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ABSTRACT Although electron cryo-microscopy (cryo-EM) has recently achieved resolutions of better than 3 Å, at which point
molecular modeling can be done directly from the density map, analysis and annotation of a cryo-EM density map still primarily
rely on fitting atomic or homology models to the density map. In this article, we present, to our knowledge, a new method for
flexible fitting of known or modeled protein structures into cryo-EM density maps. Unlike existing methods that are guided by
local density gradients, our method is guided by correspondences between the a-helices in the density map and model, and
does not require an initial rigid-body fitting step. Compared with current methods on both simulated and experimental density
maps, our method not only achieves greater accuracy for proteins with large deformations but also runs as fast or faster
than many of the other flexible fitting routines.

INTRODUCTION
In recent years, electron cryo-microscopy (cryo-EM) has
established itself as a mainstream technique to capture the
structure of large macromolecular assemblies at near-native
conditions (1). Although the number of density maps depos-
ited in the Electron Microscopy Data Bank (EMDB) has
grown rapidly (2), the vast majority of cryo-EM data re-
mains at resolutions worse than 5 Å. At such resolutions,
direct model building is impossible. Analysis of these
nonatomic resolution density maps often relies on the avail-
ability of known or related protein structures solved by other
techniques (3).

Fitting of atomic models into density maps is perhaps the
most widely used method to study the structure and func-
tional mechanisms in macromolecular assemblies captured
by cryo-EM. Early attempts focused on searching for the
optimal position and orientation of a target structure that
best overlaps with the cryo-EM density map (4–8). When
fitting multiple rigid-body components or domains into one
density map, the search space for conformation becomes
larger and different optimization methods were introduced
(9–12). Although important for understanding the structure
and function of macromolecular complexes, rigid-body
fitting is insufficient to capture conformational changes
between atomic-resolution models and target density maps
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captured by cryo-EM (13). To overcome this limitation,
various flexible-fitting methods have been introduced.

The first class of flexible fitting methods generates
various conformations of proteins by numerically solving
the dynamic system using molecular force fields. Different
biasing forces are integrated to enforce the fitting (14–21).
Another class of methods is based on normal mode analysis.
These methods consider the macromolecular system as an
elastic network or harmonic spring-mass system around
the conformation equilibrium (22), where the spring con-
stants can be represented by chemical interactions (23).
The conformational change can either be computed by
importance sampling (24) or guided by the atoms’ potential
collective motion directions, which are represented by
low frequency modes of the dynamic system and can be
computed analytically (25–28). Recently, improved fitting
results have been reported by combining different flexible
fitting methods (29,30).

Existing flexible fitting methods primarily rely on the
density gradient around an initial positioning of the model
in the map to drive the fitting process. As such, these
methods require a good initial rigid-body fitting of the
model to the map. A poor initial fit, where the local density
gradients are not informative enough to pull the model to-
ward the goal position, will not only result in prolonged
fitting time but also may produce poor final fits due to the
rugged energy landscape. Obtaining a good initial fitting
is particularly challenging, if not impossible, for proteins
that exhibit large conformational changes.
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In this article, we present, to our knowledge, a novel flex-
ible-fitting method for cryo-EM maps at intermediate resolu-
tions (4–10 Å). Our key idea is to guide the fitting by the
correspondence between the a-helices in the cryo-EM map
and those in the model. In contrast to local gradient density,
helix correspondence offers a long-range guidance that allows
ourmethod to avoid the need for an initial fitting step, improve
fitting accuracy when large conformational changes are pre-
sent, and achieve significantly shorter fitting times than most
existing methods. Although secondary structure elements
(SSEs) in models have been previously incorporated as extra
constraints to maintain local geometry (stereochemistry) and
accelerate fitting (24,31–34), matching of SSEs with those
in a cryo-EM map has not been exploited in flexible fitting.

Our method builds upon robust methods for detecting
a-helices from cryo-EM maps at intermediate resolutions
(35) and for matching them with those in a template struc-
ture (36). We incorporate the helix guidance within a
quadratic energy function, adapted from the computer ani-
mation community (37), which penalizes nonaffine distor-
tion of the protein backbone. Unlike typical nonconvex
energy functions used in current fitting methods, our energy
function can be efficiently optimized by solving a system
of linear equations. In testing our methods on both simu-
lated and experimental cryo-EM density maps, our method
achieves comparable accuracy to existing methods (typi-
cally <3 Å root mean-squared deviation (RMSD) from
ground-truth structures) but runs in seconds, instead of mi-
nutes or hours, on a commodity CPU. Moreover, our method
produces better fitted results than mainstream flexible fitting
methods such as Flex-EM (20) and MDFF (19) when there
is a significant difference between the template structure and
the density map. Perhaps most importantly, our method does
not require any initial rigid-body fitting.
FIGURE 1 Overview of our method for fitting Adenylate kinase. The

atomic model (PDB: 4AKE, chain A) is fitted to a simulated density map

(generated from PDB: 1AKE, chain A). Our inputs are marked in green

dashed boxes, including the atomic model (a), the density map with de-

tected a-helices (b), the correspondence between the model helices and
MATERIALS AND METHODS

Our flexible fitting method takes as input an atomic structure (called the

‘‘model’’) and a cryo-EM density map (called the ‘‘map’’). To prepare for

fitting, we first detect a-helices in the map (Fig. 1 b), match them to those in

the model, and create the density skeleton of the map (Fig. 1 c), all using ex-

isting methods. Unlike existing flexible fitting methods, no initial rigid-body

fitting or registration of the model to the map is required. Our fitting method

proceeds in two stages, first fitting the C-a backbone and, second, recovering

the locations of individual atoms. Our primary novelty, to our knowledge, lies

in the first stage,which utilizes the helix correspondences aswell as the density

skeleton. This process is illustrated in Fig. 1. In the following, we first describe

the preparation for fitting, followed by details on the two-stage fitting process.
map helices (shown by coloring in (a) and (b)), and the density skeleton

of the map (c). Our method consists of two stages. Stage 1 deforms the

C-a backbone, which proceeds by first fitting the backbone to the map he-

lices (d) and then to the density skeleton (e). Stage 2 recovers the full-atom

structure (f), which is the output, marked in the purple dashed box. To see

this figure in color, go online.
Preparing for fitting

Avariety of methods can detect a-helices in a cryo-EM density map. Here,

we use the software SSEHunter (35), which detects both a-helices and

b-sheets using a combination of density skeletonization, local geometry cal-

culations, and a template-based search. With SSEHunter, the detection of

a-helices was shown to be highly accurate at intermediate resolutions. The

method produces helices represented as three-dimensional cylinders (see
2480 Biophysical Journal 112, 2479–2493, June 20, 2017



Flexible Fitting by Helix Correspondence
Fig. 1 b). A by-product of themethod is a density skeleton, computed using a

thinning algorithm (38), which captures tubular and platelike density re-

gions, respectively, by curves and surfaces (see Fig. 1 c). Our fitting method

utilizes both the detected helices and the density skeleton as guidance.

Another key input to our method is the correspondence between the de-

tected a-helices in the map and those predicted in the model. Corresponding

helices should have similar lengths, close-by helices in the model should

match to close-by helices in the map, and the matching should correspond

to a deformation of the model that is as rigid as possible. These goals can

be formulated either as a clique-finding problem (39) or a graph-matching

problem (36). We use the recent graph-matching method (36), which is

both more efficient and accurate. An example result is shown in Fig. 1, a

and b, where corresponding helices share the same color. We used an imple-

mentation of the matching algorithm in the graphical molecular modeling

software, Gorgon (40). The Gorgon implementation additionally allows

the user to interactively correct any errors made by the automated algorithm.

