nature neuroscience

Corresponding Author:	Sonja B. Hofer	# Main Figures:	7
Manuscript Number:	NN-A53567	# Supplementary Figures:	10
Manuscript Type:	Article	# Supplementary Tables:	0
		# Supplementary Videos:	0

Reporting Checklist for Nature Neuroscience

This checklist is used to ensure good reporting standards and to improve the reproducibility of published results. For more information, please read Reporting Life Sciences Research.

Please note that in the event of publication, it is mandatory that authors include all relevant methodological and statistical information in the manuscript.

Statistics reporting, by figure

- Please specify the following information for each panel reporting quantitative data, and where each item is reported (section, e.g. Results, & paragraph number).
- Each figure legend should ideally contain an exact sample size (n) for each experimental group/condition, where n is an exact number and not a range, a clear definition of how n is defined (for example x cells from x slices from x animals from x litters, collected over x days), a description of the statistical test used, the results of the tests, any descriptive statistics and clearly defined error bars if applicable.
- For any experiments using custom statistics, please indicate the test used and stats obtained for each experiment.
- Each figure legend should include a statement of how many times the experiment shown was replicated in the lab; the details of sample collection should be sufficiently clear so that the replicability of the experiment is obvious to the reader.
- For experiments reported in the text but not in the figures, please use the paragraph number instead of the figure number.

Note: Mean and standard deviation are not appropriate on small samples, and plotting independent data points is usually more informative. When technical replicates are reported, error and significance measures reflect the experimental variability and not the variability of the biological process; it is misleading not to state this clearly.

		TEST US	ED		n		DESCRIPTIVE S (AVERAGE, VARIA	TATS ANCE)	P VALU	JE	DEGREES FREEDOM F/t/z/R/ETC	OF 1 & VALUE
	FIGURE NUMBER	WHICH TEST?	SECTION & PARAGRAPH #	EXACT VALUE	DEFINED?	SECTION & PARAGRAPH #	REPORTED?	SECTION & PARAGRAPH #	EXACT VALUE	SECTION & PARAGRAPH #	VALUE	SECTION & PARAGRAPH #
example	1a	one-way ANOVA	Fig. legend	9, 9, 10, 15	mice from at least 3 litters/group	Methods para 8	error bars are mean +/- SEM	Fig. legend	p = 0.044	Fig. legend	F(3, 36) = 2.97	Fig. legend
example	results, para 6	unpaired t- test	Results para 6	15	slices from 10 mice	Results para 6	error bars are mean +/- SEM	Results para 6	p = 0.0006	Results para 6	t(28) = 2.808	Results para 6

