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1 Mathematical details

1.1 Allelic synchronization and mRNA co-expression dynamics

1.1.1 Two single-state alleles with upstream regulation
Consider the transcriptional dynamics of 2 alleles of the same gene in a single cell. Let M1 denote the mRNA transcript
associated with allele 1, let M2 denote the mRNA transcripts associated with allele 2, and assume that expression of both
alleles are governed by linear birth-death processes with production rates k(1)b , k(2)b and decay rates k(1)d , k(2)d . Thus, we are
concerned with the dynamics of the following system of reactions:

∅
k
(1)
b−→←−
k
(1)
d

M1 ∅
k
(2)
b−→←−
k
(2)
d

M2. (1)

The number of species M1 and M2 are given by m1 and m2 respectively. Since the alleles are not coupled together they
act independently and the stationary joint probability mass function (PMF) for this process is a prodcut of two independent
Poisson processes:

p(m1,m2) =
λm1
1

m1!
e−λ1 · λ

m2
2

m2!
e−λ2 , (2)

where λi = k
(i)
b /k

(i)
d for i ∈ {1, 2}. In order to couple the genes together we allow the transcription rates k(1)b and k(2)b to

depend upon the concentration of a shared upstream regulator, gene X . Let x denote the concentration of X and let ρ(x) be
the stationary probability density function for x. Taking birth rate as k(i)b x, the stationary joint PMF is then obtained from
Bayes’ theorem:

p(m1,m2) =

∫ ∞

0

p(m1,m2 |x)ρ(x) dx,

=

∫ ∞

0

(λ1x)m1

m1!
e−λ1x · (λ2x)m2

m2!
e−λ2xρ(x) dx. (3)

If x ∼ Gamma(r, θ) then this gives

p(m1,m2) =

∫ ∞

0

(λ1x)m1

m1!
e−λ1x · (λ2x)m2

m2!
e−λ2x · x

r−1e−
x
θ

Γ(r)θr
dx,

=
Γ(m1 +m2 + r)

m1!m2! Γ(r)
(1− p− q)rpm1qm2 . (4)

where p = λ1θ/[1+θ(λ1+λ2)] and q = apwith a = λ2/λ1. Thus, the joint PMF is a bivariate negative binomial distribution.
Note that the marginal distributions are negative binomial distributions, with probability p′ = λ1θ/(1 + λ1θ) for allele 1 and
p′′ = λ2θ/(1 + λ2θ) for allele 2. For instance, for allele 1:

p(m1) =

∫ ∞

0

p(m1|x)ρ(x) dx,

=

∫ ∞

0

(λ1x)m1

m1!
e−λ1x · x

r−1e−
x
θ

Γ(r)θr
dx,

=
Γ(m1 + r)

m1!Γ(r)
p′m1(1− p′)r. (5)

The covariance between m1 and m2,

Cov(m1,m2) = E(m1m2)− E(m1)E(m2), (6)

may be obtained from the probability generating function for p(m1,m2), which in this case is:

φ(u, v) = E[um1vm2 ] = [1 + λ1θ(1− u) + λ2θ(1− v)]−r. (7)
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In particular,

E(m1) =
∂φ

∂u

∣∣∣∣
u,v=1

=
rp

1− (p+ q)
, (8)

E(m2) =
∂φ

∂v

∣∣∣∣
u,v=1

=
arp

1− (p+ q)
, (9)

E(m1m2) =
∂2φ

∂u∂v

∣∣∣∣
u,v=1

=
ap2r(r + 1)

(1− (p+ q))2
, (10)

and therefore,

Cov(m1,m2) = E(m1m2)− E(m1)E(m2) =
arp2

(1− (p+ q))2
. (11)

This may be expressed in an alternative form as

Cov(m1,m2) = λ1λ2rθ
2 = λ1λ2Var(x). (12)

Thus, the covariance of the target genes is proportional to both the variance of the upstream regulator and the sensitivities of
the two targets to the upstream regulator. The correlation between m1 and m2 may also be similarly calculated. We obtain:

Corr(m1,m2) =

√
λ1λ2F 2(x)

(1 + λ1F (x))(1 + λ2F (x))
, (13)

where F (x) = Var(x)/E(x) is the Fano factor (also known as the index of dispersion) of the upstream regulator x. Since,

lim
F (x)→0

Corr(m1,m2) = 0 and lim
F (x)→∞

Corr(m1,m2) = 1, (14)

over-dispersion in the upstream regulator increases the correlation between downstream targets and under-dispersion reduces
the correlation between targets. If the alleles are kinetically identical (λ1 = λ2 = λ) then

Corr(m1,m2) =
λF (x)

1 + λF (x)
. (15)

and the correlation between the alleles grows hyperbolically with the dispersion of the upstream regulator.

