
Table	S4.	Pleiotropic	links	between	coronary	artery	disease	(CAD)	and	early-
life	fitness-related	traits	due	to	shared	genetic	loci.	The	table	below	provides	
extensive	support	(143	studies)	that	antagonistic	pleiotropy	is	likely	to	be	present	
for	CAD	genes	due	to	their	consistent	connections	with	fitness-related	traits	
expressed	early	in	life.	See	Fig.	5	for	discussion	and	conceptual	overview	of	these	
potential	effects.	Fitness-related	traits	include	fertility	potential,	reproductive	
outcomes,	pregnancy	outcomes,	fetal	growth	and	survival,	i.e.	affecting	the	ability	of	
an	organism	to	reproduce	and	transfer	genes	to	the	next	generation.	The	first	3	
columns	give	CAD	gene	rank	(no.;	based	on	rank	of	40	genes	from	Fig.	1B),	name	and	
full	name.	Columns	4-8	provide	key	details	of	each	study	where	CAD	genes	also	
contribute	to	traits	that	influence	fitness,	including	what	species	that	was	
demonstrated	in,	what	biological	process	or	fitness	effects	that	gene	is	impacting,	
what	fitness	class	that	effect	is	likely	to	impact	(e.g.	dysfunctional	spermatogenesis	
or	embryogenesis	will	affect	male	and	female	fertility,	ability	to	conceive),	what	the	
observed	genetic	effect	or	mechanism	that	gene	was	associated	with.	

no.	 CAD	gene	 full		name	 species	 fitness	effects	 fitness	class*	 observed	genetic	effect	or	
mechanism	

ref	

1	 BCAS3	 Breast	Carcinoma	
Amplified	Sequence	3	

human/
mouse	

embryogenesis	 female	potential	
fertility	

BCAS3	highly	expressed	in	
developing	oocytes	

[1]	

BCAS3	 mouse	 embryogenesis	 female	potential	
fertility	

BCAS3	significantly	up-
regulated	in	developmentally	
incompetent	mouse	oocytes	

[2]	

2	 CNNM2	 Cyclin	And	CBS	
Domain	Divalent	Metal	
Cation	Transport	
Mediator	2	

human	 pregnancy-related	
blood	pressure	

pregnancy	
outcomes	

CNNM2	significantly	
differentially	expressed	

[3]	

CNNM2	 mouse	 pregnancy	
complications,	
hypoxia	

pregnancy	
outcomes	

CNNM2	significantly	down-
regulated	(-2.5	fold	change)	
during	pregnancy	

[4]	

3	 TEX41	 Testis	Expressed	41	
(Non-	Protein	Coding)	

human	 fetal	IUGR,	
developmental	
delays	

pregnancy	
outcomes	

triplication	involving	TEX41	
causes	IUGR	

[5]	

4	 SMG6	 Nonsense	Mediated	
MRNA	Decay	Factor	

mouse	 altered	
embryogenesis	

female	potential	
fertility	

SMG6	essential	for	normal	
embryogenesis	based	on	gene	
knock-down	study	

[6]	

5	 PHACTR1	 Phosphatase	And	
Actin	Regulator	1	

human	 reproductive	timing	 reproductive	
outcomes	

PHACTR1	genetic	variation	 [7]

PHACTR1	 human	 oocyte	function	 female	potential	
fertility	

PHACTR1	highly	significantly	
expressed	

[8]	

PHACTR1	 human	 placental	
inflammatory	
responses	

pregnancy	
outcomes	

PHACTR1	significantly	down-
regulated	

[9]	

PHACTR1	 human	 endometrium	
implantation	
receptivity	

female	potential	
fertility	

PHACTR1	8-fold	significantly	
up-regulated	

[10]	

PHACTR1	 mouse	 uterus	functioning	 female	potential	
fertility	

PHACTR1	significant	1.4-1.9	
fold	change	

[11]	

PHACTR1	 rat	 lactation	 reproductive	
outcomes	

PHACTR1	significantly	
expressed	(4.7	fold	change)	
in	mammary	tissues	

[12]	
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6	 COG5	 Component	of	
Oligomeric	Golgi	
Complex	5	

Drosophi
la	

spermatogenesis	 male	potential	
fertility	

COG5	expression	required	for	
normal	spermatogenesis	

[13]	

	 COG5	 	 human	 intrauterine	growth	 pregnancy	
outcomes	

COG5	expression	required	for	
normal	fetal	growth	

[14]	