Due to possible errors in helix detection or prediction, the correspondences

may only exist for a subset of the detected or predicted helices. However, a

complete correspondence is not required for our fittingmethod; performance

of our method with an incomplete helical match will be analyzed later.
Stage 1: C-a fitting

Our goal in this stage is to deform the model such that its helices are aligned

with their corresponding helices in the map and that the rest of the model

stays close to the density skeleton. This is achieved in two steps. Because

only helix correspondences are known, we first deform the model to fit

the helices (see Fig. 1 d). This initial fitting would bring the rest of the

model close to the density skeleton, which guides in the refinement of fitting

in the second step (see Fig. 1 e).

Both steps are formulated as a least-square minimization problem whose

objective function has the following form:

E ¼ wfitEfit þ wshapeEshape: (1)

Here, wfit and wshape are balancing weights. Efit measures the fitting error of

the backbone to the target, the latter being either the corresponding helices

(in step 1) or the combination of corresponding helices and density skeleton

(in step 2). In both steps, Efit is expressed as the sum of squared Euclidean

distances between the fitted locations of a subset of C-a atoms, known as

‘‘handles’’, to their target locations. Eshape measures the distortion of the

protein geometry. To reduce computational cost, we adopt a simplified

distortion measure that calculates the amount of nonaffine deformation in

the backbone. Following Sorkine et al. (37), we express Eshape as the change

in the Laplacian vector, which is the vector from each C-a atom to the

centroid of its neighboring C-a atoms (given some definition of the neigh-

borhood), between the initial model and the fitted model. We adopt the

least-square technique in Sorkine et al. (37) to calculate vector difference

in a rotation-independent manner (see Supporting Material). The objective

function E is a quadratic function of the C-a atom locations, which can be

minimized efficiently by solving a system of linear equations.

In the following, we detail the definition of C-a handles and their target

locations (for constructing Efit) as well as the definition of the C-a neighbor-

hood (for constructing Eshape) in each of the two steps.
Stage 1, step 1: helix-guided fitting

In this step, the fitting term (Efit) measures the deviation of the deformed

model helices from their corresponding helices in the map. We consider

any C-a atom in a model helix as a handle, if the helix has a corresponding

helix in the map. Note that our input correspondences are of the helices, and

we still need to find the target location of individual C-a handles. A naı̈ve

solution would be to compute a rigid-body transformation from a model he-

lix to its corresponding map helix. However, due to the extra degree of
freedom (rotation around the axis of the helix), solving for such a transfor-

mation is an ill-posed problem. To regularize the problem, we instead seek a

transformation that optimally (in the least-square sense) aligns each model

helix and its nearby helices to their corresponding map helices.

Specifically, suppose the model has k a-helices. For the ith model helix,

we first determine its two end locations, {pi,qi}. This is done by projecting

the first and last C-a atoms of the helix onto the principle eigenvector of the

covariance matrix of all C-a atoms of the helix. Let {p0 i,q0i} be correspond-
ing end points of the helix detected in the map. We seek a rigid-body trans-

formation matrix, Mi, that minimizes the following alignment error:Xk

j¼ 1
wij

�
kp0j �Mi pj k 2

2
þ kq0j �Mi qj k 2

2

�
; (2)

where wij is a Gaussian that falls off with increasing distance from the ith

helix, as follows:

wij ¼ exp

 
� kci � cj k 2

2
þ kc0i � c0j k 2

2

2s2

!
; (3)

and where ci,ci
0 values are, respectively, the midpoint location of the ith

model helix and its corresponding map helix. We use s ¼ 0.1 �
min(sbbd,tbbd), where sbbd and tbbd are the bounding box diagonals of

source helices and target helices, respectively. The transformation Mi that

minimizes Eq. 2 can be found using the method of singular value decompo-

sition (41). For each C-a atom in the ith helix, say v, its target location is

then computed as Miv. Fig. 2, b and c, shows an example of C-a handles

and their target locations.

To construct the shape term (Efit), the key is to identify C-a atoms that are

in the neighborhood of a given C-a atom. The shape of this neighborhood is

captured by the Laplacian vector and will be protected against nonlinear

distortion. Our goal is to protect the protein backbone geometry and the sec-

ondary structures (particularly the b-sheets). To do so, we create a C-a

graph whose nodes are C-a atoms and each edge connects either two

consecutive C-a atoms on the backbone or two hydrogen-bonded C-a

atoms in a b-sheet (see Fig. 2 b).

A natural way to define the neighborhood of each C-a atom v would be

the set of C-a atoms connected to v by an edge in the aforementioned C-a

graph. We call this set the one-ring neighbors of v. The same definition is

used in computer animation for deforming surface meshes (37). However,

in contrast to the edge graph of a typical surface mesh (where each vertex

on average has six outgoing edges), the one-ring neighborhood in a C-a

graph is much smaller. E.g., a C-a atom along a loop segment only has

two atoms in its two-ring neighborhood, whereas a C-a atom on a b-strand

has only three neighboring atoms. Penalizing changes in the Laplacian vec-

tor of such small neighborhoods may not be enough to protect the shape of

the protein, particularly in the loop and sheet regions.

To better protect the protein shape, we expand the neighborhood by

including those C-a atoms that are connected to v via a chain of no more

than r edges in the graph. We call this set the r-ring neighbors. The value

of r controls the flexibility of deformation: increasing the value r leads to

larger neighborhood sizes captured by the Laplacian vector, which in turn

leads to deformations that appear more globally affine. Empirically, we

found that setting r ¼ 10 yields low-distortion deformations without overly

limiting the flexibility of fitting.

We use the setting wfit ¼ 1 and wshape ¼ 1 for this step. Because the two

terms, fitting and shape, are not measured on the same scale, this setting in

fact puts more emphasis on fitting. We show the effect of different weight

settings on the fitting results in the Supporting Material.
Stage 1, step 2: helix- and skeleton-guided fitting

After the first step of helix-guided fitting, the model is usually deformed to

lie in the vicinity of the target density. In the second step, we refine the
Biophysical Journal 112, 2479–2493, June 20, 2017 2481



FIGURE 2 Illustration of helix-guided fitting of C-a backbone. Shown are Adenylate kinase (PDB: 4AKE, chain A) (a), its C-a graph (b) where the handle

C-a atoms are colored according to their corresponding helices, the target locations of the handles in the density map generated from Adenylate kinase (PDB:

1AKE, chain A) (c), and the deformed C-a graph (d). Note that the C-a graph contains edges that connect hydrogen-bonded C-a atoms in a b-sheet. To see

this figure in color, go online.

Dou et al.
fitting by pulling the model toward the local maxima of density (i.e., the

density skeleton) while preserving the protein geometry.

We modify the fitting term (Efit) in step 1 by adding a second set of han-

dles that comprise all those C-a atoms that are not considered as handles in

step 1. To pull the model toward the density skeleton, the key task is to iden-

tify the target locations of these new handles on the skeleton. A naı̈ve choice

would be the Euclidean closest points. However, such a choice can be sub-

optimal when the C-a atom is far from the skeleton. To make a better

choice, we apply the classical iterative closest point method (42), which al-

ternates between deforming the backbone and updating the target locations

as closest points. We start by finding the nearest point on the skeleton, say p,

to the current location of each C-a atom, say v. Assigning p as the target

location of v, we then compute the deformation by solving Eq. 1. This pro-

cess is iterated until a convergence criteria is met. In our implementation,

we stop the iterations when the RMSD between the models generated in

two successive iterations is below a certain threshold (we use 0.1 Å).

