Supporting Information

Dual-pH Sensitive Charge-reversal Nanocomplex for Tumortargeted Drug Delivery with Enhanced Anticancer Activity

By

Qing Zhou et al.

Contents of Supporting Information

Figure S1. Synthesis of (a) PMLA-PEI-DOX-TAT, (b) PEG-DMMA and (c) PEG-SA polymers.

Figure S2. ¹H NMR (400 MHz) spectrum of PMLA-PEI-DOX-TAT.

Figure S3. ¹H NMR (400 MHz) spectrum of PEG-DMMA.

Figure S4. ¹H NMR (400 MHz) spectrum of PEG-SA.

Figure S5. DLS results of (a) polymeric micelles PMLA-PEI-DOX, (b) PMLA-PEI-DOX-TAT and (c) nanocomplex PMLA-PEI-DOX-TAT@ PEG-SA. (d) CMC determination of polymer (PMLA-PEI-DOX-TAT) using pyrene solubilization method. The CMC is defined as the point of intersection of two exponential lines.

Figure S6. (a) Changes in the particle size of nanocomplex PMLA-PEI-DOX-TAT@PEG-DMMA when incubating at pH 7.4 and 6.8 for different time periods. (b) Changes in the particle size of nanocomplex PMLA-PEI-DOX-TAT@PEG-DMMA upon the incubation with PBS (pH 7.4) and RPMI 1640 medium containing 10% FBS for 14 days.

Figure S7. (a) Schematic illustration of DOX-CA degradation. (b) Degradation of DOX-CA incubated at pH 4.0, pH 5.0, pH 6.8 and pH 7.4 PBS solution for different periods of time detected by HPLC. (c) Degradation of PMLA-PEI-DOX-TAT incubated at pH 4.0 PBS solution for 1 h or 8 h detected by HPLC.

Figure S8. Release profile of DOX from PMLA-PEI-DOX-TAT in PBS (pH 5.0, pH 6.8 or pH 7.4)

at 37 °C.

Figure S9. Confocal microscopic images of cellular internalization of Cy3-labeled nanoparticles by MHCC97-H cells incubated at pH 7.4 and 6.8 for 4 h. DAPI (blue) was used to stain cell nucleus. The scale bar is 100 μm.

Figure S10. (a) Flow cytometry analysis of cellular uptake of Cy3-labeled nanoparticles by MHCC97-H cells at pH 7.4 and pH 6.8 conditions for 4 h. (b) Quantitative analysis of the fluorescence intensity of Cy3-labeled nanoparticles in MHCC97-H cells.

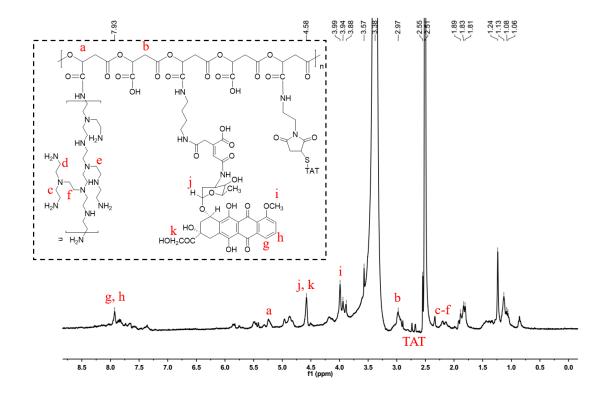

Figure S11. Cytotoxicity of Free DOX and various nanoparticles against MHCC97-H cells at different concentrations of DOX under (a) pH 7.4 and (b) pH 6.8 for 48 h. (c) Cytotoxicity of various polymers (PMLA-PEI, PMLA-PEI-TAT, PEG-DMMA and PEG-SA) against A549 cells at different concentrations pH 7.4 for 48 h.

Table S1. Summary of size, zeta potential, PDI, and DOX drug content of PMLA-PEI-DOX, PMLA-PEI-DOX-TAT, PMLA-PEI-DOX-TAT@PEG-SA and PMLA-PEI-DOX-TAT@PEG-DMMA.