7	 ABCG8	 ATP-Binding	Cassette,	
Sub-Family	G,	Member	
8	

mouse	 infertility	 female	potential	
fertility	

Knockout	mice	deficient	
Abcg8	are	infertile	

[15]	

	 ABCG8	 	 human	 fetal	distress,	
asphyxial	events,	
intrauterine	death	

pregnancy	
outcomes	

ABCG8	involved	in	
intrahepatic	cholestasis	of	
pregnancy	(ICP),	
enterohepatic	circulation,	
specifically	for	exportation	of	
cholesterol	

[16]	

8	 RAI1	 Retinoic	Acid	Induced	
1	

human/
mouse	

growth	retardation,	
embryonic-postnatal	
development	

pregnancy	
outcomes	

knock-out	mouse	model	for	
Smith-Magenis	syndrome	
shows	involvement	of	RAI1	

[17]	

	 RAI1	 	 mouse	 growth	retardation,	
impaired	motor	and	
sensory	
coordination,	
smaller	litter	size	
(direct	reproductive	
fitness)	

pregnancy	
outcomes	

Transgenic	mice	over-
expressing	RAI1	have	
developmentally	impaired	
offspring	

[18]	

9	 NT5C2	 Nucleotidase,	
Cytosolic	II	

human	 female	reproduction	 female	potential	
fertility	

NT5C2	is	over-expressed	in	
fallopian	tube,	uterine	
endometrium,	endocervix,	
ectocervix	

[19]	

	 NT5C2	 	 human	 fetal	growth,	
birthweight,	
postnatal	growth	&	
metabolism	

pregnancy	
outcomes	

NT5C2	genetic	variation	
affects	birthweight	

[20]	

10	 LDLR	 Low	Density	
Lipoprotein	Receptor	

human/
mouse	

IUGR	in	offspring	of	
LDLR-/-	mice.	
Childhood	obesity.	

pregnancy	
outcomes	

LDLR	involved	in	
fetal/offspring	growth	

[21]	

	 LDLR	 	 human	 Placental	regulation	
of	cholesterol	

pregnancy	
outcomes	

Maternal	lipid	profile	
affecting	placental	protein	
expression	of	LDLR	

[22]	

	 LDLR	 	 mouse	 Placental	regulation	
of	cholesterol	

pregnancy	
outcomes	

LDLR	involved	in	maternal-
fetal	transfer	of	lipids	

[23]	

	 LDLR	 	 rat	 Pregnancy	loss	 fetal/offspring	
mortality	

LDLR	rat	model	for	diabetes	 [24]	

11	 KCNK5	 Potassium	Channel,	
Two	Pore	Domain	
Subfamily	K,	Member	
5	

human	 Fertility	-	sperm	
volume	

male	potential	
fertility	

KCNK5	involved	in	protein	
and	mRNA	levels	in	sperm	

[25]	

	 KCNK5	 	 human	 Male	infertility	 male	potential	
fertility	

KCNK5	involvement	in	sperm	
inability	to	fertilize	egg	

[26]	

	 KCNK5	 	 mouse	 Male	infertility	 male	potential	
fertility	

KCNK5	involved	in	sperm	
volume	

[27]	

	 KCNK5	 	 primate	 Male	fertility	 male	potential	
fertility	

KCNK5	involved	in	sperm	
function	

[28]	

	 KCNK5	 	 mouse	 Female	fertility	 female	potential	
fertility	

KCNK5	involved	in	oocyte	
survival/viability	

[29]	

	 KCNK5	 	 cattle	 Lactation	 reproductive	 KCNK5	expression	 [30]	
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outcomes	
12	 ABO	 ABO	Blood	Group	

(Transferase	A,	Alpha	
1-3-N-
Acetylgalactosaminylt
ransferase;	
Transferase	B,	Alpha	
1-3-
Galactosyltransferase)	

human	 Birth	weight,	
maternal	age	at	
child-bearing	

pregnancy	
outcomes	

ABO	variation	effects	 [31]	

	 ABO	 	 human	 Fetal	growth	
restriction	

pregnancy	
outcomes	

ABO	variation	effects	 [32]	

	 ABO	 	 human	 fetal	hypoxia,	
pregnancy	
complications,	
hemolytic	disease	of	
fetus/newborn,	fetal	
death	

pregnancy	
outcomes	

ABO	incompatibility	effects	 [33]	

	 ABO	 	 human	 protection	against	
malaria	

pregnancy	
outcomes	

ABO	variation	effects	 [34]	

