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1 Mathematical details
1.1 Allelic synchronization and mRNA co-expression dynamics

1.1.1 Two single-state alleles with upstream regulation

Consider the transcriptional dynamics of 2 alleles of the same gene in a single cell. Let M; denote the mRNA transcript
associated with allele 1, let Ms denote the mRNA transcripts associated with allele 2, and assume that expression of both
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alleles are governed by linear birth-death processes with production rates k and decay rates kfil), kfiZ). Thus, we are

concerned with the dynamics of the following system of reactions:
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The number of species M; and M, are given by my and mo respectively. Since the alleles are not coupled together they
act independently and the stationary joint probability mass function (PMF) for this process is a prodcut of two independent
Poisson processes:
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where \; = kéi) / k((;) for ¢ € {1,2}. In order to couple the genes together we allow the transcription rates klgl) and kl§2) to
depend upon the concentration of a shared upstream regulator, gene X . Let x denote the concentration of X and let p(z) be

)

the stationary probability density function for x. Taking birth rate as kl()i’ x, the stationary joint PMF is then obtained from

Bayes’ theorem:

p(mi,my) = / p(mi,ma|z)p(z)dx,
0
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If z ~ Gamma(r, §) then this gives

p(mlva) =

/oo uz)™ e~ MT . (Agz)™2 e 27, a e ? dz,
0 my! mo! L(r)or
L(my +mg+71) . my

= Tl Ty PO

qm. “
where p = A10/[14+60(A\1+A2)] and ¢ = ap with a = A2/A;. Thus, the joint PMF is a bivariate negative binomial distribution.
Note that the marginal distributions are negative binomial distributions, with probability p’ = A16/(1 + \10) for allele 1 and
" = A20/(1 4 X\26) for allele 2. For instance, for allele 1:
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The covariance between m; and ma,
Cov(ml, mg) = E(mlmg) - E(ml)E(mg), (6)
may be obtained from the probability generating function for p(m;y, ms2), which in this case is:

o(u,v) = E[u™ 0™ = [T+ MO(1 —u) + Xa0(1 —v)]7". @)



In particular,
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and therefore,
Cov(my ma) = E(mima) - E(m))E(m) = — 0 (1)
my, ma) = B{mimz my)Eimsz) = 1-—(p+q)2
This may be expressed in an alternative form as
Cov(mi,ma) = A Aor6? = A1 A Var(z). (12)

Thus, the covariance of the target genes is proportional to both the variance of the upstream regulator and the sensitivities of
the two targets to the upstream regulator. The correlation between m; and ms may also be similarly calculated. We obtain:

B M F2 ()
Corr(my, m2) = \/(1 + M F(2)(1+ X F(x)) "

where F'(z) = Var(x)/E(x) is the Fano factor (also known as the index of dispersion) of the upstream regulator z. Since,

lim Corr(my, ms) =0 and lim Corr(my, mg) =1, (14)
F(x)—0 F(x)—o0

over-dispersion in the upstream regulator increases the correlation between downstream targets and under-dispersion reduces
the correlation between targets. If the alleles are kinetically identical (\; = Ay = A) then

AF ()

1+ AF(z) (15)

Corr(ml, mg)

and the correlation between the alleles grows hyperbolically with the dispersion of the upstream regulator.

While the form of joint PMF given in Eq.(4) depends upon the upstream regulator being Gamma distributed, Eqs.(12)-(13)
hold true for any upstream distribution p(z) with nonnegative support. In general the probability generating function for the
joint PMF p(my, ms) has the form:

o(u,v) = Z Z p(mq, mo)u™v™?,
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Thus,
a oo
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Therefore,
Cov(ml, mg) = E(mlmg) - E(ml)E(mg) = )\1)\2 Var(x) (20)

as before. To find the correlation of downstream targets, we also need to find Var(m;) and Var(ms). We do so by using:
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Hence, as E(z(z — 1)) = Var(z) — E(z) — E(z)? we obtain

Var(mi) = E(my(my —1)) +E(my) +E(m;)? = A\ Var(z) + A\ E(2), 23)
Var(mz) = B(ma(ma — 1)) + E(ma) + E(ms)* = X3 Var(z) + A2 E(z), (24)
thus giving
Corr(my,ma) = A1 A2 Var(z)
7 \[()‘% Var(z) + A1 E(z))(A3 Var(z) + A2 E(z)) ’
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as before.

