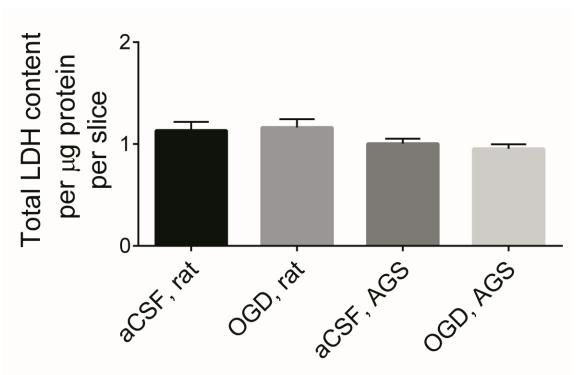
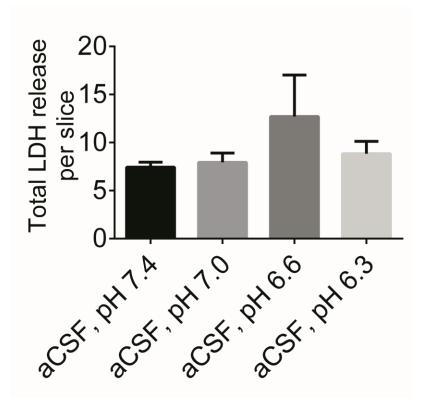
Arctic ground squirrel hippocampus tolerates oxygen glucose deprivation independent of hibernation season even when not hibernating and after ATP depletion, acidosis and glutamate efflux

Saurav Bhowmick^{1, 2}, Jeanette T Moore², Daniel L. Kirschner¹, Kelly L. Drew^{1, 2}


¹Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, USA.

²Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA.

Corresponding author: KL Drew, Biochemistry and Neuroscience Program, Institute of Arctic Biology, University of Alaska Fairbanks, PO Box 757000, Fairbanks, AK 99775-7000, USA.


Email: kdrew@alaska.edu, Telephone: 907-474-7190

Supplementary Figure 1:

Total LDH content per slice from rat (n= 15) and AGS (n= 34) subjected to 30 min of either aCSF or OGD treatment is not different. At the end of each experiment, slices were homogenized and total LDH content per slice was measured. Data shown are means \pm SEM.

Supplementary Figure 2:

Total LDH release per slice from *se*AGS subjected to a range of low pH insult (aCSF pH 7.4, n= 7; aCSF pH 7.0, n= 4; aCSF pH 6.6, n= 5; aCSF pH 6.3, n= 7; 15 animals) for 30 min. Total LDH release per treatment was normalized to baseline LDH release per mg of protein (Baseline values for LDH in arbitrary units per mg protein: aCSF pH 7.4 = 0.218 ± 0.0668 ; aCSF pH 7.0 = 0.300 ± 0.0665 ; aCSF pH 6.6 = 0.240 ± 0.0686 ; aCSF pH 6.3= 0.260 ± 0.0302). Data shown are means ± SEM.

Supplementary Table 1:

Table1: Characteristics of study groups:					
Physiological Parameters	seAGS	ibeAGS (20h)	ibeAGS (4h)	hAGS	Rat
Age (days)	Adult	Adult	Adult	Adult	87.60±25.45
Sex	Male (n= 10)	Male (n= 8)	Male (n= 1)	Male (n=4)	Male (n= 14)
	Female (n=4)	Female (n= 5)	Female (n= 2)	Female (n= 0)	Female (n=1)
Body Weight (g)	1037.6±247.3	616.9±160.3	585.4±224.3	619.5±132.7	354.3±50.5
T _{rectal} (°C)	36.7±1.4	36.1±0.8	36.6±0.6	4.5±1.2	36.6±0.9
Ttemporalis (°C)	35.9±1.1	35.6±0.8	35.8±0.6	5.7±1.5	35.7±0.4

Supplementary Table 2:

Treatment Group	Baseline values for LDH			
	absorbance (Arbitrary unit)			
Figure 1				
rat aCSF	0.139 ± 0.015			
rat OGD	0.189 ± 0.020			
seAGS aCSF	0.204 ± 0.025			
seAGS OGD	0.189 ± 0.01			
4h ibeAGS OGD	0.262 ± 0.036			
hAGS OGD	0.124 ± 0.010			
20h ibeAGS OGD	0.208 ± 0.021			
Figure 2 (A)				
rat, aCSF pH 7.4	0.183 ± 0.017			
rat ISS pH 6.5	0.099 ± 0.019			
seAGS, aCSF pH 7.4	0.213 ± 0.056			
seAGS ISS pH 6.5	0.126 ± 0.003			
Figure 2 (B)				
rat, aCSF pH 7.4	0.109 ± 0.0164			
rat aCSF pH 6.3	0.209 ± 0.0397			
seAGS, aCSF pH 7.4	0.218 ± 0.0668			
seAGS ISS pH 6.5	0.126 ± 0.003			
seAGS aCSF pH 6.3	0.260 ± 0.0302			