April 2015

		TEST US	SED		n		DESCRIPTIVE S (AVERAGE, VARIA	TATS ANCE)	P VALU	JE	DEGREES FREEDOM F/t/z/R/ETC	OF 1 & /ALUE
	FIGURE NUMBER	WHICH TEST?	SECTION & PARAGRAPH #	EXACT VALUE	DEFINED?	SECTION & PARAGRAPH #	REPORTED?	SECTION & PARAGRAPH #	EXACT VALUE	SECTION & PARAGRAPH #	VALUE	SECTION & PARAGRAPH #
+ -	1c	Wilcoxon rank-sum	Results paragr aph 2, figure 1 legend	5,5	Brain slices containing V1 from mice co-injected in dLGN and LP (2 mice)	Figure 1 legend	Median and interquartile range	Result s paragr aph 2	0.0317	Results paragrap h 2, figure 1 legend	Degrees of Freedom (DOF) = 8; value (U) = 21.5	
+ -	2d	[Kruskal- Wallis] Wilcoxon rank-sum	Results paragr aph 3, figure 2 legend	202, 429, 114	Responsive LP/ dLGN boutons, V1 neurons from 6, 6 and 4 mice respectively	Figure 2 legend	Median and interquartile range	Result s paragr aph 3	[8.0293e-32] LP/dLGN 0.0366 V1/LP 1.4626e-26 V1/dLGN 7.6239e-28	Results paragrap h 3	[DOF=2; chi- sq=143.1993] DOF = 629,314,542; U = 58476;z = -2.5068 U = 26468; z = 10.768 U = 47442; z = 11.0367	
+ -	2e	[Kruskal- Wallis] Wilcoxon rank-sum	Results paragr aph 3, figure 2 legend	202, 429, 114	Responsive LP/ dLGN boutons, V1 neurons from 6, 6 and 4 mice respectively	Figure 2 legend	Median and interquartile range	Result s paragr aph 3	[2.9741e-13] LP/dLGN 0.3504 V1/LP 3.9555e-09 V1/dLGN 3.7959e-13	Results paragrap h 3	[DOF=2; chi- sq=57.6873] DOF = 629,314,542; U = 67183; z = -1.5683 U = 22800; z = 6.0651 U = 42042; z = 7.4098	
+ -	Зc	[Kruskal- Wallis] Wilcoxon rank-sum	Results paragr aph 4, figure 3 legend	1825, 2317, 356	Receptive fields from LP boutons, dLGN boutons, V1 neurons from 13, 7 and 4 mice respectively	Figure 3 legend	Median and interquartile range	Result s paragr aph 4	[0 (<10^-323)] LP/dLGN 0 (<10^-323) V1/LP 6.4533e-66 V1/dLGN 1.2102e-25	Results paragrap h 4	[DOF=2; chi- sq=1.9173e+03] DOF = 4140,2179,2671; U = 5427865; z = 43.1155 U = 2178156; z = 17.2122 U = 619295; z = 10.5716	
+ -	3d	[Kruskal- Wallis] Wilcoxon rank-sum	Results paragr aph 4, figure 3 legend	1825, 2317, 356	Receptive fields from LP boutons, dLGN boutons, V1 neurons from 13, 7 and 4 mice respectively	Figure 3 legend	Median and interquartile range	Result s paragr aph 4	[3.4373e-212] LP/dLGN 2.8481e-210 V1/LP 3.9720e-38 V1/dLGN 7.1481e-04	Results paragrap h 4	[DOF=2; chi- sq=973.8267] 4140,2179,2671; U = 4964258; z = 30.9818 U = 2132308; z = 12.9940 U = 525790; z= 3.6745	

+ -	4d	[Kruskal- Wallis] Wilcoxon rank-sum	Results paragr aph 6,7, figure 4 legend	273353, 1380, 87804	Pairs (all-way combinations) of receptive fields from dLGN, V1, LP from 7, 4 and 13 mice respectively	Figure 4 legend	Median and interquartile range	Result s paragr aph 6,7	[0 (<10^-323)] 1.6528e-19 LP/V1 1.5204e-262 LP/dLGN 0 (<10^-323)	Results paragrap h 6,7	[DOF=2; chi- sq=4.5034e+04] DOF = 274731,889182, 3361155; U = 162666202; z = -9.1535 U = 3.9483e+09; z = 34.6464 U = 2.1547e+10; z = 211.7785	
+ -	4e	[Kruskal- Wallis] Wilcoxon rank-sum		11, 11, 9	dLGN, LP imaging regions with at least 50 receptive fields and V1 imaging regions with at least 10 receptive fields		Median and interquartile range	Result s paragr aph 6,7	[3.6545e-06] LP/dLGN 2.4454e-04 LP/V1 5.9127e-04 V1/dLGN 0.0042		[DOF=2; chi- sq=25.0391] DOF = 20,18,18; U = 187; z = 3.9399 U = 165; z = 3.7227 U = 52; z = -3.1909	
+ -	5c	Wilcoxon rank-sum	Results paragr aph 10, figure 5 legend	21,31; 21,30	All closed-loop and dark sessions for dLGN (8 mice) and LP (10 mice)	Figure 5 legend	Sessions mean and standard error to the mean (SEM)	Result s paragr aph 10	Dark-LP/VR-LP 0.06 Dark-dLGN/ VR-dLGN 0.03 VR: dLGN/LP 0.0808 Dark: dLGN/LP 0.0348	Results paragrap h 10	DOF = 50; DOF = 49; U = Dark-LP/VR-LP = 489; Dark-dLGN/VR- dLGN = 798.5; VR: dLGN/LP = 403; Dark: dLGN/LP = 429;	
+	6c	Wilcoxon rank-sum	Results paragr aph 13	18,31	All open-loop sessions from dLGN (8 mice) and LP (10 mice)		Sessions mean and SEM	Result s paragr aph 13	Running Speed (RS) = 0.2672 Visual Flow speed (VF) = 0.9421	Results paragrap h 13	DOF = 47; U: RS = 504; VF = 446	
+	6e	Z-test of proportions	Results paragr aph 14	2159,161 7	All boutons with PP > 0.16 for RS or VF for dLGN (8 mice) and LP (10 mice)		Proportions	Result s paragr aph 14	1e-45, 1e-6	Results paragrap h 14	Z = -14.19 Z = 4.85	
+	6f	Wilcoxon rank-sum	Results paragr aph 15, figure 6 legend	2159,161 7	All boutons with PP > 0.16 for RS or VF for dLGN (8 mice) and LP (10 mice)	Figure 6 legend	Median and interquartile range	Result s paragr aph 15	0.000000001	Results paragrap h 15	DOF = 3774 U = 4267349	
+	7d	Wilcoxon rank-sum	Results paragr aph 16, figure 7 legend	18,31	All open-loop sessions from dLGN (8 mice) and LP (10 mice)	Figure 7 legend	Sessions mean and SEM	Result s paragr aph 16	RS-VF = 0.0036; RS+VF = 0.0004	Results paragrap h 16	DOF = 47; U: RS-VF = 309; RS+VF = 621	
+ -	7e	Wilcoxon signed-rank	Results paragr aph 17, figure 7 legend	334,206; 99,276	Only session pairs where no drift of imaging sites was observed across trial types for RS +VF boutons and RS-VF boutons for dLGN (10 sessions; 7 mice) and RS+VF and RS-VF boutons for LP (13 sessions; 8 mice)	Figure 7 legend	Mean and SEM	Result s paragr aph 17	dLGN: RS+VF = 0.67; RS-VF = 7.88e-11; LP: RS+VF = 0.96; RS-VF = 5.64e-4	Results paragrap h 17	U dLGN: RS+VF = 28720; RS-VF = 16231; LP: RS+VF = 2463; RS-VF = 23690	