If the mRNA birth process is not linearly dependent on z, but instead is determined by some arbitrary dependence f(zx),
then the probability generating function for p(m;,ms) is given by

b, v) = / p() o @ Cr (u=D+2a(=1)) g 26)
0

In this case, E(mq), E(ms), Var(my), Var(msz) and Cov(m;, my) take a similar form as above, but with E(f(z)) and
Var(f(z)) replacing E(z) and Var(z) respectively. Thus,

Cov(myi, ma) = M2 Var(f(x)),

and

_ MAF2(f(x))
Corrtms,ma) = \/u M E @)+ A F (@)
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1.1.2 One two-state allele with upstream regulation
Consider the following dynamics in which gene G transitions stochastically between in 2 different states G4 and G_ at
constant rates w, and w_, with the rate of transcription of M depending upon the state of the gene:

wy
ka

= K, kfF
G_ * G_A,_, G_ — G_+ M, G+ — G++M, M = (. (28)



Without loss of generality we take k;’ > k, . Let p7, denote the conditional probability p(M = m|G = G, ) for z € {+, —}.
The dynamics are described by the master equation:

Op? ,
St = —iph, — mkapl, KD Ra(m - Dphg + D Qe 29)
2/ #z
where the matrix
Q.. = ( ey - ) (30)
W+ —W_

is given in terms of the transition rates w4 and w_ into the active and inactive states respectively. To solve Eq. (29) it is
convenient to reformulate in terms of the probability generating functions ¢.(x) = > p7 x™, whence we obtain a pair of
coupled partial differential equations for ¢ and ¢_:

0 0
% =—y (8y - )\:i:) prtero Fe_oq, G

where y = x — 1, A4 = k:bi /kaq, e+ = wy /kq, and we have rescaled time with the degradation rate k4. In the limit e — 0
(i.e. transition rates between gene states are small with respect to the mRNA degradation rate) we may obtain an approxi-
mation to the stationary solution to Eq. (31) by considering an asymptotic expansion of the form ¢+ = ¢ + el +....
Substituting this anzatz into Eq. (31) we obtain ¢, = exp (A (x — 1)), which is the probability generating function for the
Poisson distribution. Thus,

)\m
P = e 4 Oes). (32)
m!
The leading order stationary distribution p(m) may then be obtained from Bayes’ theorem:
p(m) ~ > p(2)p(ml2),
~ > p(2)ph

~wp,, + (1 —w)p,,, (33)

where w is the probability of the gene being in the positive state (and therefore 1 — w is the probability that the gene is in the
negative state). By conservation of probability

Z sz’ﬂ-z’ = 0; (34’)
which gives w = wy /(w_ + wy ). Thus, in the limit e+ — 0 the stationary pmf for y is approximated by a Poisson mixture:
(m) = wiE e he 4 (1- w)A—Te*A— +O(e") (35)

P = m! ’

where ¢* = max 1. If we now allow the transcription rates of m from each state to be proportional to the Gamma distributed
concentration of the upstream regulator X as before then via Bayes theorem we obtain:

)™y A2)™ s AR
p(m)%/o {w;ﬂe At +(1—w)=———e A } X {Qkf(r)e /9] dz. (36)
Integrating gives,
I'(m + . I'(m + X
plom) ~ s Dyt =y (1= ) S - oy, 1)

where p1 = 60X /(1 4+ 6XAy) and p2 = OA_/(1 + OA_). Thus, m follows a two-component negative binomial mixture,
characterised by 4 parameters (w,r, p1,p2). This argument may be extended to a gene with n states, each with differ-
ent sensitivities to the upstream regulator. In this case the target follows an n-component negative binomial mixture, i.e.
m o~ > w;NB(r,p;), with p; = 0X; /(1 + 6)\;) and w; = w;/ Y, wi.