When searching for the nearest point for a C-a atom in a loop (respectively,

b-strand) segment, preference is given to points on the curve (respectively,

surface) region of the skeleton. To improve accuracy, we only consider

those C-a atoms whose nearest skeleton point is <10 Å away.

We use the same shape terms (Eshape) as in step 1. To avoid overfitting to

the skeleton geometry, we use wfit ¼ 1 and wshape ¼ 1.
Stage 2: recovering atom positions

To recover all atom locations, we transform each residue on the model as a

single rigid group based on the deformation of the C-a atoms. The transfor-

mation is computed as one that best aligns the C-a atoms of the current and

neighboring residues on the backbone to their deformed locations. Specif-

ically, let vi,vi
0, be the original and deformed locations of the C-a atom of

the ith residue in the primary sequence. We seek the rigid-body transforma-

tion, Ai, for the ith residue that minimizes the error, as follows:Xiþf

j¼ i�f
kv0j � Ai vj k 2

2
; (4)

where f is a user-specified constant that controls the rigid-body neighbor-

hood range for each residue. We use f ¼ 3 to balance the stability and
the flexibility of the transformation. The minimizing Ai value can be solved

using the method of singular value decomposition (41).
RESULTS

Our method was implemented as a plugin to Gorgon (http://
gorgon.wustl.edu), an open-source protein and molecular
modeling/visualization suite. With this plugin, we evaluated
2482 Biophysical Journal 112, 2479–2493, June 20, 2017
the accuracy and efficiency of our proposed method using
data sets with both simulated and experimentally deter-
mined density maps.

Unlike most flexible fitting methods, our method does not
need an initial rigid-body fitting as the starting model. How-
ever, for evaluation purposes, we do a rigid-body fitting of
the source model into the target density map using the helix
correspondences. This rigid-body fit serves only as a base-
line for comparison and is not used in our flexible fitting
method. Specifically, we formulate the rigid-body transfor-
mation as the one that optimally aligns the model helices
to their corresponding helices in the density map. It is found
by minimizing a quadratic error function similar to that in
Eq. 2, except wij ¼ 1 for any i,j.
Simulated density maps

We selected six pairs of proteins from the PDB, which have
been used to evaluate other protein fitting methods (43,44).
The selected protein pairs have identical or nearly identical
amino acid sequences (98.86–100% similarity) but exhibit a
wide variety of collective conformational changes. The he-
lix content ranges between 40 and 60% in these proteins.
For each pair, a density map was simulated from one of
the proteins (the target model) at the resolution of 9 Å using
EMAN2 (45). We then fit the other protein (the source
model) to the simulated map. The information of the data
set is summarized in Table 1.

We examined the fitting accuracy by calculating the
RMSD between the target models and the source models
fitted by rigid-body fitting, flexible fitting with only helix
guidance (Stage 1, Step 1), and flexible fitting using both he-
lix and skeleton guidance (Stage 1, Step 2) (see Table 2). In
the following results and tables, the RMSD is computed
only between matching residues in the source and target
models (residue ranges are shown in Table 1). For all protein
pairs, our method achieved a C-a atoms RMSD of 2.8 Å or
less, which is comparable to previously reported results
(15,26,46). Furthermore, even though we use helices as

http://gorgon.wustl.edu
http://gorgon.wustl.edu
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Flexible Fitting by Helix Correspondence
the primary guidance of fitting, we still achieve comparable
fitting quality for nonhelical components such as strands
and loops (see breaking-down of the RMSD into secondary
structure elements in Table 2), thanks to the use of den-
sity skeletons. All-atom RMSD are reported in the Support-
ing Material (see Table S2). Also shown in Table 2 are
the cross-correlation scores, calculated using the software
UCSF Chimera (34), comparing the density maps simulated
from the fitted source models against the density maps
simulated from the target models. Our flexible fitting
method significantly improves the correlation over rigid-
body fitting.

The helix-and-skeleton-guided fitting (Stage 1, Step 2)
offers variable improvement over helix-guided fitting
(Stage 1, Step 1). Some structures, such as Adenylate kinase
(Fig. 1) and GroEL (Fig. 3), exhibit notable improvement
in fitting accuracy, particularly in the loops and b-sheets.
Others exhibit marginal improvement or slight degradation
in accuracy. We attribute such variability to the variability
in the density skeletons, such as how well the skeleton
curves approximate the protein backbone and how well
the skeleton surfaces characterize the b-sheets.

We have also observed that fitting accuracy is not strongly
affected by map resolution. Table S4 reports the errors (in
C-a atoms RMSD) of fitting Adenylate kinase 4 (AKE) to
maps simulated from 1 AKE at resolutions ranging from 9
to 3 Å. The errors exhibit a low variation (by <0.1 Å) in
the intermediate resolution range of 9–5 Å and only in-
creases slightly (by <0.5 Å) at resolution 3 Å. The increase
is mainly attributed to the errors in nonhelical residues,
which are due to the unique morphology of density skele-
tons at near-atomic resolutions (e.g., skeleton curves may
represent side chains instead of the backbone, and b-sheets
become clearly visible strands that are no longer represented
by the skeleton surfaces). We recognize the fact that simu-
lated density maps do not contain the same information as
experimentally derived maps at corresponding resolutions.
However, simulated data does provide a systematic mecha-
nism for assessment of our method as resolution decreases
without compounding variables when trying to compare
experimental maps derived from different software, imag-
ing, and biochemical preparations. However, this general
trend in accuracy versus resolution is also seen in the subse-
quently tested experimental maps (Tables 4, 5, 6, and 7).

We next examined the structural quality of fitted models
using two benchmarks: Ramachandran score and clash
score. Table 3 shows the percentage of Ramachandran out-
liers in the source, fitted source, and target models, as well
as their clash scores. Ramachandran plots of these examples
can be found in Fig. S3. Our flexible fitting method main-
tains the local geometry of the protein well, which indicates
the effectiveness of our Laplacian-based shape distortion
penalty term (Eshape in Eq. 1). However, fitting increases
the amount of clashes. We found that further refinement of
our fitted structures using real-space refinement tools, such
Biophysical Journal 112, 2479–2493, June 20, 2017 2483



TABLE 2 Accuracy of Fitting Source Models to Simulated Density Maps Generated at 9 Å Resolution from the Target Models

Data Set

RMSD (Å)

Cross-Correlation Score

Rigida

Fitting

Helix-Guidedb

Fitting

Helix-and-Skeleton-Guided Fittingg

Allc

Residues

Identifiedd

Helix Residues

Strandse

Residues

Loopf

Residues

Rigid

Fitting

Helix-and-

Skeleton-

Guided Fitting

Densityh

Level

Densityi

Level Range

Adenylate kinase 11.317 5.503 2.865 2.651 2.572 3.546 0.7675 0.9176 0.0643 0–0.958

Triacylglycerol

acylhydrolase

12.239 2.491 1.943 1.827 1.714 2.203 0.8582 0.9488 0.0706 0–0.582

Maltodextrin

binding protein

3.845 1.293 1.721 1.243 2.513 1.865 0.9361 0.9727 0.0746 0–0.521

Aspartate

aminotransferase

7.435 2.247 1.082 0.934 0.723 1.379 0.8579 0.9756 0.0681 0–0.535

GroEL 15.983 3.041 2.488 2.531 2.336 2.487 0.7286 0.9646 0.0618 0–0.517

Lactoferrin 6.739 1.732 1.625 1.202 1.560 2.041 0.9114 0.968 0.0771 0–0.538

aThe metrics include RMSD of all the residues between the target model and the fitted source model using rigid-body fitting.
bHelix-guided fitting.
cHelix-and-skeleton-guided fitting.
dRMSD of identified helix residues.
eStrand residues.
fLoop residues between the target model and the fitted source model using helix-and-skeleton-guided fitting.
gCross-correlation score of the rigid fitted and the helix-and-skeleton guided fitted models.
hColumn represents the density threshold in the software Chimera we use to evaluate the cross-correlation score.
iColumn represents the density level range of the simulated density map. The residue used to compute the C-a atoms RMSDs are listed in Table 1.