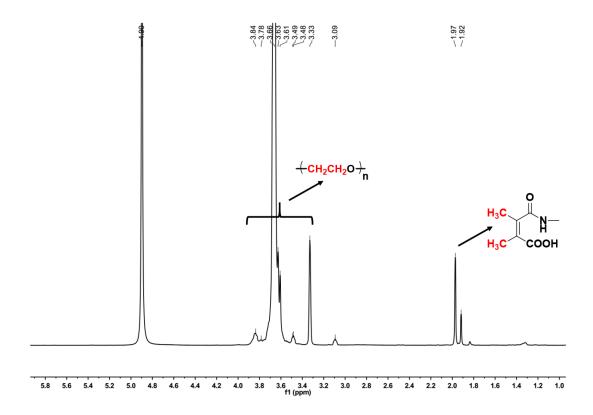
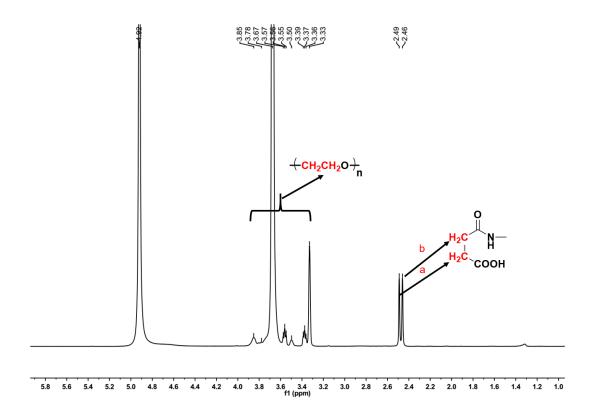
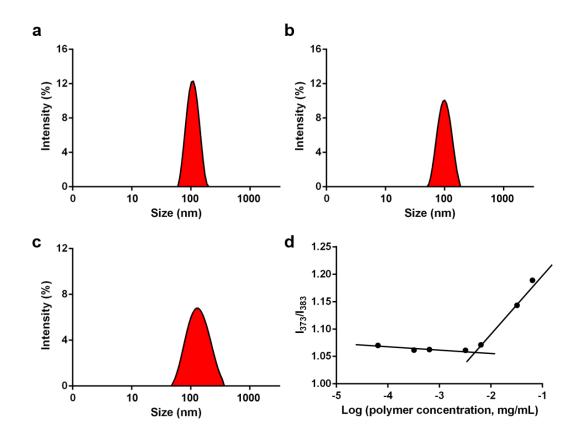
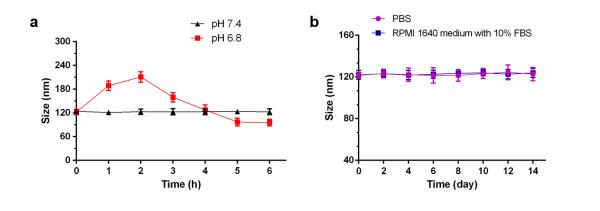
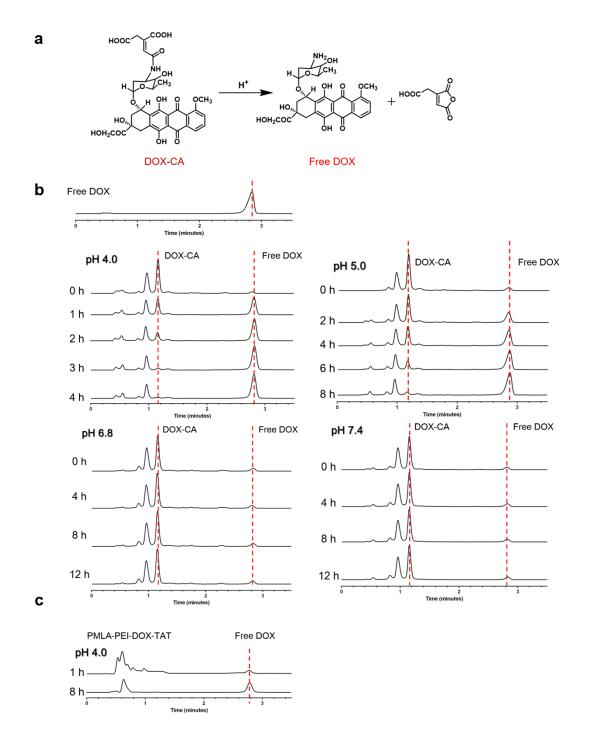

Table S2. Summary of IC₅₀ value of Free DOX, PMLA-PEI-DOX, PMLA-PEI-DOX-TAT, PMLA-PEI-DOX-TAT@PEG-SA and PMLA-PEI-DOX-TAT@PEG-DMMA against A549 cells.