4pril 2015

+ -	Supp I. 4c	chi-sq test for uniformity of distribution	Supple menta ry figure 4 legend	1825, 2317, 356	Receptive field subfields from LP boutons, dLGN boutons, V1 neurons from 13, 7 and 4 mice respectively	Suppleme ntary figure 4	distributions shown	Suppl ement ary figure 4	LP 0 (<10^-15) dLGN 0 (<10^-15) V1 0.0327	Supplem entary figure 4 legend	chi- sq(5)=90.5649 chi- sq(5)=335.5723 chi- sq(5)=12.1573	
+ -	Supp I. 4e	[Kruskal- Wallis] Wilcoxon rank-sum	Supple menta ry figure 4 legend	471, 590, 89	Receptive fields from LP boutons, dLGN boutons, V1 neurons with both ON and OFF subfields	Suppleme ntary figure 4	Median	Suppl ement ary figure 4	[1.7424e-58] LP/dLGN 5.8716e-59 LP/V1 1.8586e-05 V1/dLGN 1.7106e-05	Supplem entary figure 4 legend	[chi- sq=265.9893; DOF=2] DOF = 1059,558,677; U = 330728; z=16.2581 U = 138443; z=4.5196 U = 38087; z=4.5371	
+ -	Supp I. 5c	Wilcoxon rank-sum	Supple menta ry figure 5 legend	18,34,14	Only well isolated units from 8 mice for LPMR,LPLR and dLGN were included	Suppleme ntary figure 5 legend	Sessions mean and SEM	Suppl ement ary figure 5	LPMR/LPLR 0.0635; LPMR/dLGN 0.0013 LPLR/dLGN 1.9136e-04	Supplem entary figure 5 legend	DOF = 50,30,46 Z = -1.8980; Z = -3.5495; Z = -4.0557	
+ -	Supp I. 5d	Wilcoxon rank-sum	Supple menta ry figure 5 legend	18,34,14	Only well isolated units from 8 mice for LPMR,LPLR and dLGN were included	Suppleme ntary figure 5 legend	Sessions mean and SEM	Suppl ement ary figure 5	LPMR/LPLR = 0.3459; LPMR/dLGN = 0.0013; LPLR/dLGN = 4.9745e-4	Supplem entary figure 5 legend	DOF = 50,30,46 Z = -0.9426; Z = -3.2105; Z =3.4821	
+	Supp I. 5f	Wilcoxon rank-sum	Results paragr aph 5; Supple menta ry figure 5 legend	18,34,12	Only well isolated units from 8 mice for LPMR,LPLR and dLGN were included	Suppleme ntary figure 5 legend	Sessions mean and SEM	Result s paragr aph 5; Suppl ement ary figure 5	LPMR/LPLR = 0.2482; LPMR/dLGN = 5.2412e-06; LPLR/dLGN = 1.7499e-06	Results paragrap h 5	DOF = 50,28,44 Z = 1.1547; Z = 4.5549; Z = 4.7803	
+ -	Supp I. 5h	Wilcoxon rank-sum	Supple menta ry figure 5 legend	16,10,12	Only well isolated units from 8 mice for LPMR,LPLR and dLGN were included	Suppleme ntary figure 5 legend	Sessions mean and SEM	Suppl ement ary figure 5	LPMR/LPLR = 0.1625; LPMR/dLGN = 3.8245e-04; LPLR/dLGN = 0.0017	Supplem entary figure 5 legend	DOF = 24,26,20 Z = 1.3967; Z = 3.5519; Z = 3.1329	
+ -	Supp I. 7d.e. f	chi-sq test for uniformity of distribution	Supple menta ry figure 7 legend	11,13,8	dLGN, LP imaging regions with at least 35 receptive fields and all V1 imaging regions from 5, 7, and 4 mice respectively	Suppleme ntary figure 7 legend	distributions shown	Suppl ement ary figure 7	dLGN 0.0091 LP 0.5235 V1 0.0244	Supplem entary figure 7 legend	chi-sq(11) = 25.00 chi-sq(11) = 10.0769 chi-sq(11) = 22.00	
+ -	Supp I. 9a	Wilcoxon rank-sum	Supple menta ry figure 9 legend	18,31	All open-loop sessions for dLGN (8 mice) and LP (10 mice)	Suppleme ntary figure 9 legend	Sessions mean and SEM	Suppl ement ary figure 9	0.6325, 0.2257, 0.0684		DOF = 47; U = 488.5, 521, 380.5	
+ -	Supp I. 9b	Wilcoxon rank-sum	Supple menta ry figure 9 legend	18,31	All open-loop sessions for dLGN (8 mice) and LP (10 mice)	Suppleme ntary figure 9 legend	Sessions mean and SEM	Suppl ement ary figure 9	0.0054, 0.6560, 0.0001	Supplem entary figure 9 legend	DOF = 47; U = 610.5, 497, 284.5	

