The crystal structure of human Rogdi provides insight into the causes of Kohlschutter-Tönz Syndrome

Hakbong Lee^{1,4}, Hanbin Jeong^{1,4}, Joonho Choe², Youngsoo Jun^{3,4}, Chunghun Lim¹ and Changwook Lee^{1,4}*

¹Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Republic of Korea

²Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea

³School of Life Sciences and ⁴Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju 61005, Rep. of Korea.

*Correspondence to:

Changwook Lee, Ph.D.

Department of Biological Sciences, School of Life Sciences

Ulsan National Institute of Science and Technology (UNIST)

50 UNIST-gil, Ulsan 44919, Republic of Korea.

Telephone - 82-52-217-2534; Fax - 82-52-217-2639

E-mail - <u>changwook@unist.ac.kr</u>

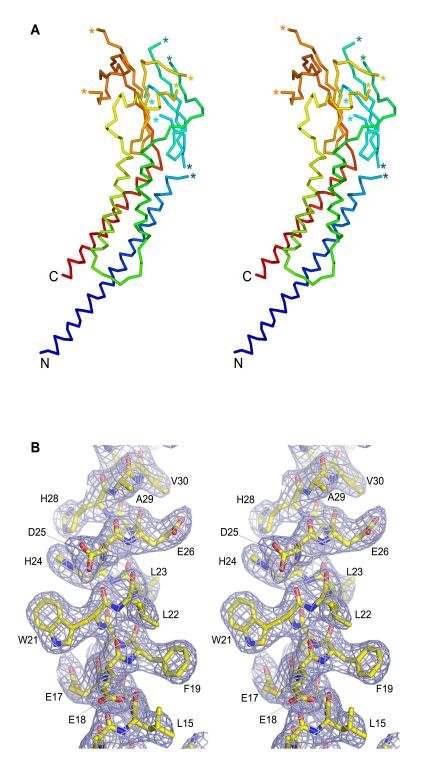


Figure S1. Stereo images of full-length Rogdi^H

(A) The stereo view shows the backbone trace of full-length Rogdi^H. The residues 48–56, 64–68, 94–96, 181, and 212–221 are disordered and indicated by blue, cyan green, yellow, and orange stars, respectively.

(**B**) The 2.8 Å resolution 2Fo-Fc electron density (contoured at 1σ) of the H1 in the α domain was shown with a final model to represent the quality of structural data.