1.1.3 Two two-state alleles with upstream regulation

Now consider the following dynamics in which there are 2 genes, G (i = 1,2), which both transition stochastically be-
tween in 2 different states, GS:) and G (f) , at constant rates w$) and w(f). Let m; denote the number of M/; mRNA transcripts
associated with gene G(1); and let my denote the number of M, mRNA transcripts associated with gene G(2). Both genes
respond to an upstream regulator X with concentration = which is Gamma distributed. The dynamics are as follows:

(@

“— (1> i)

(
G()jG a. "o +m, @V —>G Y M, M Mg (38)

(i) w? <« k(i) the stationary marginal distributions are both approximated by two com-

ponent negative binomial mixtures, characterised by the parameters w(*) )\ % /\( R , T, D1 ), p2 (exactly as before, see Eq.
(37)). Since the expression of M; and M, are independent conditioned on the concentratlon of the upstream regulator x [i.e.
p(mi,ma|x) = p(m1|z)p(me|x)] the leading order stationary joint distribution is given by:

for 7 = 1,2. Assuming that w}

0o )\(1)% mle—)\grl)m )\(1)58 mle—)\(j)m
p(mi,ma) = / [w“)(*), +(1- w(l))—( =) ' (39)
0 mq: mq:
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Assuming that z ~ Gamma(r, §) we obtain:
p(ma,mz) ~ ()(”BNBWPWQJ
+wM (1 - w®)BNB(r, py, )
+w® (1 —wV)BNB(r, pe, gc)
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_ _ o
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and BNB(r, p, ¢) denotes the bivariate negative binomial distribution with PMF
L'(mi+ma+7r e
P(mhmz)Zy(l—p—q) P 42)
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Following a similar process as in section 1.1.2, it is possible to generalise this result for any upstream regulator distribution.
Eq. (39) can be rewritten as

p(mi,me) = / (AC + BC + AD + BD)p(x)dx, (43)
0
where
(1) pymy gAY e @) gymy g A De
A:w<1)@>+7 B=(1-wh)* >m' 7 "
()\(2) )mze Af)”—' )\(2) )mze )\(72)30 ( )



The probability generating function can therefore be written as:
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0
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Expected values are found from the probability generating function:

0 0X )4 0z orT
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This results in:

E(my) = (wDAY + (1 — wW)AD)E(). (52)
Similarly,
E(mg) = (w®AP + (1 — w@)AP)E(2). (53)
In order to find the covariance of the joint distribution we also need to calculate E(mq, mo):
0¢ 0X )4 07z oT
E = = 54
(ma, m2) Ou, 0v|, .y  Ou,0v|, M u, 0|, N ou, 0|, * ou, 0|, o
Using,
90X (1),,@ D@ [T 2 (1),,(2) 3 (1) 4 () 2
= w Vw' ALY z7p(x)dr = w'w' W NN (Varx) + E(x)7),
ou, Ov wo=1 0
24 _ Dy, @ [ 2 _ (1)y,,(2) (1) 4 (2) 2
= (1 =w")w' Y ATAL z7p(z)dr = (1 —w')w' Y AN (Var(x) + E(x)7),
u,dv|, ,_, 0
02 (€] (2)),(Dy(2) T 2 (1) )7y (1) (2) 9
— =w'" (1 —w' )AL AT zop(x)dr = w' (1 —w )AL A (Var(x) + E(z)),
Ou,dv|, ,_, 0
or o
= (1= w®)(1 —w®@)NNWA® / 22p(z)dz = (1 — wM)(1 — w@)ADA?D (Varx) + E(z)?),
au7av w,w=1 0
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it can be seen that,
E(my, ma) = (wDAY + (1 = w) (@A + (1 — w@)A\D))(Var(z) + E(z)?). (56)
In general, the covariance between the output mRNA of two bursting genes is given by:
Cov(my,mse) = E(my,ms) — E(mq)E(m2),
— (wPAD + (1 = wD) (AP + (1 — w@)AP))) Var(z). (57)

For two alleles of the same gene, we assume that the switching rates between gene states and the transcription rates from each

state are the same; )\Srl) = )\f) =y, )\(1) = )\(2)

= )_and w® = w® = w. Hence,
Cov(my,ma) = (wAy + (1 — w)A_)? Var(z). (58)

As for one-state genes, the covariance between allelic mRNA outputs of two-state genes is dependent on the variance of a
common upstream regulator. Fig. S1 demonstrates how increasing variance of an upstream regulator (shown for Gamma-
distributed regulator concentration, x), affects the joint distribution of downstream alleles for a two-state gene and increases
covariance.