While the form of joint PMF given in Eq.(4) depends upon the upstream regulator being Gamma distributed, Eqs.(12)-(13)
hold true for any upstream distribution ρ(x) with nonnegative support. In general the probability generating function for the
joint PMF p(m1,m2) has the form:

φ(u, v) =

∞∑

m1=0

∞∑

m2=0

p(m1,m2)um1vm2 ,

=

∞∑

m1=0

∞∑

m2=0

[∫ ∞

0

(λ1x)m1

m1!
e−λ1x · (λ2x)m2

m2!
e−λ2xρ(x) dx

]
um1vm2 ,

=

∫ ∞

0

e−x(λ1+λ2)ρ(x)

[ ∞∑

m1=0

∞∑

m2=0

(λ1ux)m1(λ2vx)m2

m1!m2!

]
dx,

=

∫ ∞

0

e−x(λ1+λ2) ρ(x) ex(λ1u+λ2v) dx,

=

∫ ∞

0

ρ(x) ex(λ1(u−1)+λ2(v−1)) dx. (16)
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Thus,

E(m1) =
∂φ

∂u

∣∣∣∣
u,v=1

=

∫ ∞

0

λ1 x ρ(x) dx = λ1E(x), (17)

E(m2) =
∂φ

∂v

∣∣∣∣
u,v=1

=

∫ ∞

0

λ2 x ρ(x) dx = λ2E(x), (18)

E(m1m2) =
∂2φ

∂u∂v

∣∣∣∣
u,v=1

=

∫ ∞

0

λ1λ2 x
2 ρ(x) dx = λ1λ2

(
Var(x) + E(x)2

)
. (19)

Therefore,
Cov(m1,m2) = E(m1m2)− E(m1)E(m2) = λ1λ2 Var(x) (20)

as before. To find the correlation of downstream targets, we also need to find Var(m1) and Var(m2). We do so by using:

E(m1(m1 − 1)) =
∂2φ

∂u2

∣∣∣∣
u,v=1

=

∫ ∞

0

λ21 x
2 ρ(x) dx = λ21

(
Var(x) + E(x)2

)
, (21)

E(m2(m2 − 1)) =
∂2φ

∂v2

∣∣∣∣
u,v=1

=

∫ ∞

0

λ22 x
2 ρ(x) dx = λ22

(
Var(x) + E(x)2

)
. (22)

Hence, as E(z(z − 1)) = Var(z)− E(z)− E(z)2 we obtain

Var(m1) = E(m1(m1 − 1)) + E(m1) + E(m1)2 = λ21 Var(x) + λ1 E(x), (23)
Var(m2) = E(m2(m2 − 1)) + E(m2) + E(m2)2 = λ22 Var(x) + λ2 E(x), (24)

thus giving

Corr(m1,m2) =
λ1λ2Var(x)√

(λ21 Var(x) + λ1 E(x))(λ22 Var(x) + λ2 E(x))
,

=

√
λ1λ2F 2(x)

(1 + λ1F (x))(1 + λ2F (x))
, (25)

as before.

If the mRNA birth process is not linearly dependent on x, but instead is determined by some arbitrary dependence f(x),
then the probability generating function for p(m1,m2) is given by

φ(u, v) =

∫ ∞

0

ρ(x) ef(x) (λ1(u−1)+λ2(v−1)) dx. (26)

In this case, E(m1), E(m2), Var(m1), Var(m2) and Cov(m1,m2) take a similar form as above, but with E(f(x)) and
Var(f(x)) replacing E(x) and Var(x) respectively. Thus,

Cov(m1,m2) = λ1λ2Var(f(x)),

and

Corr(m1,m2) =

√
λ1λ2F 2(f(x))

(1 + λ1F (f(x)))(1 + λ2F (f(x)))
. (27)

1.1.2 One two-state allele with upstream regulation
Consider the following dynamics in which gene G transitions stochastically between in 2 different states G+ and G− at
constant rates ω+ and ω−, with the rate of transcription of M depending upon the state of the gene:

G−

ω+−→←−
ω−

G+, G−
k−b−→ G− +M, G+

k+b−→ G+ +M, M
kd−→ ∅. (28)
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Without loss of generality we take k+b > k−b . Let pzm denote the conditional probability p(M = m|G = Gz) for z ∈ {+,−}.
The dynamics are described by the master equation:

∂pzm
∂t

= −kzbpzm −mkdpzm + kzbp
z
m−1 + kd(m+ 1)pzm+1 +

∑

z′ 6=z

Ωzz′p
z′

m, (29)

where the matrix

Ωzz′ =

(
−ω+ ω−
ω+ −ω−

)
(30)

is given in terms of the transition rates ω+ and ω− into the active and inactive states respectively. To solve Eq. (29) it is
convenient to reformulate in terms of the probability generating functions φz(x) =

∑
n p

z
mx

n, whence we obtain a pair of
coupled partial differential equations for φ+ and φ−:

∂φ±
∂t

= −y
(
∂

∂y
− λ±

)
φ± ± ε+φ− ∓ ε−φ+, (31)

where y = x − 1, λ± = k±b /kd, ε± = ω±/kd, and we have rescaled time with the degradation rate kd. In the limit ε± → 0
(i.e. transition rates between gene states are small with respect to the mRNA degradation rate) we may obtain an approxi-
mation to the stationary solution to Eq. (31) by considering an asymptotic expansion of the form φ± = φ0± + ε±φ

1
± + . . ..