Dou et al.
as Phenix (47), greatly reduces the amount of clashes.
Refinement is fast to run (7–15 min in our experiments)
due to the proximity of the fitted model to the density.
For Phenix, we used default parameters with ‘‘simulated an-
nealing (Cartesian)’’ and ‘‘simulated annealing (Torsion an-
gles)’’ enabled. Each refinement runs for 3–10 cycles.

In terms of running time, our method finished in<10 s for
each protein pair. A detailed breakdown of the timing is
included in Table S1. The timing is dominated by stage 1
(C-a fitting), which in turn is dominated by step 2 (helix-
and-skeleton-guided fitting) due to repeated solving of
the deformation and closest-point queries. All experiments
were performed on a single core on a PC with a 3.60 GHz
FIGURE 3 An example where fitting guided by both helix correspondences an

Shown here is the source model (GroEL, PDB: 1OEL chain A), (b) target simula

helices (cylinders colored by correspondences with helices in the source model) a

(d) result of helix-guided flexible fitting, and (e) result of helix-and-skeleton-

the target model is shown in cyan. The closeups examine a few regions where co

go online.
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CPU (Intel Core i7-4960X; Intel, Santa Clara, CA) and 16
GBmemory. We used the linear solver in Eigen (48) to solve
the Laplacian-based deformation.
Experimental cryo-EM density maps

We tested our method on six experimentally determined
cryo-EM density maps obtained from the EMDB whose res-
olutions range from 4 to 8 Å. These maps are selected to
have different amounts of conformational changes between
the source and the target. Each map also comes with
a source model (to be fitted) and a target model (for evalu-
ation purpose), both of which are from original coordinates
d density skeletons improves accuracy using only helix correspondences. (a)

ted density map (60 KDA chaperonin, PDB: 2C7C, chain A) with detected

nd skeletons (red curves and yellow surfaces), (c) result of rigid-body fitting,

guided flexible fitting. The fitted source models are shown in yellow and

nsidering skeletons offers notable improvements. To see this figure in color,



TABLE 3 The Ramachandran Outliers and Clash Score of the Source Models, the Clash Score Is the Lower the Better

Data Set

Ramachandran Outliers Clash Score

Sourcea

Model (%)

Helix-and-Skeletonb-Guided

Fitted Model (%)

Targetc

Model (%)

Source

Model (%)

Helix-and-Skeleton-

Guided Fitted Model

Target

Model

Refinedd

Fitted Model

Adenylate kinase 1.40 2.80 0.00 16.16 324.23 4.94 72.73

Triacylglycerol acylhydrolase 0.00 0.00 1.10 15.35 264.43 35.51 53

Maltodextrin binding protein 0.50 0.50 0.80 10.72 153.57 18.68 36.6

Aspartate aminotransferase 0.30 0.50 0.30 6.31 91.26 25.81 28.8

GroEL 0.40 1.30 0.80 15.62 149.42 0 66

Lactoferrin 1.90 3.20 2.00 23.24 191.94 28.35 40.5

aThe final fitted (helix-and-skeleton guided fitting) models.
bTarget models.
cColumn.
dShows the clash scores of Phenix-refined models.

Flexible Fitting by Helix Correspondence
deposited in RCSB/PDB. Typically, the target model for
each cryo-EM density map is the ‘‘Fitted atomic model’’
reported in EMDB. The information about these data,
including the range of matching residues and percentage
of helix contents, is summarized in Table 4. The results of
rigid-body fitting and our flexible fitting method for each
map are shown in Fig. 4.

We first examined the fitting accuracy using RMSD and
cross-correlation scores (Table 5). For cross correlation,
we compared the density maps simulated from the fitted
models against the map simulated from the target model,
both at the same resolution as the target cryo-EM maps.
To compare the models, we also report the spatial resolu-
TABLE 4 Summary of the Data Set in which the Density Maps Are

Dataa

Set ID Protein Nameb

Source Model

PDB IDc Residue IDd
Lengthe

(aa)

Helix

Residues

Percentag

7 Ribosome

maturation

protein SBDS

5AN9 [J] 1–250 250 0.468

8 Magnesium

transport

protein CorA

3JCF [E] 19–349 331 0.575

9 26s protease

regulatory subunit

6b homolog

3JCO [K] 48–418 371 0.481

10 Chaperonin 3IZH [C] 1031–1538 513 0.549

11 60 kDa chaperonin 2C7C [M] 3–524 524 0.604

12 DNA polymerase III

subunit a

5FKV [A] 1–926,

943–1160

1160 0.58

aThe data we use in each test.
bProtein name.
cProtein PDB ID and chain ID.
dThe amino acid residues we use to evaluate RMSDs.
eThe number of amino acid residues in the sequence.
fThe percentage of helix residues.
gProtein EMDB ID.
hThe resolution of the target cryo-EM map.
iThe atomic structure (deposited in PDB) of the target density map reported in

map’s target model are all 100%.
tion using the 0.5 Fourier shell correlation (FSC) criteria
(49) between these simulated density maps of the models
(Fig. S7). All-atom RMSDs are also reported in Table
S3. For the majority of the maps, our flexible fitting
achieves <2.8 Å RMSD error, >0.9 cross-correlation
score, and comparable resolution-of-agreement to the
target map resolution, despite the presence of large protein
deformations (e.g., GroEL and DNA polymerase). We attri-
bute the larger error of the ribosome maturation protein
SBDS to a combination of factors, including a low percent-
age of helix residues (lowest among all data sets), an
exceptionally large deformation, and unique skeleton fea-
tures in a near-atomic resolution map as mentioned earlier.
Deposited in the EMDB

Target Cryo-EM Map

f

e

EMDB

Idg
Maph

Resolution

Target Modeli

PDB ID Residue ID

Length

(aa)

Helix

Residues

Percentage

3146 4.1 5ANB [J] 1–250 250 0.5

6552 7.1 3JCG [A] 19–349 331 0.5

6575 4.6 3JCP [K] 48–418 371 0.5

5645 4.6 3J3X [I] 11–518 510 0.6

1180 7.7 2C7C [A] 3–524 524 0.6

3201 8.3 5FKU [A] 1–926,

943–1160

1160 0.5

EMDB. The sequence identity between the source model and the cryo-EM
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FIGURE 4 The target model (cyan), the source

model fitted by rigid-body fitting (yellow), and

our flexible fitting method (purple) in each of

our test suites with observed density maps. The

represented data are: (a) ribosome maturation pro-

tein SBDS (source PDB: 5AN9 chain J, target

EMDB: 3146); (b) magnesium transport protein

CorA (source PDB: 3JCF chain E, target EMDB:

6552); (c) 26s protease regulatory subunit 6b

homolog (source PDB: 3JCO chain K, target

EMDB: 6575); (d) chaperonin (source PDB:

3IZH chain C, target EMDB: 5645); (e) 60 KDA

chaperonin (source PDB: 2C7C chain M, target

EMDB: 1180); and (f) DNA polymerase iii subunit

a (source PDB: 5FKV chain A, target EMDB:

3201). To see this figure in color, go online.