1.2 Bifurcation curves for Nanog dynamics

The dynamics for all the reporter strategies that we consider can be described by the following dimensionless ordinary
differential equation (ODE) for total Nanog concentration 7 (see main text and below),

dn nft
— = — — N 59
ar ¢ + ~H 4 pH " (59

Fixed points solutions, in which dfi/dr = 0, satisfy the polynomial
0=9"(a —n)+ (e + 1) — "L (60)

This polynomial has either 1 or three real solutions, depending on the values of o and y and the Hill coefficient H. When there
is only one real solution the system has one stable fixed point and the resulting Nanog is unimodal; when there are three real



solutions, two of them are stable and the Nanog distribution is bimodal. The threshold between these regimes occurs when
there is a repeated solution, which occurs when the discriminant A of Eq. (60) is zero. In the case H = 2

1
A:72—|—(2042—504—4)7—1-04(1-&-(13)- (61)

Thus A = 0 is a quadratic for -y which has roots

Vi(a)<a22aé)i<i2a)27 (62)

which are the bifurcation curves given in the main text. If the model parameters fall inside the region enclosed by these
curves then Nanog expression is bimodal, corresponding to the coexistence of a Nanog high and Nanog low expressing sub-
populations of cells; if the model parameters fall outside this region then Nanog expression is unimodal, corresponding to a
homogeneous population of Nanog high or Nanog low expressing cells. A similar calculation may be performed for arbitrary
HeZ".

1.3 Reporter perturbations

To understand how reporters may affect endogeneous Nanog dynamics we compared the dynamics of Nanog in various dif-
ferent reporter lines with those in wild-type ES cells. To recap from the main text, Nanog expression in wild-type cells is
described by the following ODEs:

dnq can

o @ + KH o Cani, (63)

dno can

@ + KH g~ A2 (64)
where n; denotes the concentration of the Nanog protein output of allele ¢ € {1,2}, n = (n; + ng) is total Nanog

concentration. Combining these equations we obtain an ODE for the total Nanog protein concentration:

dn can

— =2¢cp + 2

dt KH 4~ (65)

Nondimensionalizing using the scalings n = QCde_l’FL, andt = cglr we obtain:

dn aH

—=a+ e — 7 66
dr a+%€{+ﬁH " (66)

where 7 is the dimensionless total Nanog concentration and 7 is dimensionless time. The dimensionless constants o = ¢;/cy
and v = yw = cqK/2cy measure the strength of the baseline production rate and the strength of the Nanog autoregulatory
feedback loop respectively. We now consider how Nanog dynamics given by Eq.(66) are perturbed by a variety of different
kinds of reporters. In all cases, for clarity of exposition, the reporter proteins are assumed to decay with the same kinetics as
Nanog. This assumption may be weakened without affecting our conclusions. The results of this section are also summarised
in Supporting Tables 1 & 2 which also give the relationships between reporter and Nanog concentrations at equilibrium as a
measure of the quantitative accuracy of each reporter.

1.4 Single allele reporter strategies

1.4.1 Knock-in reporters

Knock-in reporters reporters remove the Nanog protein coding region from one allele and replace it with a reporter gene under
the same promoter control. In this case, the kinetics described by Egs. (65) are modified to

dn can
@ T TR ©7
d H
D= S AL, (68)

dat cb+KH+nH



where n denotes Nanog concentration and r denotes reporter concentration. Using the scalings n = ¢ fcglﬁ and t = cng

the dimensionless equation for total Nanog concentration in the knock-in reporter line is:

dn ntt

— =a+ ——— — 7, 69
dr W+ nH )
where « is as before, but yy; = 2. In this case, the loss of Nanog production from one allele has the effect of diminishing
the functional Nanog production rate by a factor of two, which effectively weakens the endogenous feedback mechanisms
and thereby doubles ~. Since the magnitude of  determines if Nanog is homogeneously or heterogeneously expressed in the
population, this change can induce a heterogeneous Nanog expression pattern in a reporter cell line that is not characteristic
of the wild-type (or vice versa). From Egs. (67)-(68) at equilibrium r = n so it is expected that the knock-in reporter signal
will faithfully represent Nanog expression in the engineered line.