Substituting this anzatz into Eq. (31) we obtain φ0± = exp (λ±(x− 1)), which is the probability generating function for the
Poisson distribution. Thus,

p±m =
λm±
m!

e−λ± +O(ε±). (32)

The leading order stationary distribution p(m) may then be obtained from Bayes’ theorem:

p(m) ∼
∑

z

p(z)p(m|z),

∼
∑

z

p(z)pzm,

∼ wp+m + (1− w)p−m, (33)

where w is the probability of the gene being in the positive state (and therefore 1−w is the probability that the gene is in the
negative state). By conservation of probability ∑

z′

Ωzz′πz′ = 0, (34)

which gives w = ω+/(ω− + ω+). Thus, in the limit ε± → 0 the stationary pmf for y is approximated by a Poisson mixture:

p(m) = w
λm+
m!

e−λ+ + (1− w)
λm−
m!

e−λ− +O(ε∗), (35)

where ε∗ = max ε±. If we now allow the transcription rates of m from each state to be proportional to the Gamma distributed
concentration of the upstream regulator X as before then via Bayes theorem we obtain:

p(m) ≈
∫ ∞

0

[
w

(λ+x)m

m!
e−λ+x + (1− w)

(λ−x)m

m!
e−λ−x

]
×
[
xr−1

θkΓ(r)
e−x/θ

]
dx. (36)

Integrating gives,

p(m) ∼ wΓ(m+ r)

Γ(r)m!
pm1 (1− p1)r + (1− w)

Γ(m+ r)

Γ(r)m!
pm2 (1− p2)r, (37)

where p1 = θλ+/(1 + θλ+) and p2 = θλ−/(1 + θλ−). Thus, m follows a two-component negative binomial mixture,
characterised by 4 parameters (w, r, p1, p2). This argument may be extended to a gene with n states, each with differ-
ent sensitivities to the upstream regulator. In this case the target follows an n-component negative binomial mixture, i.e.
m ∼∑n

i=1 wiNB(r, pi), with pi = θλi/(1 + θλi) and wi = ωi/
∑
i ωi.
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1.1.3 Two two-state alleles with upstream regulation
Now consider the following dynamics in which there are 2 genes, G(i) (i = 1, 2), which both transition stochastically be-
tween in 2 different states, G(i)

+ and G(i)
− , at constant rates ω(i)

+ and ω(i)
− . Let m1 denote the number of M1 mRNA transcripts

associated with gene G(1); and let m2 denote the number of M2 mRNA transcripts associated with gene G(2). Both genes
respond to an upstream regulator X with concentration x which is Gamma distributed. The dynamics are as follows:

G
(i)
−

ω
(i)
−−→←−
ω

(i)
+

G
(i)
+ , G−

k
(i)
b−x−→ G− +Mi, G

(i)
+

k
(i)
b+x−→ G

(i)
+ +Mi, Mi

k
(i)
d−→ ∅, (38)

for i = 1, 2. Assuming that ω(i)
+ , ω(i)

− � k
(i)
d the stationary marginal distributions are both approximated by two com-

ponent negative binomial mixtures, characterised by the parameters w(i), λ
(i)
+ , λ

(i)
− , r, p

(i)
1 , p

(i)
2 (exactly as before, see Eq.

(37)). Since the expression of M1 and M2 are independent conditioned on the concentration of the upstream regulator x [i.e.
p(m1,m2|x) = p(m1|x)p(m2|x)] the leading order stationary joint distribution is given by:

p(m1,m2) =

∫ ∞

0

[
w(1) (λ

(1)
+ x)m1e−λ

(1)
+ x

m1!
+ (1− w(1))

(λ
(1)
− x)m1e−λ

(1)
− x

m1!

]
(39)

×
[
w(2) (λ

(2)
+ x)m2e−λ

(2)
+ x

m2!
+ (1− w(2))

(λ
(2)
− x)m2e−λ

(2)
− x

m2!

]
ρ(x)dx.

Assuming that x ∼ Gamma(r, θ) we obtain:

p(m1,m2) ∼ w(1)w(2)BNB(r, pa, qa)

+ w(1)(1− w(2))BNB(r, pb, qb)

+ w(2)(1− w(1))BNB(r, pc, qc)

+ (1− w(1))(1− w(2))BNB(r, pd, qd), (40)

where

pa =
λ
(1)
+ θ

1+θ(λ
(1)
+ +λ

(2)
+ )

, qa = αapa, αa =
λ
(2)
+

λ
(1)
+

,

pb =
λ
(1)
+ θ

1+θ(λ
(1)
+ +λ

(2)
− )

, qb = αbpb, αb =
λ
(2)
−

λ
(1)
+

,

pc =
λ
(1)
− θ

1+θ(λ
(1)
− +λ

(2)
+ )