+ -	Supp I. 9c	Wilcoxon rank-sum	Supple menta ry figure 9 legend	18,29	All dark sessions for dLGN (8 mice) and LP (10 mice)	Suppleme ntary figure 9 legend	Sessions mean and SEM	Suppl ement ary figure 9	0.1109, 0.5766, 0.0684		DOF = 45; U = 359, 406, 515.5	
+ -	Supp I. 9d	Wilcoxon rank-sum	Supple menta ry figure 9 legend	18,29	All dark sessions for dLGN (8 mice) and LP (10 mice), containing boutons with PP > 0.16	Suppleme ntary figure 9 legend	Sessions mean and SEM	Suppl ement ary figure 9	0.0965		DOF = 49; U = 393.5	
+ -	Supp l. 10c	Z-test of proportions	Supple menta ry figure 10 legend	2159,161 7	All boutons from dLGN (8 mice) and LP (10 mice) with PP>0.16 for RS or VF, with significant correlations	Suppleme ntary figure 10 legend	Proportions	Suppl ement ary figure 10	1e-38, 1e-11	Supplem entary figure 10 legend	Z = -12.92; Z = 6.66	

Representative figures

1. Are any representative images shown (including Western blots and immunohistochemistry/staining) in the paper?

If so, what figure(s)?

- Fig. 1 Fig. 2a,b,c Fig. 3b Fig. 5b Fig. 7b Supplementary Fig. 1 Supplementary Fig. 2 Supplementary Fig. 3 Supplementary Fig. 5a Supplementary Fig. 8
- 2. For each representative image, is there a clear statement of how many times this experiment was successfully repeated and a discussion of any limitations in repeatability?

If so, where is this reported (section, paragraph #)?

Statistics and general methods

1. Is there a justification of the sample size?

If so, how was it justified?

Where (section, paragraph #)?

Even if no sample size calculation was performed, authors should report why the sample size is adequate to measure their effect size.

2. Are statistical tests justified as appropriate for every figure?

Where (section, paragraph #)?

a. If there is a section summarizing the statistical methods in the methods, is the statistical test for each experiment clearly defined?

No sample size calculation was performed. The sample sizes are considered adequate for the experiments and consistent with the literature.

Statistics are chosen based on the data points and their distribution properties.

