Camphor-Engine-Driven Micro-Boat Guides Evolution of Chemical Gardens

Mark Frenkel^{a,b}, Victor Multanen^b, Roman Grynyov^a, Albina Musin^a, Yelena

Bormashenko^b, Edward Bormashenko,^{b*}

^aAriel University, Natural Science Faculty, Physics Department, P.O.B. 3, 407000, Ariel,

Israel

^bAriel University, Engineering Faculty, Chemical Engineering Department, P.O.B. 3,

407000, Ariel, Israel

*Corresponding author: Edward Bormashenko

Ariel University, Natural Science Faculty, Physics Department, Chemical Engineering and

Biotechnology Department, P.O.B. 3, Ariel 40700, Israel

Phone: +972-3-906-6134; Fax: +972-3-906-6621

E-mail: edward@ariel.ac.il

Supplementary Video: Heliciform precipitates formed under the self-propulsion of the micro-boat.

Supplementary Figure S1. a - The filament typical for chemical gardens is shown; the magnification is ×600; b - The same filament cut lengthwise; c - The butt of the filament; the magnification is ×750.

Supplementary Figure S2. The time dependence of changes in geometrical parameters of the precipitate (the concentration of $K_4Fe(CN)_6 c=2$ wt.%).

Supplementary Table	S1. Values	s of fitting	parameters	$\tilde{a}, \alpha, \tau_d$	and	$ au_{\it fr}$	extracted
from the experimental	data.						

Potassium	Boat	\widetilde{a} , m/s ²	α	$ au_d$, s	${ au}_{\it fr}$, s
hexacyanoferrate	length,				
concentration, c	L, mm				
wt.%					
2.0 (Fig. 7 a)	15	0.023	1.33×10 ⁻⁴	186.0	3.85
0.125 (Fig. 7 b)	15	0.023	1.3×10 ⁻⁴	31.5	0.73
2.0 (Fig. 7 c)	10	0.021	7.94×10 ⁻⁵	35.3	0.67
0.25 (Fig. 7 c)	15	0.014	8.04×10 ⁻⁵	50.2	0.93

Supplementary Figure S3. Temporal (a) and spatial (b) temperature distributions during the self-propulsion. a - The time dependence of the temperature of the boat front (c=0.25 wt.%). The temperature jump in the initial period of self-locomotion is clearly seen. b - The temperature distribution along the micro-boat surface (c=0.250 wt.%). The blue rectangle represents the micro-boat in its real dimensions.

The rotational motion of the micro-boat along the rim of the Petri dish should be addressed within the model developed in Ref. 51. Let the vertical axis *Z* be coinciding with the inner side of the rim of the Petri dish, as shown in Supplementary Figure S4.

Supplementary Figure S4. The cross-section of the PVC tubing (micro-boat) driven by the camphor engine is depicted with yellow color. The contact angle θ formed by the potassium hexacyanoferrate aqueous solution and the rim of the Petri dish is shown.

The micro-boat rotates in the Petri dish at the distance of *ca*. 1 cm from the rim ($y_0 \cong 1 \ cm$ in Fig 6 and Supplementary Fig. S4). Assume that the meniscus formed by the potassium hexacyanoferrate aqueous solution with the rim has the contact angle θ (established experimentally with the goniometer as $\theta=35\pm1^\circ$; the contact angle hysteresis⁵² is neglected). Bush et al. demonstrated that in this case, the lateral force \vec{F}_y acts on the micro-boat⁵¹ (Fig 6 and Supplementary Fig. S4):

$$\left|\vec{F}_{y}\right| = -T \cot \theta \exp\left(-\frac{y_{0}}{l_{ca}}\right),\tag{6}$$

where *T* is the modulus of the vertical force exerted by a floating body on a liquid/vapor interface, and $l_{ca} = \sqrt{\gamma/\rho g}$ is the capillary length.⁵² In our case, the lateral force \vec{F}_y is the centripetal force acting on the micro-boat; thus we obtain:

$$T \cot \theta \exp\left(-\frac{y_0}{l_{ca}}\right) \cong \frac{mv_{cm}^2}{R - y_0},\tag{7}$$

where *R* is the internal radius of the Petri dish. Assuming for the sake of a very rough estimation: $\theta \cong 35^{\circ}$; $y_0 \cong 1$ cm, $l_{ca} \cong 0.271$ cm; R = 5 cm; $T \cong \frac{1}{2}$ mg yields:

$$v_{cm} \approx \sqrt{\frac{1}{2}(R - y_0)g \exp\left(-\frac{y_0}{l_{ca}}\right)} \cong 8.5 \frac{cm}{s}, \qquad (8)$$

which is an overestimated value (friction is neglected) but reasonable, when compared with the experimentally observed characteristic velocity of rotation of micro-boats.