, qc = αcpc, αc =
λ
(2)
−

λ
(1)
−
,

pd =
λ
(1)
− θ

1+θ(λ
(1)
− +λ

(2)
− )

, qd = αdpd, αd =
λ
(2)
−

λ
(1)
−

(41)

and BNB(r, p, q) denotes the bivariate negative binomial distribution with PMF

p(m1,m2) =
Γ(m1 +m2 + r)

m1!m2! Γ(r)
(1− p− q)rpm1qm2 . (42)

Following a similar process as in section 1.1.2, it is possible to generalise this result for any upstream regulator distribution.
Eq. (39) can be rewritten as

p(m1,m2) =

∫ ∞

0

(AC +BC +AD +BD)ρ(x)dx, (43)

where

A = w(1) (λ
(1)
+ x)m1e

−λ(1)
+

x

m1!
, B = (1− w(1))

(λ
(1)
− x)m1e

−λ(1)− x

m1!
,

C = w(2) (λ
(2)
+ x)m2e

−λ(2)
+

x

m2!
, D = (1− w(2))

(λ
(2)
− x)m2e

−λ(2)− x

m2!
.

(44)
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The probability generating function can therefore be written as:

φ(u, v) =

∞∑

m1=0

∞∑

m2=0

p(m1,m2)um1vm2 ,

=

∞∑

m1=0

∞∑

m2=0

[∫ ∞

0

(AC +BC +AD +BD)ρ(x) dx

]
um1vm2 ,

=

∫ ∞

0

ρ(x)

[ ∞∑

m1=0

∞∑

m2=0

ACum1vm2

]
+

∫ ∞

0

ρ(x)

[ ∞∑

m1=0

∞∑

m2=0

BCum1vm2

]

+

∫ ∞

0

ρ(x)

[ ∞∑

m1=0

∞∑

m2=0

ADum1vm2

]
+

∫ ∞

0

ρ(x)

[ ∞∑

m1=0

∞∑

m2=0

BDum1vm2

]
,

= X + Y + Z + T (45)

Where

X =

∫ ∞

0

ρ(x)

[ ∞∑

m1=0

∞∑

m2=0

ACum1vm2

]
,

=

∫ ∞

0

w(1)w(2)ρ(x)e−x(λ
(1)
+ +λ

(2)
+ )

∞∑

m1=0

∞∑

m2=0

[
(λ

(1)
+ ux)m1(λ

(2)
+ vx)m2

m1!m2!

]
dx,

=

∫ ∞

0

w(1)w(2)ρ(x)e−x(λ
(1)
+ +λ

(2)
+ )ex(λ

(1)
+ u+λ

(2)
+ v)dx,

=

∫ ∞

0

w(1)w(2)ρ(x)exλ
(1)
+ (u−1)exλ

(2)
+ (v−1)dx. (46)

Similarly,

Y =

∫ ∞

0

(1− w(1))w(2)ρ(x)exλ
(1)
− (u−1)exλ

(2)
+ (v−1)dx, (47)

Z =

∫ ∞

0

w(1)(1− w(2))ρ(x)exλ
(1)
+ (u−1)exλ

(2)
− (v−1)dx, (48)

T =

∫ ∞

0

(1− w(1))(1− w(2))ρ(x)exλ
(1)
− (u−1)exλ

(2)
− (v−1)dx. (49)

Expected values are found from the probability generating function:

E(m1) =
∂φ

∂u

∣∣∣∣
u,v=1

=
∂X

∂u

∣∣∣∣
u,v=1

+
∂Y

∂u

∣∣∣∣
u,v=1

+
∂Z

∂u

∣∣∣∣
u,v=1

+
∂T

∂u

∣∣∣∣
u,v=1

. (50)

As

∂X

∂u

∣∣∣∣
u,v=1

= w(1)w(2)

∫ ∞

0

ρ(x)xλ
(1)
+ dx = w(1)w(2)λ

(1)
+ E(x),

∂Y

∂u

∣∣∣∣
u,v=1

= (1− w(1))w(2)

∫ ∞

0

ρ(x)xλ
(1)
− dx = (1− w(1))w(2)λ

(1)
− E(x),

∂Z

∂u

∣∣∣∣
u,v=1

= w(1)(1− w(2))

∫ ∞

0

ρ(x)xλ
(1)
+ dx = w(1)(1− w(2))λ

(1)
+ E(x),

∂T

∂u

∣∣∣∣
u,v=1

= (1− w(1))(1− w(2))

∫ ∞

0

ρ(x)xλ
(1)
− dx = (1− w(1))(1− w(2))λ

(1)
− E(x).