Dou et al.
The overall higher RMSD compared to our earlier exper-
iments with simulated density maps is largely due to the
increased noise and ambiguity in the observed cryo-EM
density map, which results in less reliable density skeletons.
Coordinate data filtered to make low-resolution maps may
be significantly better (e.g., having cleaner density skele-
tons) than a comparable resolution experimentally produced
dataset. This is evident in the slightly worse RMSD of non-
helical components, whose fitting is guided primarily by the
density skeletons (as opposed to the helices, which are
guided by the correspondences).

We next examined the structural quality of our fitted
models in terms of their Ramachandran outliers and clash
2486 Biophysical Journal 112, 2479–2493, June 20, 2017
scores (Table 6). As in the data sets with simulated density
maps, we see a low level of Ramachandran outliers but
elevated clash scores, the latter of which can be significantly
reduced after further refinement in Phenix. The Ramachan-
dran plots can be found in Fig. S4.

We compared our method with Flex-EM (20) and
MDFF (19), two commonly used and freely available
flexible fitting tools. For both packages, we use the
default parameters or those specified in the packages’
documentation. One complete iteration (1 CG run and
20 MD iterations in Flex-EM) were performed for
each package. For detailed settings of both methods,
please refer to Supporting Material; parameters for the



TABLE 5 Result of Fitting the Source Models to the Experimental Target Density Cryo-EM Maps by Different Methods

Data Set

RMSD (Å)

Cross-Correlation Score FSC Agreed Resolution (Å)

Rigida

Fitting

Flex-EMb

Fitting

MDFFc

Fitting

Helix-and-Skeleton-Guided Fittingh

Alld

Residues

Identifiede

Helix

Residues

Strandsf

Residues

Loopg

Residues

Rigid

Fitting

Flex-EM

Fitting

MDFF

Fitting

Helix-and-

skeleton-

guided

Fitting

Densityi

Level

Densityj

Level Range

Rigid

Fitting

Flex-EM

Fitting

MDFF

Fitting

Helix-and-

skeleton-

guided

Fitting

Ribosome maturation

protein SBDS

19 16 15 4.782 2.100 6.840 5.837 0.6 0.7 0.75 0.8 0.6 0–1.29 35 26.1 24 18.7

Magnesium transport

protein CorA

4.5 2.73 2 2.741 2.596 1.970 3.453 0.9 0.9 0.97 0.91 0.19 0–0.588 16 8.3 7 7.8

26s protease

regulatory subunit

6b homolog

5.6 2.17 2 2.019 1.160 2.560 2.593 0.8 0.9 0.95 0.91 0.47 0–1.08 20 7.5 7 6.8

Chaperonin 5.1 1.53 1 1.696 1.430 1.314 1.932 0.8 0.9 0.95 0.94 0.62 0–1.07 18 6.6 6 6.8

60 kDa chaperonin 14 12.1 12 2.261 1.795 2.491 3.190 0.9 1 0.91 0.98 0.39 0–0.568 15 7.2 14 5.7

DNA polymerase III

subunit a

12 13.8 13 2.757 2.480 2.109 3.310 0.9 1 0.95 0.98 0.41 0–0.547 7.4 7.5 7 6.5

aThe reported metrics are RMSD of all the residues between the final fitted result against the target model for rigid fitting.
bFlex-EM fitting.
cMDFF fitting.
dHelix-and-skeleton-guided fitting.
eRMSD of identified helix residues.
fStrand residues.
gLoop residues between the target model the fitted source model using helix-and-skeleton-guided fitting.
hCross-correlation score of the target model and the fitted models of different methods; the resolution to which the fitted models and target models agree based on the 0.5 FSC criteria.
iRepresents the density threshold in the software Chimera we use to evaluate the cross-correlation score.
jColumn represents the density level range of the target models’ simulated density map. The residue IDs used to compute the C-a atoms RMSDs are listed in Table 4.
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MDFF and Flex-EM fits can also be found in the Support-
ing Material.

We observed that the fits using our method are compara-
ble to those obtained from Flex-EM and MDFF when
the protein undergoes small conformational changes, but
significantly better for the datasets in which the protein
makes large nonrigid conformational changes (e.g., ribo-
some maturation protein SBDS, 60 KDA chaperonin, and
DNA polymerase). This is evident in all three measures
(RMSD, cross-correlation scores, and FSC) reported in
Table 5. In terms of model quality, the resulting models
from all three methods (after real space refinement in our
approach) are comparable as reflected by both the Rama-
chandran outliers and clash scores in Table 6.

A closer look at ribosome maturation protein SBDS
in Fig. 5 (and in a zoomed-in view in Fig. S5) illustrates
a deformation in which fitting the initial model (PDB:
5AN9) to the target density map (EMDB: 3146) involves
a large twist between the upper and lower domains. Whereas
both Flex-EM and MDFF are trapped in a local minima not
so far from the initial rigid-body fit, due to the lack of suf-
ficient guidance from local density gradients, our method
achieves a much more satisfactory global fit. It should be
noted, however, that in some examples where such large
conformational changes are present, iterative refinement
strategies that involve progressive low-pass filtering of the
density map have shown some level of success in capturing
these conformational changes.

Besides the ability to handle large deformations, another
significant advantage of our method is efficiency. As shown
in Table 7, our method is faster than both Flex-EM and
MDFF by at least two orders of magnitude on a single
core of a modern desktop workstation. Even the largest
and most complex case in our test suite (1160 residues)
required <33 s. Additionally, we tested the GPU-acceler-
ated version of MDFF (50) on the data sets 7–12 using a
LINUX workstation equipped with a dedicated GPU board.
Overall, we observed a 2–10 times speedup compared to
CPU-only MDFF. We can see our method is still �10–50
times faster than GPU-accelerated MDFF. Note that both
Flex-EM and MDFF require an initial rigid-body fitting
stage, whose time is not included here. Our method has no
such requirement.

Our method is primarily guided by the matching between
detected helices in the density map and those found in the
template structure. Several factors could affect the robust-
ness of both the detection and matching of helices, including
density resolution and the length and linearity of helices in
the map. To evaluate the dependence of our method on the
quality of the helix matching, we randomly drop helix cor-
respondences in the input and calculate the RMSD of fitting
as the number of dropped correspondences increases. This
is done for each of the six experimental density maps. As
shown in Fig. 6, the fitting quality degrades gracefully as he-
lix matching worsens. In most of the examples, the fitting



FIGURE 5 Here we compare the result of fitting the source model (ribosome maturation protein SBDS, PDB: 5AN9 chain J) to the density map (ribosome

maturation protein SBDS, EMDB: 3146) by Flex-EM (red) (a), MDFF (green) (b), and our method (purple) (c). The target model (ribosome maturation

protein SBDS, PDB: 5ANB chain J) is colored cyan. (d) Shown here is the overlap of the fitted source model by Flex-EM, MDFF, and our method. A

zoomed-in view can be found in Fig. S5. To see this figure in color, go online.

Flexible Fitting by Helix Correspondence
accuracy remains high even when as much as 30% of helix
correspondences are missing. We attribute this stability to
the use of density skeletons as the additional guidance in
our fitting.
Fitting a protein complex

As a further test of our method on large protein complexes,
we examined flexible fitting on the complete transmembrane
domain of an integral membrane protein, TRPV1. We
selected chain D of the transient receptor potential cation
channel subfamily V member 1 protein (PDB: 3J5Q),
trimmed it to the transmembrane-only region (residues
383–719), and used it as the sourcemodel to fit it into the den-
sity map of capsaicin receptor (EMDB: 5778). Because the
helix-matching algorithm we adopted only supports one-to-
one matching, we computed the correspondence between
the helices in the source model and the helices detected
from the map that belong to each of the four chains. Taking
these correspondences as input, we fit the source model
into the entire density map four times, each time generating
one chain of the final fitted protein complex. A visualization
of the fitted complex is shown in Fig. 7.