There is no section in the methods but the statistical tests are clearly stated for each analysis and figure panel.

yes, numbers of n are reported in each figure legend.

b. Do the data meet the assumptions of the specific statistical test you chose (e.g. normality for a parametric test)?

Where is this described (section, paragraph #)?

c. Is there any estimate of variance within each group of data?

Is the variance similar between groups that are being statistically compared?

Where is this described (section, paragraph #)?

- d. Are tests specified as one- or two-sided?
- e. Are there adjustments for multiple comparisons?
- 3. Are criteria for excluding data points reported?

Was this criterion established prior to data collection?

Where is this described (section, paragraph #)?

4. Define the method of randomization used to assign subjects (or samples) to the experimental groups and to collect and process data.

If no randomization was used, state so.

Where does this appear (section, paragraph #)?

5. Is a statement of the extent to which investigator knew the group allocation during the experiment and in assessing outcome included?

If no blinding was done, state so.

Where (section, paragraph #)?

6. For experiments in live vertebrates, is a statement of compliance with Yes, described in the first paragraph of the methods section. ethical guidelines/regulations included?

Where (section, paragraph #)?

7. Is the species of the animals used reported?

Where (section, paragraph #)?

8. Is the strain of the animals (including background strains of KO/ transgenic animals used) reported?

Where (section, paragraph #)?

- 9. Is the sex of the animals/subjects used reported? Where (section, paragraph #)?
- 10. Is the age of the animals/subjects reported?

Where (section, paragraph #)?

Yes. Non-parametric tests are used throughout.

Yes, either the standard error of the mean or interquartile range were reported both in the figures and in the corresponding results sections.

All tests were two-sided

Significance statements are adjusted for multiple comparisons where appropriate.

Some recordings in awake mice were excluded based on the running profile of the animals. This is described in paragraph 5 of the methods section.

N/A

N/A

Yes, described in the first paragraph of the methods section (mice).

Yes, described in the first paragraph of the methods section.

Yes, described in the first paragraph of the methods section.

Yes, a minimum age is given in the first paragraph of the methods section.

11. For animals housed in a vivarium, is the light/dark cycle reported?

Where (section, paragraph #)?

12. For animals housed in a vivarium, is the housing group (i.e. number of 2-4 mice per cages. animals per cage) reported?

Where (section, paragraph #)?

13. For behavioral experiments, is the time of day reported (e.g. light or dark cycle)?

Where (section, paragraph #)?

14. Is the previous history of the animals/subjects (e.g. prior drug administration, surgery, behavioral testing) reported?

Where (section, paragraph #)?

a. If multiple behavioral tests were conducted in the same group of animals, is this reported?

Where (section, paragraph #)?

15. If any animals/subjects were excluded from analysis, is this reported?

Where (section, paragraph #)?

a. How were the criteria for exclusion defined?

Where is this described (section, paragraph #)?

b. Specify reasons for any discrepancy between the number of animals at the beginning and end of the study.

Where is this described (section, paragraph #)?

Reagents

- 1. Have antibodies been validated for use in the system under study (assay and species)?
 - a. Is antibody catalog number given?

Where does this appear (section, paragraph #)?

b. Where were the validation data reported (citation, supplementary information, Antibodypedia)?

Where does this appear (section, paragraph #)?

Yes, described in paragraph 5 of the methods section.

Yes, described in paragraph 5 of the methods section.

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

2. Cell line identity

a. Are any cell lines used in this paper listed in the database of commonly misidentified cell lines maintained by ICLAC and NCBI Biosample?

Where (section, paragraph #)?

- b. If yes, include in the Methods section a scientific justification of their use--indicate here in which section and paragraph the justification can be found.
- c. For each cell line, include in the Methods section a statement that specifies:
 - the source of the cell lines
 - have the cell lines been authenticated? If so, by which method?
 - have the cell lines been tested for mycoplasma contamination?

Where (section, paragraph #)?

Data deposition

Data deposition in a public repository is mandatory for:

- a. Protein, DNA and RNA sequences
- b. Macromolecular structures
- c. Crystallographic data for small molecules
- d. Microarray data

Deposition is strongly recommended for many other datasets for which structured public repositories exist; more details on our data policy are available here. We encourage the provision of other source data in supplementary information or in unstructured repositories such as Figshare and Dryad.

N/A

N/A

N/A

We encourage publication of Data Descriptors (see Scientific Data) to maximize data reuse.