(51)
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This results in:
E(m1) = (w(1)λ

(1)
+ + (1− w(1))λ

(1)
− ))E(x). (52)

Similarly,
E(m2) = (w(2)λ

(2)
+ + (1− w(2))λ

(2)
− ))E(x). (53)

In order to find the covariance of the joint distribution we also need to calculate E(m1,m2):

E(m1,m2) =
∂φ

∂u, ∂v

∣∣∣∣
u,v=1

=
∂X

∂u, ∂v

∣∣∣∣
u,v=1

+
∂Y

∂u, ∂v

∣∣∣∣
u,v=1

+
∂Z

∂u, ∂v

∣∣∣∣
u,v=1

+
∂T

∂u, ∂v

∣∣∣∣
u,v=1

. (54)

Using,

∂X

∂u, ∂v

∣∣∣∣
u,v=1

= w(1)w(2)λ
(1)
+ λ

(2)
+

∫ ∞

0

x2ρ(x)dx = w(1)w(2)λ
(1)
+ λ

(2)
+ (Var(x) + E(x)2),

∂Y

∂u, ∂v

∣∣∣∣
u,v=1

= (1− w(1))w(2)λ
(1)
− λ

(2)
+

∫ ∞

0

x2ρ(x)dx = (1− w(1))w(2)λ
(1)
− λ

(2)
+ (Var(x) + E(x)2),

∂Z

∂u, ∂v

∣∣∣∣
u,v=1

= w(1)(1− w(2))λ
(1)
+ λ

(2)
−

∫ ∞

0

x2ρ(x)dx = w(1)(1− w(2))λ
(1)
+ λ

(2)
− (Var(x) + E(x)2),

∂T

∂u, ∂v

∣∣∣∣
u,v=1

= (1− w(1))(1− w(2))λ
(1)
− λ

(2)
−

∫ ∞

0

x2ρ(x)dx = (1− w(1))(1− w(2))λ
(1)
− λ

(2)
− (Var(x) + E(x)2),

(55)

it can be seen that,

E(m1,m2) = (w(1)λ
(1)
+ + (1− w(1))(w(2)λ

(2)
+ + (1− w(2))λ

(2)
− ))(Var(x) + E(x)2). (56)

In general, the covariance between the output mRNA of two bursting genes is given by:

Cov(m1,m2) = E(m1,m2)− E(m1)E(m2),

= (w(1)λ
(1)
+ + (1− w(1))(w(2)λ

(2)
+ + (1− w(2))λ

(2)
− )) Var(x). (57)

For two alleles of the same gene, we assume that the switching rates between gene states and the transcription rates from each
state are the same; λ(1)+ = λ

(2)
+ = λ+, λ(1)− = λ

(2)
− = λ− and w(1) = w(2) = w. Hence,

Cov(m1,m2) = (wλ+ + (1− w)λ−)2 Var(x). (58)

As for one-state genes, the covariance between allelic mRNA outputs of two-state genes is dependent on the variance of a
common upstream regulator. Fig. S1 demonstrates how increasing variance of an upstream regulator (shown for Gamma-
distributed regulator concentration, x), affects the joint distribution of downstream alleles for a two-state gene and increases
covariance.

1.2 Bifurcation curves for Nanog dynamics

The dynamics for all the reporter strategies that we consider can be described by the following dimensionless ordinary
differential equation (ODE) for total Nanog concentration n̄ (see main text and below),

dn̄

dτ
= α+

n̄H

γH + n̄H
− n̄. (59)

Fixed points solutions, in which dn̄/dτ = 0, satisfy the polynomial

0 = γH(α − n̄) + (α+ 1)n̄H − n̄H+1. (60)

This polynomial has either 1 or three real solutions, depending on the values of α and γ and the Hill coefficientH . When there
is only one real solution the system has one stable fixed point and the resulting Nanog is unimodal; when there are three real
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solutions, two of them are stable and the Nanog distribution is bimodal. The threshold between these regimes occurs when
there is a repeated solution, which occurs when the discriminant ∆ of Eq. (60) is zero. In the case H = 2

∆ = γ2 +

(
2α2 − 5α− 1

4

)
γ + α

(
1 + α3

)
. (61)

Thus ∆ = 0 is a quadratic for γ which has roots

γ±(α) = −
(
α2 − 5

2
α− 1

8

)
±
(

1

4
− 2α

) 3
2

, (62)

which are the bifurcation curves given in the main text. If the model parameters fall inside the region enclosed by these
curves then Nanog expression is bimodal, corresponding to the coexistence of a Nanog high and Nanog low expressing sub-
populations of cells; if the model parameters fall outside this region then Nanog expression is unimodal, corresponding to a
homogeneous population of Nanog high or Nanog low expressing cells. A similar calculation may be performed for arbitrary
H ∈ Z+.

