYIKYVOVIAG -NGHRNRIVKIEGWNSIEIHYYNWGRIKLTYENGEVVDLGKAHKYDEHYQS-IELNGAYIKYVVVIAG -DGHRNKIVKIEGWDSVEINSYRWGCIKTYENGEVYDMGVTYESSS-IDLNGGVIETETWGNG -NGRINQIKSYKGFI-RRIGGALWGGLEVIEFNGNKYQQGTVTGESSS-IDLNGGVIETETWGNG -NGKYNKIKSIGYU-QRIGAARWGGLETTEENGSKYQQGQATNEHEI-VNLKGNLIKTLEVWGNG -GKRKKINSIMGHI-VRIGGARWGGLETTEENGSKYQQGQATNEHEI-VNLKGNLIKTLEVWGNG -GKRKKINSIMGHI-VRIGGARWGGLETTEENGSKYQQGDISECTS-ISLDGNRITSLEVWGNG -GKRKKINSIMGHI-VRIGGARWGGLETTEENGSKYQQGTITGETS-ISLDGNRITSLEVWGNG -GNNYAQIRSLVGYI-VRIGGARWGGLKIVEDDSSHLQGTITGETS-ISLDGNRITSLEVWGNG -NGRTKIKIKHTGCI-TRIGGTARWGGLKIVEDDSSYDLGSITSETNT-FELKDSVIKSVEAWGDG NNGQRNKIKKTGYI-RRIGGSPRVGGLKIVEDDSSYDLGSITSETNT-FELKDSVIKSVEAWGDG NNGQRNKIKSTGYI-RRIGGSPRVGGLKIVEDDSSYDLGSITSETNT-FELKDSVIKSVEAWGDG
um	PEAIDRIVFHESDDRTFVVGEN-SGKPSVRLQL-EGHFICGMLADQEGSDKVAAFSVAYELFHPDE TTAVDQVAFHLSDERIFKIGED-SKREKTRLQL-EGFVAGMFADDERSDKIAAFGVSYEULHFNM TYAINYIKFITDGRTMSVGEQ-GGDYDL-LGF-DMITIAAIFVDGSSDKIACGVSYEULHFNM -AIDEAKFTLSDGRTLTVGQR-YSTNYRKFAL-EGHYISGIFIASDRSELVGQAANICVSYHQKQ -AVDEAFFTLSDGRQFRLGQR-YASNYRKYAV-DMYISGIFIASDRSELVGQAANICVSYHQKQ -AVDEAFFTLSDGRGFRLGQR-YASNYRKYAV-DMYISGIFIASDRSELVGQAANICVSYHQKQ -AIDEAKFTLSDGRSLSFGAP-GTSRYRKFYVGESHYISGIFLSDYSPLAGQAANIAVSYHLVKE- -AIDEAKFTLSDGRFSGQR-YSYNYRKFSL-DGHIGGULASDYSPLAGQAANIAVSYHLNDFA AIDEAKFTLSDGRFSGQR-YSYNYRKFSL-DGHIGGULASDYSPLAGQAANIAVSYULINDDE AIDEALFTLSDGRFSSGQR-YSYNYRKFSL-DGHIGGULASDAGLAGGAANFGVSYULINDDE AIDEALFTLSDGRFSSGQR-YSYNYRKFSSEDHIAGMFLANGKGLAGQAANFGVSYULDEDFE AIDELFFLSDGRFSSGGN-STNYWRFSSEDHIAGMFLASDAGLAGQAANFGVSYULDEDFE AIDELFFLSDGRFSSGGRYSFGQPYSHEFKL-SGHIVSFYITSDAPSLAGQAANIAVSYULDEDFE AIDEATFYSDGSULSFGGRGYPFYHEFKL-SGHIVSFYITSDAPSLAGQAANIAVSYULDENFA

Figure S4. Multiple protein sequence alignment of (**A**) PirA and (**B**) PirB and their homologues. PDB or accession number of each protein is listed before the species names. Sequence alignments were limited to sequence ranges that correspond to the PirA and PirB structural domains, noting the starting residue numbers to the left of the alignments. Residue positions are highlighted with colors according to conservation: yellow for hydrophobic (including also S, T, W and Y), gray for small, dark yellow for aromatic, or black for invariant polar. The helix pair (a4, a5) that includes a conserved hydrophobic central helix (a5) corresponding to a region critical for pore formation in the structurally related cry toxins is marked by * above the PirB alignment.