1. Are accession codes for deposit dates provided?

Where (section, paragraph #)?

N/A			

Computer code/software

Any custom algorithm/software that is central to the methods must be supplied by the authors in a usable and readable form for readers at the time of publication. However, referees may ask for this information at any time during the review process.

- 1. Identify all custom software or scripts that were required to conduct the study and where in the procedures each was used.
- 2. If computer code was used to generate results that are central to the paper's conclusions, include a statement in the Methods section under "Code availability" to indicate whether and how the code can be accessed. Include version information as necessary and any restrictions on availability.

All analysis software was custom written and will be made available upon request

All analysis software was custom written and will be made available upon request

Human subjects

- Which IRB approved the protocol?
 Where is this stated (section, paragraph #)?
- Is demographic information on all subjects provided? Where (section, paragraph #)?
- Is the number of human subjects, their age and sex clearly defined? Where (section, paragraph #)?
- Are the inclusion and exclusion criteria (if any) clearly specified? Where (section, paragraph #)?
- 5. How well were the groups matched?

Where is this information described (section, paragraph #)?

6. Is a statement included confirming that informed consent was obtained from all subjects?

Where (section, paragraph #)?

7. For publication of patient photos, is a statement included confirming that consent to publish was obtained?

Where (section, paragraph #)?

fMRI studies

For papers reporting functional imaging (fMRI) results please ensure that these minimal reporting guidelines are met and that all this information is clearly provided in the methods:

1.	Were any subjects scanned but then rejected for the analysis after the data was collected?	N/A
	a. If yes, is the number rejected and reasons for rejection described?	N/A
	Where (section, paragraph #)?	
2.	Is the number of blocks, trials or experimental units per session and/ or subjects specified?	N/A
	Where (section, paragraph #)?	
3	Is the length of each trial and interval between trials specified?	N/A

N/A

N/A			
N/A			

- Is a blocked, event-related, or mixed design being used? If applicable, please specify the block length or how the event-related or mixed design was optimized.
- 5. Is the task design clearly described?

Where (section, paragraph #)?

- 6. How was behavioral performance measured?
- 7. Is an ANOVA or factorial design being used?
- 8. For data acquisition, is a whole brain scan used?
 - If not, state area of acquisition.
 - a. How was this region determined?
- 9. Is the field strength (in Tesla) of the MRI system stated?
 - a. Is the pulse sequence type (gradient/spin echo, EPI/spiral) stated?
 - b. Are the field-of-view, matrix size, slice thickness, and TE/TR/ flip angle clearly stated?
- 10. Are the software and specific parameters (model/functions, smoothing kernel size if applicable, etc.) used for data processing and pre-processing clearly stated?
- Is the coordinate space for the anatomical/functional imaging data clearly defined as subject/native space or standardized stereotaxic space, e.g., original Talairach, MNI305, ICBM152, etc? Where (section paragraph #)?
- 12. If there was data normalization/standardization to a specific space template, are the type of transformation (linear vs. nonlinear) used and image types being transformed clearly described? Where (section paragraph #)?
- 13. How were anatomical locations determined, e.g., via an automated labeling algorithm (AAL), standardized coordinate database (Talairach daemon), probabilistic atlases, etc.?
- 14. Were any additional regressors (behavioral covariates, motion etc) used?

N/A

N/A

N/A

- 15. Is the contrast construction clearly defined?
- 16. Is a mixed/random effects or fixed inference used?

le,	N/A
	N/A
)	N/A
ΓR/	N/A
nd	N/A
on,	N/A
ion,	N/A
l ch	N/A

April 2015

a. If fixed effects inference used, is this justified?

N/A

N/A

N/A

N/A

- 17. Were repeated measures used (multiple measurements per subject)?
 - a. If so, are the method to account for within subject correlation and the assumptions made about variance clearly stated?
- 18. If the threshold used for inference and visualization in figures varies, is N/A this clearly stated?
- 19. Are statistical inferences corrected for multiple comparisons?
 - a. If not, is this labeled as uncorrected?
- 20. Are the results based on an ROI (region of interest) analysis?
 - a. If so, is the rationale clearly described?
 - b. How were the ROI's defined (functional vs anatomical localization)?
- 21. Is there correction for multiple comparisons within each voxel?
- 22. For cluster-wise significance, is the cluster-defining threshold and the corrected significance level defined?

Additional comments

Additional Comments

N/A			
N/A			
N/A			
N/A			
N/A			
N/A			