The fitting process took only 10 s to generate the entire
protein complex (four chains and 1328 residues in all). To
TABLE 7 Timing of Our Method on Experimental Density Maps an

Data Set

Length

(aa)

O

Helix-

Guided

S

Iter

Ribosome maturation protein SBDS 250 0.076

Magnesium transport protein CorA 331 0.153

26s protease regulatory subunit 6b homolog 371 0.183

chaperonin 513 0.417

60 KDA chaperonin 524 0.471

DNA polymerase III subunit a 1160 2.987

From Ribosomal data set to DNA polymerase data set, the number of amino ac
evaluate the fitting accuracy, we took the capsaicin recep-
tor’s (EMDB: 5778) fitted atomic model (PDB: 3J9J) using
the software Rosetta (51,52) as the target model and calcu-
lated the RMSD between the target model and our fitted
model. Our method achieved a fit with <1.8 Å RMSD
over the entire complex. Fig. 8 shows the comparison of
the fitted model by our method and the target Rosetta model.
The majority of the fitting error is localized to regions
around the termini and breaks in the model. Generally, accu-
racy of fitting elsewhere in the maps is relatively uniform.
Error also does not seem to be effected by subunit interfaces.
The fitted complex has similarly high cross-correlation
scores (0.78) and low Ramachandran outliers (1%) as in
our other data sets (Ramachandran plots are found in
Fig. S6).

The resolution to which our fitted complex and the exper-
imental map (EMDB: 5778) agree is 7.0 Å at a FSC cutoff of
0.5. The fitted complex has a relatively high clash score
(170.81) and low EMRinger score (0.68, against experi-
mental map). After Phenix refinement (�30 min), we are
able to obtain a much lower clash score (33.6), a higher EM-
Ringer score (1.66, against experimental map), and a better
FSC (3.7 Å). These metrics are closer to the Rosetta model
(PDB: 3J9J), which has an FSC of 3.6 Å at 0.5 cutoff and an
EMRinger score of 2.34. We have included all FSC plots in
d Comparison with Flex-EM and MDFF

ur Method Time in Seconds

Flex-EM

Time in S

MDFF

Time in S

keleton-Guided
All

Atoms Totalations Time

10 2.79 0.012 2.878 5457 639

9 1.56 0.017 1.73 15,639 964

6 1.33 0.176 1.689 3081 904

5 4.01 0.024 4.451 11,026 1418

4 2.758 0.245 3.474 10,915 1420

7 29.876 0.056 32.919 12,382 3288

id residues keeps increasing, as shown in column (e) of Table 4.
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FIGURE 6 Fitting accuracy (as C-a RMSD) at

increasing percentage of dropped helix correspon-

dences. To see this figure in color, go online.

Dou et al.
Fig. S8. Additional rounds of refinement and adjustment of
refinement parameters would likely result in model statistics
approaching those of the Rosetta model.
DISCUSSION

In this work, we present, to our knowledge, a novel method
to flexibly fit an atomic model into a cryo-EM density map
determined at intermediate resolutions. Our method lever-
ages existing tools for detecting a-helices in the density
map and matches them to those in a given model. Guided
by the helix correspondences and density skeletons, our
method adapts a popular method in computer graphics to
deform the model while preserving its shape. Results of
fitting with both simulated and observed cryo-EM density
maps show that our method achieves results comparable
to those reported by other methods (and better in the case
of large conformational changes), though with significantly
faster performance (reducing compute times by at least two
orders of magnitude).

The two contributors of increased performance are the
use of helix correspondences, which serve as a long-range
FIGURE 7 The result of fitting the transmembrane domain of an integral mem

the density map (EMDB: 5778) by rigid-body fitting (yellow) and our flexible fi

Shown here is the top view of the fitting result of the entire complex, (b) the side v

the fitting result of one chain (corresponds to the target model chain A). To see
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guidance, and a simple-to-minimize quadratic objective
function. The combination of the two allows our method
to make few but large steps toward the goal. In contrast, cur-
rent methods based on molecular dynamics or normal
modes typically make small conformational changes in
each simulation step, which lead to slower convergence
and higher sensitivity to local minima.

Although the increased performance allows the user to
better explore possible fitting solutions, perhaps the biggest
advantages of our method are that 1) no additional fitting is
required, and 2) flexible fitting is actually guided by resolu-
tion appropriate features. With nearly all other flexible
fitting methods, an initial registration of the target model
in the density map is required. This localization can be
potentially biased because of the intrinsic structural differ-
ences between the pose of the model in the complex. As
such, models with poor initial registration in the density
are more likely to fall into local minima. In terms of the
flexible fitting of the source model, observable and quantifi-
able structural features in both the density map and the
target structure guide the deformation in our approach.
With other flexible fitting methods, fitting is guided either
brane protein, TRPV1. The source model (PDB: 3J5Q chain D) is fitted to

tting method (purple), overlapping with the target model (PDB: 3J9J). (a)

iew of the fitting result of the entire complex, and (c) the zoomed-in view of

this figure in color, go online.



FIGURE 8 Given here is the top view (a), side view (b), and bottom view (c) of the flexibly fitting result of TRPV1 using our method. A single monomer

has been colored based on the RMSD of our fitted model and the ground truth model (PDB: 3J9J). Our fitted model is colored from 0 (blue) to 6 Å RMSD

(red). Overall RMSD is <2 Å. To see this figure in color, go online.

Flexible Fitting by Helix Correspondence
by a high-resolution energy function or an elastic model; our
approach uses resolution-appropriate features to guide the
fitting. As such, our flexible fitting technique is more likely
to produce accurate results even when dealing with large
conformational differences in the target model.

We acknowledge that methods such as MDFF are capable
of dealing with large conformational differences using
a multiresolution approach (53). By gradually fitting the
model of interest to progressively higher resolution density
maps, conformational space of the fitting can be better
explored and pitfalls due to the ruggedness of the energy
surface may be avoided. However, such an approach re-
quires multiple fittings and thereby increases the time to
achieve an accurate result. In addition, designing an effec-
tive protocol following such an approach often requires
expertise, and the best outcomes are likely to come from
more experienced users. In contrast, our method has a rela-
tively simple design, which requires little experience or
tweaking to achieve fast and accurate results.

Our Laplacian-based objective function is effective in
preserving the protein shape, but it does not consider the
physical and chemical constraints such as residue distances
and bond angles. To improve model quality after flexible
fitting, the result of our method can be further refined using
existing software packages such as Phenix (47), Rosetta
(54), and MDFF (19), to resolve clashes and restore proper
distances and angles. Such approaches have been shown to
recover correct protein stereochemistry even in the presence
of fairly large errors (55,56).