1.4.2 Pre/post (PP) reporters

Single allele pre/post reporters insert the reporter gene either directly before or after the Nanog protein coding region on one
Nanog allele. We assume that this insertion alters the Nanog production rate from the reporter allele by a factor 0 < €. The
following ODEs describe the dynamics in this case:

dn cent
7dt1 = o+ 7KHf_~_ Y Cqni, (70)
dn crnt
d7t2 = €cp+ 6_[(1{]074»71]{7 —Cqna (71)
dr crnt
o = eKHfiJrnH, —cqr (72)

where n; denotes the concentration of the Nanog protein output of allele ¢ € {1,2} and r denotes the reporter concentration
(assumed without loss of generality to be produced from allele 2). Combining these equations for total Nanog n = nj + ns
and using the scalings n = ¢f(1 + e)cglﬁ andt = ccjlr, the dimensionless equation for total Nanog is:

dn nfl

E =oa+ W —n, (73)
where ypp = 2vw/(1+€). Thus, if the addition of the reporter gene completely halts transcription from allele 2 then € = 0 and
Yop = Yki = 27w if the reporter halves the rate of transcription from allele 2, as in Fig. 2C, then e = 1 /2 and Yop = 4wt /3;if
the reporter does not affect the rate of transcription from allele 1, then € = 1 and 7y, = . For 0 < € < 1 pre/post reporters
are less likely than knock-in reporters to induce qualitative changes in Nanog expression dynamics, yet are still subject to
similar systemic risk. Similar results are obtained for 1 < ¢, see Fig. S2. From Egs. (70)-(72) at equilibrium r = en/(1+¢) so
it is expected that, in addition to any qualitative perturbations, the PP reporter signal will quantitatively misrepresent Nanog
expression by a factor €/(1 + ¢€).

1.4.3 Multiple pre/post (MPP) reporters

If multiple () repeats of the reporter gene are inserted on the reporter allele then we assume that any production rates changes
due to the reporter construct are compounded and transcription rate is altered by a factor ¢,, where 0 < €, < e < 1 for arate
decrease and 1 < € < ¢, for arate increase. If m copies of the reporter transcript are produced (for non-tandem repeats) then
the dynamics become

dnq can
T Ot R can i
dna crntt

g = eme +éem KH ol Ca2, (75
d H

dltj = Memcy + memlﬂc{fi:l_mg — cqr. (76)

Combining these equations and using the scalings n = c¢(1 + em)cglﬁ and t = cng, the dimensionless equation for total
Nanog is:

dn nft

— = — — 7, 77
ar ~ “ + Yy + 0 " a7
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where Ympp = 27wt/ (1 + €, ). If a single insert slows transcription by a factor 0 < e < 1 and each of the m inserts is identical,
then €, = ¢/(m(1 — €) 4+ €) < e (with equality if and only if m = 1). Thus, although multiple reporter additions improve
fluorescent signal, the systemic risk is increased with each additional reporter insert. As m becomes large €,,, — 0 and this
risk approaches that of the knock-in reporters. From Egs. (74)-(76) at equilibrium r = me,,n/(1 + €,,) so it is expected that,
in addition to any qualitative perturbations, the MPP reporter signal will quantitatively misrepresent Nanog expression by a
factor me,, /(1 + €n,).