1.3 Reporter perturbations

To understand how reporters may affect endogeneous Nanog dynamics we compared the dynamics of Nanog in various dif-
ferent reporter lines with those in wild-type ES cells. To recap from the main text, Nanog expression in wild-type cells is
described by the following ODEs:

dn1
dt

= cb +
cfn

H

KH + nH
− cdn1, (63)

dn2
dt

= cb +
cfn

H

KH + nH
− cdn2, (64)

where ni denotes the concentration of the Nanog protein output of allele i ∈ {1, 2}, n = (n1 + n2) is total Nanog
concentration. Combining these equations we obtain an ODE for the total Nanog protein concentration:

dn

dt
= 2cb + 2

cfn
H

KH + nH
− cdn (65)

Nondimensionalizing using the scalings n = 2cfc
−1
d n̄, and t = c−1d τ we obtain:

dn̄

dτ
= α+

n̄H

γHwt + n̄H
− n̄ (66)

where n̄ is the dimensionless total Nanog concentration and τ is dimensionless time. The dimensionless constants α = cb/cf
and γ = γwt = cdK/2cf measure the strength of the baseline production rate and the strength of the Nanog autoregulatory
feedback loop respectively. We now consider how Nanog dynamics given by Eq.(66) are perturbed by a variety of different
kinds of reporters. In all cases, for clarity of exposition, the reporter proteins are assumed to decay with the same kinetics as
Nanog. This assumption may be weakened without affecting our conclusions. The results of this section are also summarised
in Supporting Tables 1 & 2 which also give the relationships between reporter and Nanog concentrations at equilibrium as a
measure of the quantitative accuracy of each reporter.

1.4 Single allele reporter strategies

1.4.1 Knock-in reporters
Knock-in reporters reporters remove the Nanog protein coding region from one allele and replace it with a reporter gene under
the same promoter control. In this case, the kinetics described by Eqs. (65) are modified to

dn

dt
= cb +

cfn
H

KH + nH
− cdn, (67)

dr

dt
= cb +

cfn
H

KH + nH
− cdr, (68)
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where n denotes Nanog concentration and r denotes reporter concentration. Using the scalings n = cfc
−1
d n̄ and t = c−1d τ

the dimensionless equation for total Nanog concentration in the knock-in reporter line is:

dn̄

dτ
= α+

n̄H

γHki + n̄H
− n̄, (69)

where α is as before, but γki = 2γwt. In this case, the loss of Nanog production from one allele has the effect of diminishing
the functional Nanog production rate by a factor of two, which effectively weakens the endogenous feedback mechanisms
and thereby doubles γ. Since the magnitude of γ determines if Nanog is homogeneously or heterogeneously expressed in the
population, this change can induce a heterogeneous Nanog expression pattern in a reporter cell line that is not characteristic
of the wild-type (or vice versa). From Eqs. (67)-(68) at equilibrium r = n so it is expected that the knock-in reporter signal
will faithfully represent Nanog expression in the engineered line.

1.4.2 Pre/post (PP) reporters
Single allele pre/post reporters insert the reporter gene either directly before or after the Nanog protein coding region on one
Nanog allele. We assume that this insertion alters the Nanog production rate from the reporter allele by a factor 0 ≤ ε. The
following ODEs describe the dynamics in this case:

dn1
dt

= cb +
cfn

H

KH + nH
− cdn1, (70)

dn2
dt

= εcb + ε
cfn

H

KH + nH
,−cdn2 (71)

dr

dt
= εcb + ε

cfn
H

KH + nH
,−cdr (72)

where ni denotes the concentration of the Nanog protein output of allele i ∈ {1, 2} and r denotes the reporter concentration
(assumed without loss of generality to be produced from allele 2). Combining these equations for total Nanog n = n1 + n2
and using the scalings n = cf (1 + ε)c−1d n̄ and t = c−1d τ , the dimensionless equation for total Nanog is:

dn̄

dτ
= α+

n̄H

γHpp + n̄H
− n̄, (73)

where γpp = 2γwt/(1+ε). Thus, if the addition of the reporter gene completely halts transcription from allele 2 then ε = 0 and
γpp = γki = 2γwt; if the reporter halves the rate of transcription from allele 2, as in Fig. 2C, then ε = 1/2 and γpp = 4γwt/3; if
the reporter does not affect the rate of transcription from allele 1, then ε = 1 and γpp = γwt. For 0 < ε < 1 pre/post reporters
are less likely than knock-in reporters to induce qualitative changes in Nanog expression dynamics, yet are still subject to
similar systemic risk. Similar results are obtained for 1 < ε, see Fig. S2. From Eqs. (70)-(72) at equilibrium r = εn/(1+ε) so
it is expected that, in addition to any qualitative perturbations, the PP reporter signal will quantitatively misrepresent Nanog
expression by a factor ε/(1 + ε).

1.4.3 Multiple pre/post (MPP) reporters
If multiple (m) repeats of the reporter gene are inserted on the reporter allele then we assume that any production rates changes
due to the reporter construct are compounded and transcription rate is altered by a factor εm where 0 ≤ εm ≤ ε < 1 for a rate
decrease and 1 < ε ≤ εm for a rate increase. If m copies of the reporter transcript are produced (for non-tandem repeats) then
the dynamics become

dn1
dt

= cb +
cfn

H

KH + nH
− cdn1, (74)

dn2
dt

= εmcb + εm
cfn

H

KH + nH
− cdn2, (75)

dr

dt
= mεmcb +mεm

cfn
H

KH + nH
− cdr. (76)

Combining these equations and using the scalings n = cf (1 + εm)c−1d n̄ and t = c−1d τ , the dimensionless equation for total
Nanog is:

dn̄

dτ
= α+

n̄H

γHmpp + n̄H
− n̄, (77)