There are several directions that we would like to explore
to further improve our method and expand its utility. First,
this method considers only correspondences of a-helices,
as they are less affected than b-sheets during conformational
changes. Currently, our method would not be suitable for
proteins with few or no a-helices. In the future, we plan
to compute correspondences between detected b-sheets in
a density map and those in a model. Once incorporated
into our fitting method, these correspondences would enable
us to handle a larger variety of proteins. Second, the signif-
icant gain in efficiency by using our method, compared to
current methods, makes it more practical to explore multiple
solutions. The ability to generate and assess an ensemble of
models is important in the face of uncertainty in the map.
We plan to investigate how the change of the parameters
of fitting (e.g., fitting weight and neighborhood size), and
the skeletons, capture the uncertainty of data.
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A. Laplacian-based surface deformation  
A common problem in computer graphics is how to deform a surface so that a subset of 
its vertices (called handles) go to their pre-defined locations (called targets) while the 
rest of the surface maintains its shape as much as possible. This is useful in interactive 
character animation where the user can control the deformation of the characters by 
dragging a few handles. Specifically, consider a triangulated surface mesh of 𝑛 vertices 
{𝑣1, … , 𝑣𝑛} . Let {ℎ1, … , ℎ𝑚}  be the indices of 𝑚(< 𝑛)  handle vertices whose target 
locations are {𝑡1, … , 𝑡𝑚}. The goal is find deformed locations of each vertex, {𝑣′1, … , 𝑣′𝑛} 
(see Figure S1a). 

 
Figure S1. Illustration of Laplacian-based deformation. (a) Given handle points (hi) and 
corresponding target points (ti), the original vertices are transformed into deformed locations 
(vi

’). (b) Vertex v1’s Laplacian vector L(v1) is the vector (red) from vertex v6 (mean of v1’s 
neighboring vertices) to vertex v1. 

 

Laplacian-based deformation solves the problem by minimizing the following energy,  

𝐸 = 𝑤𝑓𝑓𝑓𝐸𝑓𝑓𝑓 + 𝑤𝑠ℎ𝑎𝑎𝑎𝐸𝑠ℎ𝑎𝑎𝑎 ,                                                                                         (1) 

where 𝐸𝑓𝑓𝑓  and 𝐸𝑠ℎ𝑎𝑎𝑎  respectively measures the deviation of handles from the targets 
and the distortion of the shape, and 𝑤𝑓𝑓𝑓 and 𝑤𝑠ℎ𝑎𝑎𝑎 are scalar weights. Specifically, the 
fitting term measures the squared Euclidean distances between the handles and targets, 

𝐸𝑓𝑓𝑓 = ∑ �𝑣′ℎ𝑖 − 𝑡𝑖�2
2𝑚

𝑖=1 .                                                                                                    
(2) 

The shape term 𝐸𝑠ℎ𝑎𝑎𝑎 measures the change in the local geometry after deformation. The 
local geometry at each vertex 𝑣𝑖 is defined by the linear Laplacian operator 𝐿 (see Figure 
S1b), which is the vector from the centroid of 𝑣𝑖 's neighboring vertices to 𝑣𝑖: 

𝐿(𝑣𝑖) = 𝑣𝑖 −
1

|𝑁𝑖|
∑ 𝑣𝑗𝑗∈𝑁𝑖                                                                                               (3) 



Here, 𝑁𝑖 denotes the indices of those vertices that are connected to 𝑣𝑖 by some triangle 
edge. The shape term is expressed as the squared difference between the original and 
deformed Laplacian vectors, 

𝐸𝑠ℎ𝑎𝑎𝑎 = ∑ ‖𝐿(𝑣′𝑖) − 𝑇𝑖𝐿(𝑣𝑖)‖22 𝑛
𝑖=1 .                                                                                 

(4) 

Since the Laplacian is not invariant under scaling and rotation, the transformation 𝑇𝑖 
estimates the scaling and rotation of local neighborhood of 𝑣𝑖 after deformation. There 
are many ways to compute 𝑇𝑖 , one of which (that we adopt) is to express it as the 
minimizing transformation, 

𝑇𝑖 = argmin𝑇 �‖𝑣′𝑖 − 𝑇𝑣𝑖‖22 + ∑ �𝑣′𝑗 − 𝑇𝑣𝑗�2
2

𝑗∈𝑁𝑖 � ,                                                        
(5) 

which in turn can be approximated as a linear expression of the unknowns, 𝑣′𝑖 (see (1) for 
details). The resulting shape term (𝐸𝑠ℎ𝑎𝑎𝑎) approximately measures the amount of non-
linear distortion to the original surface due to the deformation. 

The combined energy (𝐸) is a quadratic form of the unknowns ({𝑣′1, … , 𝑣′𝑛}), and hence 
has a global minimum that can be found by solving a system of linear equations (see (1) 
for details). Such a system can be solved efficiently using tools such as Matlab and Eigen 
(2). 
 

B. Fitting weight in helix-guided fitting stage 

Figure S2 shows the fitting results with varying 𝑤𝑓𝑓𝑓 , while 𝑤𝑠ℎ𝑎𝑎𝑎  is fixed to 1.0. 
Observe that if 𝑤𝑓𝑓𝑓 is too small (a), the shape term dominates the energy function and 
there is not enough flexible to achieve the desired deformation. Good results are obtained 
in this example for 𝑤𝑓𝑓𝑓 > 0.5, and the fitting does not change significantly with larger 
values of 𝑤𝑓𝑓𝑓  (Figure S2 (c) and (d) are almost the same). In our experiments, we 
observed that setting both the fitting weight (𝑤𝑓𝑓𝑓) and shape weight (𝑤𝑠ℎ𝑎𝑎𝑎) both to 1.0 
achieve good results in all our test proteins. 



 
Figure S2. Helix-guided fitting of GroEL (protein PDB ID 2C7C chain M to EMDB Map ID 
1180) with 𝑤𝑠ℎ𝑎𝑎𝑎 = 1.0 and 𝑤𝑓𝑓𝑓 set to 0.05 (a), 0.3 (b), 0.7 (c), and 10.0 (d). The ground-truth 
model is shown in cyan and the fitted model is shown in yellow. (c) and (d) are expected to be 
similar, which shows that the fitting result does not change significantly with 𝑤𝑓𝑓𝑓 larger than 1.0. 

 

C. Additional tables and figures for the results 

 

 

 



Data set 
Our method time in seconds 

Helix-guided  
Skeleton-guided 

All atoms Total 
Iterations Time 

Adenylate kinase 0.127 7 1.267 0.01 1.404 
Triacylglycerol acylhydrolase 0.261 6 2.321 0.012 2.594 
Maltodextrin binding protein 0.314 5 2.361 0.013 2.688 
Aspartate aminotransferase 0.371 5 2.715 0.02 3.106 
GroEL 0.427 3 2.098 0.025 2.55 
Lactoferrin 1.013 5 8.921 0.033 9.967 

Table S1. Running time of our algorithm on the data set with simulated density maps, showing 
timing break-down for each step of our method as well as the total time. From data set 1 to data 
set 6, the number of amino acid residues keeps increasing, as shown in column (d) of Table 1. 
 

Data set 

RMSD (Å) 

Rigid fittinga  Helix-guided fittingb  Helix-and-skeletonc-
guided fitting  

Adenylate kinase 11.513 5.713 3.208 
Triacylglycerol acylhydrolase 4.062 1.546 1.954 
Aspartate aminotransferase 7.556 2.458 1.399 

Table S2. All-atom fitting accuracy on the data set with simulated density maps which are 
generated at 9Å. We selected only those data sets with one-to-one atom correspondence. The 
metrics are: root-mean-square-deviation (RMSD) between the target model and fitted source 
model after rigid-body fitting (a), helix-guided fitting (b) and helix-and-skeleton-guided fitting 
(c). The residue ID we use to compute the C-α atoms RMSDs are listed in column (c) of Table 
1. 