1.4.4 Fusion reporters

Fusion reporters produce a modified version of Nanog, which includes a fluorescence structure as part of the Nanog protein.
For single allele fusion reporters, the fusion protein (concentration ny) is produced from one allele, and the wild-type protein
(concentration n) is produced from the other. This has two effects on the dynamics: (1) the rate of transcription from the
reporter allele is reduced by a factor 0 < e < 1 due to the additional DNA that must be transcribed, as for a PP reporter,
and (2) the function of the Nanog from the reporter allele is compromised by a factor 0 < § < 1 due to the addition of a
cumbersome fluorescent protein to the native Nanog. The dynamics in this case are:

dny cynlk

7 Cb+KH+ngf Cani, (78)
dna cpnll

7 GCbJrGKH—i-nfff cana, (79)

where nes = nq + dng. Combining these equations and nondimensionalising using the scalings nef = cy (1+ eé)cglﬁeff and
t= 0517 we obtain the following equation for the effective Nanog concentration:

- —H
dnese —a+ Nefr

=a+ —M e, (80)
dr 'yqu{S + ngf ¢

where Vs = 2w/ (1 + €5). If 6 = 0 then the Nanog-reporter fusion is not functional, while for 6 = 1 the Nanog-reporter
fusion functions as the native Nanog protein. For 0 < § < 1, s > 7pp, therefore fusion reporters are more likely than
pre/post reporters to induce qualitative changes in expression dynamics. From Egs. (78)-(79) at equilibrium r = en/(1 + ¢)
so it is expected that, in addition to any qualitative perturbations, the fusion reporter signal will quantitatively misrepresent
Nanog expression by a factor r = €/(1 + ).

1.4.5 BAC reporters

Bacterial artificial chromosome (BAC) reporters introduce a piece of extra-genomic DNA into the cell that encodes the Nanog
gene under the control of the endogenous Nanog promoter and regulatory regions. Because this construct does not disturb the
kinetics of either of the wild-type alleles, it (uniquely amongst the reporters we consider) does not directly affect the endoge-
nous feedback mechanisms and is therefore the least likely reporter strategy to induce qualitative changes in Nanog dynamics.
However, because the reporter construct is physically separated from the Nanog alleles, it is expected that the reporter protein
expression is subject to extrinsic stochastic fluctuations which are independent to those of endogenous Nanog expression. For
this reason we expect that BAC reporters are more susceptible to fechnical errors that the other constructs we consider.

1.5 Dual allele reporter strategies

Dual allele reporters can either express the same reporter molecule from both allele (e.g. both drive transcription of GFP) or
may express different reporter molecules from different alleles (e.g. GFP from one allele, and a red fluorescent protein from
the other). The analysis of the single allele reporters above may be easily modified to account for dual reporter strategies. The
dynamics for total Nanog in dual reporter systems are given by:

dn nfl

— =0+ ——-F — 7, 81
dr ’ycfl{al +nt 81)

where: (1) Ygual = Ywt/€m in the case of dual multiple pre/post reporters that produce m copies of the same fluorescent sig-
nal from both alleles (which reduces the rate of transcription from both alleles by a factor 0 < ¢, < 1 from both alleles);
(2) Yaual = 27wt/ (€m1 + €m2) in the case of dual pre/post reporters that produce different reporters from the two alleles
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(which reduces the rate of transcription from alleles 1 and 2 by factors 0 < ¢,,; < 1 and 0 < €,,2 < 1 respectively); (3)
Yaual = Ywt/€6 for dual fusion reporters that produce the same fusion protein from each allele (which reduces the rate of
transcription from both alleles by a factor 0 < € < 1 from both alleles, and compromises Nanog function by a factor 9); (4)
Yaval = 27wt/ (€101 + €202) for dual fusion reporters that produce different fusion proteins from each allele (which reduce
the rates of transcription by factors 0 < ¢; < 1 and 0 < €5 < 1 from alleles 1 and 2 respectively, and compromise Nanog
function by factors §; and - respectively). It should be noted for dual allele fusion reporters there is no wild-type protein in
the system at all which could have further unintended consequences, including off target effects. In all cases 74y, is larger than
the corresponding value of ~y for the single allele reporters. Thus, while more technically accurate, dual allele reporters carry
raised risk of systemic perturbations to the endogenous kinetics. In addition to any qualitative perturbations, dual reporter
systems may also quantitatively misrepresent Nanog expression in similar ways to the corresponding single allele constructs.
These perturbations are detailed in Supporting Table 2.