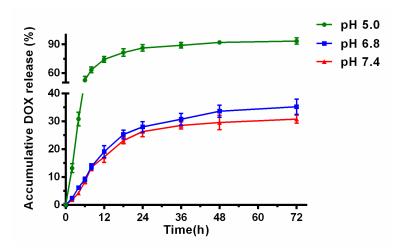
Table S3. Summary of IC₅₀ value of Free DOX, PMLA-PEI-DOX, PMLA-PEI-DOX-TAT, PMLA-PEI-DOX-TAT@PEG-SA and PMLA-PEI-DOX-TAT@PEG-DMMA against MHCC97-H cells.

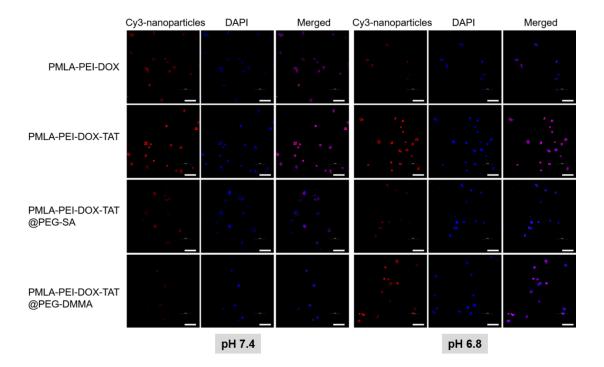

Figure S1. Synthesis of (a) PMLA-PEI-DOX-TAT, (b) PEG-DMMA and (c) PEG-SA polymers.

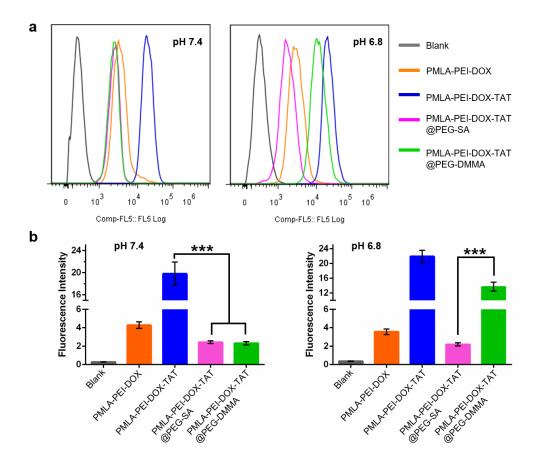

Figure S2. ¹H NMR (400 MHz) spectrum of PMLA-PEI-DOX-TAT.


Figure S3. 1 H NMR (400 MHz) spectrum of PEG-DMMA.


Figure S4. 1 H NMR (400 MHz) spectrum of PEG-SA.


Figure S5. DLS results of (a) polymeric micelles PMLA-PEI-DOX, (b) PMLA-PEI-DOX-TAT and (c) nanocomplex PMLA-PEI-DOX-TAT@ PEG-SA. (d) CMC determination of polymer (PMLA-PEI-DOX-TAT) using pyrene solubilization method. The CMC is defined as the point of intersection of two exponential lines.


Figure S6. (a) Changes in the particle size of nanocomplex PMLA-PEI-DOX-TAT@PEG-DMMA when incubating at pH 7.4 and 6.8 for different time periods. (b) Changes in the particle size of nanocomplex PMLA-PEI-DOX-TAT@PEG-DMMA upon the incubation with PBS (pH 7.4) and RPMI 1640 medium containing 10% FBS for 14 days.


Figure S7. (a) Schematic illustration of DOX-CA degradation. (b) Degradation of DOX-CA incubated at pH 4.0, pH 5.0, pH 6.8 and pH 7.4 PBS solution for different periods of time detected by HPLC. (c) Degradation of PMLA-PEI-DOX-TAT incubated at pH 4.0 PBS solution for 1 h or 8 h detected by HPLC.