 

Data set Rigid fittinga 
RMSD (Å) 

Helix-skeleton guided fittingb 
RMSD (Å) 

Ribosome maturation protein sbds 20.085 5.592 
Chaperonin 5.399 2.232 
60 kda chaperonin 14.677 2.662 
DNA polymerase iii subunit alpha 12.268 3.062 

Table S3. All-atom fitting accuracy on the data set with experimental density maps. We selected 
only those data sets with one-to-one atom correspondence. The metrics are root-mean-square-
deviation (RMSD) between the target model and fitted source model after rigid-body fitting (a) 
and our flexible fitting (b). The residue ID we use to compute the C-α atoms RMSDs are column 
(d) of Table 4. 

 



RMSD (Å) of helix-and-skeleton-guided fitting of Adenylate Kinase 

Map 
resolution  (Å) All residuesa Identified helix residuesb Strands residuesc Loop residuesd 

9 2.865 2.651 2.572 3.546 
7 2.958 2.921 2.48 3.42 
5 2.867 2.507 2.647 3.751 
3 3.292 2.386 3.714 4.551 

Table S4. Accuracy of fitting source model (Adenylate kinase, PDB ID: 4AKE, chain A) to 
simulated density maps generated at different resolution from the target model (Adenylate kinase, 
PDB ID: 1AKE, chain A). The metrics include: RMSD of all the residues (a), identified helix 
residues (b), strand residues (c) and loop residues (d) between the target model and the fitted 
source model using helix-and-skeleton-guided fitting. 

 

     

                             (a) 2.8% outliers                                                  (b) 0% outliers 



    

                             (c) 0.5% outliers                                                   (d) 0.5% outliers 

 

    

                             (e) 1.3% outliers                                              (f) 3.2% outliers 

Figure S3. Ramachandran plots for all non-Pro/Gly residues (Psi for y axis and Phi for x axis). 
The represented data are: (a) Adenylate kinase (source PDB ID: 4AKE chain A, target PDB ID: 
1AKE chain A); (b) Triacylglycerol acylhydrolase (source PDB ID: 3TGL chain A, target PDB 
ID: 4TGL chain A); (c) Maltodextrin binding protein (source PDB ID: 1OMP chain A, target 
PDB ID: 1ANF chain A); (d) Aspartate aminotransferase (source PDB ID: 9AAT chain A, target 
PDB ID: 1ANF chain A); (e) GroEL (source PDB ID: 1OEL chain A, target PDB ID: 2C7C chain 
A); (f) Lactoferrin (source PDB ID: 1LFG chain A, target PDB ID: 1LFH chain A). 

 

 



 

    

                          (a) 2.4% outliers                                                     (b) 0.9% outliers 

    

                           (c) 2.5% outliers                                                  (d) 0.6% outliers 



    

                           (e) 1.5% outliers                                                  (f) 3.0% outliers 

Figure S4. Ramachandran plots for all non-Pro/Gly residues (Psi for y axis and Phi for x axis). 
The represented data are: Ribosome maturation protein SBDS (source PDB ID: 5AN9 chain J, 
target EMDB ID: 3146); (b) Magnesium transport protein CorA (source PDB ID: 3JCF chain E, 
target EMDB ID: 6552); (c) 26s protease regulatory subunit 6b homolog (source PDB ID: 3JCO 
chain K, target EMDB ID: 6575); (d) Chaperonin (source PDB ID: 3IZH chain C, target EMDB 
ID: 5645); (e) 60 KDA chaperonin (source PDB ID: 2C7C chain M, target EMDB ID: 1180); (f) 
DNA polymerase iii subunit alpha (source PDB ID: 5FKV chain A, target EMDB ID: 3201). 

 

 

Figure S5. Fitting result of Ribosome maturation protein SBDS. A zoom-in view of the target 
model (cyan, PDB ID: 5ANB chain J) and the fitted model (PDB ID: 5AN9 chain J) of Flex-EM 
(red), MDFF (green), and our method (purple).  

 



  

             (a) 1.0% outliers                              (b) 1.0% outliers                              (c) 2.2% outliers 

Figure S6.  Ramachandran plots for all non-Pro/Gly residues (Psi for y axis and Phi for x axis) of 
TRPV1. The represented data are: (a) Soure model (PDB ID: 3J5Q chain D); (b) Fitted model of 
our method; (c) Target model (PDB ID: 3J9J). 

 

 

 

 

 



 

Figure S7. Fourier shell correlation plots (correlation for y axis and spacial frequence for x axis). 
The blue, red, green and purple curves denote rigid fiting, helix-and-skeleton guided fitting, 
MDFF and FlexEM respectively. The represented data are: (a) Ribosome maturation protein 
SBDS (source PDB ID: 5AN9 chain J, target EMDB ID: 3146); (b) Magnesium transport protein 
CorA (source PDB ID: 3JCF chain E, target EMDB ID: 6552); (c) 26s protease regulatory 
subunit 6b homolog (source PDB ID: 3JCO chain K, target EMDB ID: 6575); (d) Chaperonin 
(source PDB ID: 3IZH chain C, target EMDB ID: 5645); (e) 60 KDA chaperonin (source PDB 
ID: 2C7C chain M, target EMDB ID: 1180); (f) DNA polymerase iii subunit alpha (source PDB 
ID: 5FKV chain A, target EMDB ID: 3201). 

 

 

Figure S8. Fourier shell correlation plots (correlation for y axis and spacial frequence for x axis) 
of TRPV1. (a) The plot shows the FSC between the map simulated (to the resolution of the 
experimental cryo-EM map, EMDB ID 5778) from the model fitted by helix-and-skeleton guided 
fitting and the map simulated from the atomic model (PDB ID 3J9J). (b) The plot shows the FSC 
between the map simulated (to the resolution of the experimental cryo-EM map, EMDB ID 5778) 
from the model fitted by helix-and-skeleton guided fitting and the experimental cryo-EM map 
(EMDB ID 5778). (c) The plot shows the FSC between the map simulated (to the resolution of 
the experimental cryo-EM map, EMDB ID 5778) from the helix-and-skeleton guided fitting 
model refined by Phenix and the experimental cryo-EM map (EMDB ID 5778). 

 

D. Parameter settings for MDFF and Flex-EM 

Flexible fitting using MDFF was carried out performed with the MDF GUI in VMD 1.9.2 
as described in Computational Biophysics Workshop: 



http://www.ks.uiuc.edu/Training/Tutorials/science/mdff/tutorial_mdff-html/ 

More specifically, PSF files were first generated using the AutoPSF function in the VMD 
Modeling Extensions. Corresponding map and fit PDB, PSF files were loaded into the 
MDFF GUI; chirality and secondary structure restraints were enabled. Simulation 
parameters were set as follows: 

Temperature=300K, Final Temperature=300K, Minimization steps=200, Time 
steps=50000 and system environment=vacuum. NAMD files were generated and 
executed using NAMD 2.11. Unless otherwise noted, all simulations were performed 
using a single core. GPU accelerated runs of NAMD were performed using the multicore-
CUDA version of NAMD 2.11. 

Flexible fitting using FlexEM followed the instructions in the project page of Protein 
Structure Fitting and Refinement Guided by Cryo-EM Density: 

http://topf-group.ismb.lon.ac.uk/flex-em/ 

As the models to flexibly fit were already rigidly fit to their corresponding density using 
Chimera, the optimization process was set to MD. 4 iterations were performed. In 
map/model pairs with large initial iterations 20 runs using CG optimization were 
performed. Secondary structure elements were defined in the rigid bodies file and 
cap_shift was set to 0.15. Additionally, box size, apix and resolution were set based on 
the corresponding map parameters. 
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