1.6 Decay constant mismatch

All the simplified reporters described above have identical decay rate constants for the reporter protein and Nanog. The effect
of mismatched decay rates can be seen by examining the BAC reporter, which does not perturb « or . Governing ODEs are
given below when Nanog and reporter molecules have decay rate constants ¢4, and cg, respectively:

dn crnt

=20+ 27KHf+ 7 — Can, (82)
dr can

at T K g T ®3)

Non-dimensionalisation using the scalings t = ¢, '7, n = 2cyc, ' and 7 = cyc; ! T, leads to the following dimensionless
ODEs:

dn N 't _

—_— = —_—

dr v+t
Cdn dr ﬁH _

—=a+ —————F — T, 84
car dT - v+ (84)

where 74 = Yw = cand{/2c;. Since the qualitative nature of the dynamics depends upon solutions to dn/dr = 0, decay
mismatch does not alter expression patterns qualitatively. However, the reporter concentration does depend quantitatively on
the ratio cg;-/cqr,. In the same way, in PP and MPP reporters, if the reporter protein(s) have decay constants that are different
to that of Nanog, then this will not change to « or 7, and so will not change the dynamics qualitatively. By contrast, in fusion
reporters if the Nanog-reporter fusion has a different decay rate to that of the wild-type Nanog then there is the potential to
cause a qualitative perturbation to the dynamics, as the value of ¢4, and hence + will be altered.

2 Supporting Tables and Figures
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Figure S1
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Supporting Figure 1: Reporter accuracy depends upon regulatory context: 2-state genes. Identical alleles of the same
gene produce mRNA molecules M; and M,. Top panels: Fluctuations of upstream regulator concentration, . Panels show
constant x (A) and x ~ Gamma(r, #), for low regulator dispersion §# = 0.02 (B) and high regulator dispersion § = 0.5 (C).
Bottom panels: Joint and marginal distributions of m; and mo with upstream regulation given in top panel for two-state
genes: Joint distribution given by the product of two Poisson mixtures (Eqn. (35)) or by bivariate BNB mixtures (Eqn. (40)),
with w = 0.8, \; = 50 and A\_ = 5 in all cases. w is the probability the gene is in the active state (w4 /(w4 + w_))
and Ay, A_ are the effective production rates in the 2 states. Marginal distributions are Poisson mixtures and negative bi-
nomial mixtures. For all joint distributions, contours show probabilities: 0.0001 inner, 0.0003 middle, 0.0005 outer. Scatter
plots, histograms and mutual information (nats) are shown for a random sample of 1000 draws. The same scales apply to all

comparable plots.

Figure S2
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Supporting Figure 2: Pre/Post (PP) Reporter with increased transcription rate. The Pre/Post reporters can result in a
change of transcription rate and this can either be an decrease (as shown in Figure 2) or an increase as shown in this case.
When transcription rate increases by a factor of 2 (¢, = 2), ¥pp is reduced compared to vy,. Hatched areas indicate at risk
regions of the parameter plane.
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Figure S3
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Supporting Figure 3: Nanog and Oct3/4 immunofluorescence. A Grayscale and composite RGB images of DAPI staining,
Nanog immunofluorescence and GFP fluorescence in v6.5 and NHET cells in 0i and 2i conditions. Boxes indicate the regions
of the image shown in Figure 1 main text. Variability of Nanog fluorescence can be seen for both v6.5 and NHET cells, with
substantially greater variability in Oi conditions. B Grayscale and composite RGB images for Oct3/4 immunofluorescence
from v6.5 and NHET cells in 0i and 2i cultures. Oct3/4 is less variably expressed than Nanog. C Grayscale and composite

RGB images for Nanog and Oct3/4 antibody isotype controls for v6.5 0i cells.
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Figure S4
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Supporting Figure 4: Image analysis of Nanog variability in v6.5 and NHET cells. A Examples of Nanog immunofluo-
rescence distributions for v6.5 cells and joint Nanog-GFP distributions for NHET cells in 0i and 2i conditions, assessed by
image analysis. NHET populations are split by GFP expression (high/low) and Nanog expression (highest 20% /lowest 20%).
Percentages are shown for outer subpopulations. B. Assessment of joint Nanog-GFP distributions in NHET cells during dif-
ferentiation subsequent to LIF-withdrawal starting from 0i and 2i cultures, using data assessed by image analysis. C. Mutual
information between Nanog and GFP during differentiation, using data assessed by image analysis.