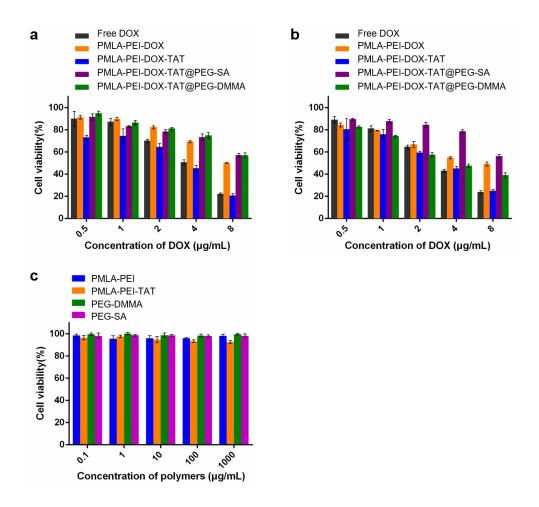

Figure S8. Release profile of DOX from PMLA-PEI-DOX-TAT in PBS (pH 5.0, pH 6.8 or pH 7.4) at 37 °C.

Figure S9. Confocal microscopic images of cellular internalization of Cy3-labeled nanoparticles by MHCC97-H cells incubated at pH 7.4 and 6.8 for 4 h. DAPI (blue) was used to stain cell nucleus. The scale bar is $100 \mu m$.

Figure S10. (a) Flow cytometry analysis of cellular uptake of Cy3-labeled nanoparticles by MHCC97-H cells at pH 7.4 and pH 6.8 conditions for 4 h. (b) Quantitative analysis of the fluorescence intensity of Cy3-labeled nanoparticles in MHCC97-H cells.

Figure S11. Cytotoxicity of Free DOX and various nanoparticles against MHCC97-H cells at different concentrations of DOX under (a) pH 7.4 and (b) pH 6.8 for 48 h. (c) Cytotoxicity of various polymers (PMLA-PEI, PMLA-PEI-TAT, PEG-DMMA and PEG-SA) against A549 cells at different concentrations pH 7.4 for 48 h.

Table S1. Summary of size, zeta potential, PDI, and DOX drug content of PMLA-PEI-DOX, PMLA-PEI-DOX-TAT, PMLA-PEI-DOX-TAT@PEG-SA and PMLA-PEI-DOX-TAT@PEG-DMMA.

	Size		Zeta potential	DOX content
	(nm)	PDI ^a	(mV)	(wt.%)
PMLA-PEI-DOX	108.3	0.195	+10.47	17.71
PMLA-PEI-DOX-TAT	95.0	0.067	+23.51	16.82
PMLA-PEI-DOX-TAT@PEG-SA	126.1	0.185	-16.04	-
PMLA-PEI-DOX-TAT@PEG-DMMA	123.0	0.194	-16.33	-

^a PDI: Polydispersity Index.

Table S2. Summary of IC₅₀ value of Free DOX, PMLA-PEI-DOX, PMLA-PEI-DOX-TAT, PMLA-PEI-DOX-TAT@PEG-SA and PMLA-PEI-DOX-TAT@PEG-DMMA against A549 cells.

	IC ₅₀ (pH 7.4)	IC ₅₀ (pH 6.8)
Free DOX	2.530 μg/mL	2.396 μg/mL
PMLA-PEI-DOX	$6.112~\mu g/mL$	$6.055~\mu g/mL$
PMLA-PEI-DOX-TAT	$1.287~\mu g/mL$	1.228 μg/mL
PMLA-PEI-DOX-TAT@PEG-SA	$32.58 \mu g/mL$	27.36 μg/mL
PMLA-PEI-DOX-TAT@PEG-DMMA	$21.28~\mu g/mL$	$2.744~\mu g/mL$

Table S3. Summary of IC₅₀ value of Free DOX, PMLA-PEI-DOX, PMLA-PEI-DOX-TAT, PMLA-PEI-DOX-TAT@PEG-SA and PMLA-PEI-DOX-TAT@PEG-DMMA against MHCC97-H cells.

	IC ₅₀ (pH 7.4)	IC ₅₀ (pH 6.8)
Free DOX	7.410 μg/mL	6.344 μg/mL
PMLA-PEI-DOX	$16.87~\mu g/mL$	12.97 μg/mL
PMLA-PEI-DOX-TAT	$5.605~\mu g/mL$	5.822 μg/mL
PMLA-PEI-DOX-TAT@PEG-SA	$26.84~\mu g/mL$	25.59 μg/mL
PMLA-PEI-DOX-TAT@PEG-DMMA	$23.97~\mu\text{g/mL}$	7.436 μg/mL