10

where γmpp = 2γwt/(1+ εm). If a single insert slows transcription by a factor 0 ≤ ε ≤ 1 and each of the m inserts is identical,
then εm = ε/(m(1 − ε) + ε) ≤ ε (with equality if and only if m = 1). Thus, although multiple reporter additions improve
fluorescent signal, the systemic risk is increased with each additional reporter insert. As m becomes large εm → 0 and this
risk approaches that of the knock-in reporters. From Eqs. (74)-(76) at equilibrium r = mεmn/(1 + εm) so it is expected that,
in addition to any qualitative perturbations, the MPP reporter signal will quantitatively misrepresent Nanog expression by a
factor mεm/(1 + εm).

1.4.4 Fusion reporters
Fusion reporters produce a modified version of Nanog, which includes a fluorescence structure as part of the Nanog protein.
For single allele fusion reporters, the fusion protein (concentration n2) is produced from one allele, and the wild-type protein
(concentration n1) is produced from the other. This has two effects on the dynamics: (1) the rate of transcription from the
reporter allele is reduced by a factor 0 ≤ ε ≤ 1 due to the additional DNA that must be transcribed, as for a PP reporter,
and (2) the function of the Nanog from the reporter allele is compromised by a factor 0 ≤ δ ≤ 1 due to the addition of a
cumbersome fluorescent protein to the native Nanog. The dynamics in this case are:

dn1
dt

= cb +
cfn

H
eff

KH + nHeff
− cdn1, (78)

dn2
dt

= εcb + ε
cfn

H
eff

KH + nHeff
− cdn2, (79)

where neff = n1 + δn2. Combining these equations and nondimensionalising using the scalings neff = cf (1 + εδ)c−1d n̄eff and
t = c−1d τ we obtain the following equation for the effective Nanog concentration:

dn̄eff

dτ
= α+

n̄Heff

γHfus + n̄Heff
− n̄eff, (80)

where γfus = 2γwt/(1 + εδ). If δ = 0 then the Nanog-reporter fusion is not functional, while for δ = 1 the Nanog-reporter
fusion functions as the native Nanog protein. For 0 < δ < 1, γfus > γpp, therefore fusion reporters are more likely than
pre/post reporters to induce qualitative changes in expression dynamics. From Eqs. (78)-(79) at equilibrium r = εn/(1 + ε)
so it is expected that, in addition to any qualitative perturbations, the fusion reporter signal will quantitatively misrepresent
Nanog expression by a factor r = ε/(1 + ε).

1.4.5 BAC reporters
Bacterial artificial chromosome (BAC) reporters introduce a piece of extra-genomic DNA into the cell that encodes the Nanog
gene under the control of the endogenous Nanog promoter and regulatory regions. Because this construct does not disturb the
kinetics of either of the wild-type alleles, it (uniquely amongst the reporters we consider) does not directly affect the endoge-
nous feedback mechanisms and is therefore the least likely reporter strategy to induce qualitative changes in Nanog dynamics.
However, because the reporter construct is physically separated from the Nanog alleles, it is expected that the reporter protein
expression is subject to extrinsic stochastic fluctuations which are independent to those of endogenous Nanog expression. For
this reason we expect that BAC reporters are more susceptible to technical errors that the other constructs we consider.

1.5 Dual allele reporter strategies

Dual allele reporters can either express the same reporter molecule from both allele (e.g. both drive transcription of GFP) or
may express different reporter molecules from different alleles (e.g. GFP from one allele, and a red fluorescent protein from
the other). The analysis of the single allele reporters above may be easily modified to account for dual reporter strategies. The
dynamics for total Nanog in dual reporter systems are given by:

dn̄

dτ
= α+

n̄H

γHdual + n̄H
− n̄, (81)

where: (1) γdual = γwt/εm in the case of dual multiple pre/post reporters that produce m copies of the same fluorescent sig-
nal from both alleles (which reduces the rate of transcription from both alleles by a factor 0 ≤ εm ≤ 1 from both alleles);
(2) γdual = 2γwt/(εm1 + εm2) in the case of dual pre/post reporters that produce different reporters from the two alleles



11

(which reduces the rate of transcription from alleles 1 and 2 by factors 0 ≤ εm1 ≤ 1 and 0 ≤ εm2 ≤ 1 respectively); (3)
γdual = γwt/εδ for dual fusion reporters that produce the same fusion protein from each allele (which reduces the rate of
transcription from both alleles by a factor 0 ≤ ε ≤ 1 from both alleles, and compromises Nanog function by a factor δ); (4)
γdual = 2γwt/(ε1δ1 + ε2δ2) for dual fusion reporters that produce different fusion proteins from each allele (which reduce
the rates of transcription by factors 0 ≤ ε1 ≤ 1 and 0 ≤ ε2 ≤ 1 from alleles 1 and 2 respectively, and compromise Nanog
function by factors δ1 and δ2 respectively). It should be noted for dual allele fusion reporters there is no wild-type protein in
the system at all which could have further unintended consequences, including off target effects. In all cases γdual is larger than
the corresponding value of γ for the single allele reporters. Thus, while more technically accurate, dual allele reporters carry
raised risk of systemic perturbations to the endogenous kinetics. In addition to any qualitative perturbations, dual reporter
systems may also quantitatively misrepresent Nanog expression in similar ways to the corresponding single allele constructs.
These perturbations are detailed in Supporting Table 2.

