Supplemental Results

More fixation analysis

We next computed the percentage of the number of fixations in each ROI (**Fig. 3I**). Participants with ASD did not differ from controls in the eye (ASD: $28.5\pm19.2\%$, controls: $33.6\pm20.1\%$; t(31)=0.74, P=0.46, g=0.25, permutation P=0.46), mouth (ASD: $21.5\pm13.9\%$, controls: $19.3\pm13.9\%$; t(31)=0.45, P=0.66, g=0.15, permutation P=0.64), or center (ASD: $41.1\pm16.2\%$, controls: $42.3\pm13.2\%$; t(31)=0.23, P=0.82, g=0.078, permutation P=0.84) ROIs, nor the difference between the eye and mouth ROI (ASD: $7.08\pm31.4\%$, controls: $14.3\pm32.3\%$; t(31)=0.65, P=0.52, g=0.22, permutation P=0.52). Similar results were derived for the total fixation duration in each ROI (**Fig. 3J**; eye: ASD: 275 ± 220 ms, controls: 344 ± 226 ms; t(31)=0.88, P=0.38, g=0.30, permutation P=0.38; mouth: ASD: 229 ± 167 ms, controls: 221 ± 184 ms; t(31)=0.14, P=0.89, g=0.048, permutation P=0.84; center: ASD: 399 ± 180 ms, controls: 374 ± 142 ms; t(31)=0.44, P=0.66, g=0.15, permutation P=0.61; difference between eye and mouth: ASD: 45.7 ± 365 ms, controls: 123 ± 387 ms; t(31)=0.59, P=0.56, g=0.20, permutation P=0.53). Both results mirrored that of fixation density.

Furthermore, participants with ASD and controls showed similar orientation speed towards all ROIs (**Fig. 3K**; eye: ASD: 370 ± 177 ms, controls: 349 ± 169 ms; t(31)=0.35, P=0.73, g=0.12, permutation P=0.72; mouth: ASD: 376 ± 158 ms, controls: 435 ± 170 ms; t(30)=1.02, P=0.32, g=0.35, permutation P=0.35; center: ASD: 76.3 ± 66.6 ms, controls: 64.7 ± 89.4 ms; t(31)=0.43, P=0.67, g=0.15, permutation P=0.73; difference between eye and mouth: ASD: 11 ± 289 ms, controls: -85.6 ± 310 ms; t(30)=0.91, P=0.37, g=0.32, permutation P=0.38). Notably, both participants with ASD (two-tailed paired t-test; t(16)=0.16, P=0.88, g=0.033, permutation P=0.93) and controls (t(14)=1.07, P=0.30, g=0.49, permutation P=0.18) showed similar latency to first fixate on eyes and mouth. This was further confirmed by a two-way ANOVA (ASD vs. controls X eye vs. mouth) showing no difference between participant groups (F(1,61)=0.20, P=0.66, $\eta^2=0.0033$), ROI types (F(1,61)=1.18, P=0.28, $\eta^2=0.019$), nor interaction (F(1,61)=0.91, P=0.34, $\eta^2=0.014$).

Lastly, participants with ASD did not differ in mean fixation duration in each ROI from controls (**Fig. 3L**; eye: ASD: 270 ± 87.5 ms, controls: 267 ± 78.5 ms; t(31)=0.12, P=0.91, g=0.041, permutation P=00.96; mouth: ASD: 315 ± 133 ms, controls: 328 ± 137 ms; t(30)=0.28, P=0.78, g=0.10, permutation P=0.77; center: ASD: 299 ± 107 ms, controls: 269 ± 68.2 ms; t(31)=0.92, P=0.37, g=0.31, permutation P=0.41; difference between eye and mouth: ASD: -51.5 ± 153 ms, controls: -60.8 ± 204 ms; t(30)=0.15, P=0.88, g=0.051, permutation P=0.86).