1.6 Decay constant mismatch

All the simplified reporters described above have identical decay rate constants for the reporter protein and Nanog. The effect
of mismatched decay rates can be seen by examining the BAC reporter, which does not perturb α or γ. Governing ODEs are
given below when Nanog and reporter molecules have decay rate constants cdn and cdr respectively:

dn

dt
= 2cb + 2

cfn
H

KH + nH
− cdnn, (82)

dr

dt
= cb +

cfn
H

KH + nH
− cdrr. (83)

Non-dimensionalisation using the scalings t = c−1dn τ , n = 2cfc
−1
dn n̄ and r = cfc

−1
dr r̄, leads to the following dimensionless

ODEs:

dn̄

dτ
= α+

n̄H

γHd + n̄H
− n̄,

cdn
cdr

dr̄

dτ
= α+

n̄H

γHd + n̄H
− r̄, (84)

where γd = γwt = cdnK/2cf . Since the qualitative nature of the dynamics depends upon solutions to dn̄/dτ = 0, decay
mismatch does not alter expression patterns qualitatively. However, the reporter concentration does depend quantitatively on
the ratio cdr/cdn. In the same way, in PP and MPP reporters, if the reporter protein(s) have decay constants that are different
to that of Nanog, then this will not change to α or γ, and so will not change the dynamics qualitatively. By contrast, in fusion
reporters if the Nanog-reporter fusion has a different decay rate to that of the wild-type Nanog then there is the potential to
cause a qualitative perturbation to the dynamics, as the value of cdn and hence γ will be altered.

2 Supporting Tables and Figures
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Figure S1

Supporting Figure 1: Reporter accuracy depends upon regulatory context: 2-state genes. Identical alleles of the same
gene produce mRNA molecules M1 and M2. Top panels: Fluctuations of upstream regulator concentration, x. Panels show
constant x (A) and x ∼ Gamma(r, θ), for low regulator dispersion θ = 0.02 (B) and high regulator dispersion θ = 0.5 (C).
Bottom panels: Joint and marginal distributions of m1 and m2 with upstream regulation given in top panel for two-state
genes: Joint distribution given by the product of two Poisson mixtures (Eqn. (35)) or by bivariate BNB mixtures (Eqn. (40)),
with w = 0.8, λ+ = 50 and λ− = 5 in all cases. w is the probability the gene is in the active state (w+/(w+ + w−))
and λ+, λ− are the effective production rates in the 2 states. Marginal distributions are Poisson mixtures and negative bi-
nomial mixtures. For all joint distributions, contours show probabilities: 0.0001 inner, 0.0003 middle, 0.0005 outer. Scatter
plots, histograms and mutual information (nats) are shown for a random sample of 1000 draws. The same scales apply to all
comparable plots.
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Supporting Figure 2: Pre/Post (PP) Reporter with increased transcription rate. The Pre/Post reporters can result in a
change of transcription rate and this can either be an decrease (as shown in Figure 2) or an increase as shown in this case.
When transcription rate increases by a factor of 2 (εm = 2), γpp is reduced compared to γwt. Hatched areas indicate at risk
regions of the parameter plane.
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Figure S3

Supporting Figure 3: Nanog and Oct3/4 immunofluorescence. A Grayscale and composite RGB images of DAPI staining,
Nanog immunofluorescence and GFP fluorescence in v6.5 and NHET cells in 0i and 2i conditions. Boxes indicate the regions
of the image shown in Figure 1 main text. Variability of Nanog fluorescence can be seen for both v6.5 and NHET cells, with
substantially greater variability in 0i conditions. B Grayscale and composite RGB images for Oct3/4 immunofluorescence
from v6.5 and NHET cells in 0i and 2i cultures. Oct3/4 is less variably expressed than Nanog. C Grayscale and composite
RGB images for Nanog and Oct3/4 antibody isotype controls for v6.5 0i cells.
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Figure S4

Supporting Figure 4: Image analysis of Nanog variability in v6.5 and NHET cells. A Examples of Nanog immunofluo-
rescence distributions for v6.5 cells and joint Nanog-GFP distributions for NHET cells in 0i and 2i conditions, assessed by
image analysis. NHET populations are split by GFP expression (high/low) and Nanog expression (highest 20% /lowest 20%).
Percentages are shown for outer subpopulations. B. Assessment of joint Nanog-GFP distributions in NHET cells during dif-
ferentiation subsequent to LIF-withdrawal starting from 0i and 2i cultures, using data assessed by image analysis. C. Mutual
information between Nanog and GFP during differentiation, using data assessed by image analysis.