	 ABO	 	 human	 Age	at	menarche	 reproductive	
outcomes	

ABO	blood	group	phenotypes	 [35]	

	 ABO	 	 human	 male	infertility	 male	potential	
fertility	

ABO	involved	in	sperm	
concentration/function	

[36]	

	 ABO	 	 human	 pregnancy	
complications	

pregnancy	
outcomes	

ABO	involved	in	preeclampsia	[37]	

	 ABO	 	 human	 female	fertility,	
embryo	implantation	

female	potential	
fertility	

ABO	variation	effects	 [38]	

13	 SWAP70	 SWAP	Switching	B-
Cell	Complex	70kDa	
Subunit	

monkey	 female	fertility,	
implantation,	
placentation	

female	potential	
fertility	

SWAP-70	expression	effects	 [39]	

	 SWAP70	 	 human	 fetal	growth	
restriction	

pregnancy	
outcomes	

SWAP70	involved	in	
preeclampsia	

[40]	

14	 SH2B3	 SH2B	Adaptor	Protein	
3	

human	 intrauterine/postnat
al	growth	

pregnancy	
outcomes	

SH2B3	variation	effects	 [41]	

	 SH2B3	 	 human	 male	testicular	
function	

male	potential	
fertility	

SH2B3	variation	effects	 [42]	

15	 PEMT	 Phosphatidylethanola
mine	N-
Methyltransferase	

human	 fetal	growth,	
placental	function	

pregnancy	
outcomes	

Choline	metabolism/PEMT	
expression	effects	

[43]	

	 PEMT	 	 human	 premature	birth	 pregnancy	
outcomes	

PEMT	variation	[744CC	
genotype]	effects	

[44]	

	 PEMT	 	 human	 sperm	quality	 male	potential	
fertility	

PEMT	variation	[27774G.C]	
effects	

[45]	

	 PEMT	 	 human	 fetal	growth,	
placental	function	

pregnancy	
outcomes	

mRNA	levels	of	PEMT	
involved	in	fetal/placental	
function	

[46]	

	 PEMT	 	 mouse	 embryo	
survival/viability	
during	pre-
implantation	

female	potential	
fertility	

PEMT	expression	effects	 [47]	

	 PEMT	 	 human	 fetal	development	 pregnancy	
outcomes	

PEMT	expression	effects	 [48]	

16	 MRAS	 Muscle	RAS	Oncogene	
Homolog	

mouse	 male	testicular	
function	

male	potential	
fertility	

MRAS	expression	effects	 [49]	

	 MRAS	 	 	 embryo	implantation	female	potential	MRAS	regulation	by	androgen	[50]	
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fertility	 and	progesterone	receptors	
	 MRAS	 	 mouse	 embryo	pluripotency	female	potential	

fertility	
MRAS	expression	effects	 [51]	

	 MRAS	 Muscle	RAS	Oncogene	
Homolog	

human	 breastfeeding	
capacity	

reproductive	
outcomes	

MRAS	expression	effects	 [52]	

17	 KIAA1462	 KIAA1462	 bird	 offspring	number	 reproductive	
outcomes	

KIAA1462	expression	effects	 [53]	

	 KIAA1462	 	 human	 birth-related	
myometrial	gene	
expression	

pregnancy	
outcomes	

KIAA1462	expression	effects	 [54]	

	 KIAA1462	 	 mouse	 female	reproduction	 female	potential	
fertility	

KIAA1462	highly	expressed	in	
oocytes	&	ovaries	

[55]	

	 KIAA1462	 	 pig	 fetal	growth	 pregnancy	
outcomes	

KIAA1462	expression	effects	 [56]	

	 KIAA1462	 	 human	 embryo	implantation	female	potential	
fertility	

KIAA1462	significantly	
differentially	expression	

[57]	

18	 GUCY1A3	 Guanylate	Cyclase	1,	
Soluble,	Alpha	3	

cattle	 embryo	implantation	female	potential	
fertility	

GUCY1A3	expression	effects	 [58]	

	 GUCY1A3	 	 	 embryo	implantation	female	potential	
fertility	

GUCY1A3	expression	effects	 [59]	

	 GUCY1A3	 	 human	 placental	functioning	pregnancy	
outcomes	

GUCY1A3	expression	effects	 [60]	

	 GUCY1A3	 	 human	 birth	weight	 pregnancy	
outcomes	

GUCY1A3	expression	effects	 [61]	

	 GUCY1A3	 	 human	 fetal	growth,	
birthweight,	
postnatal	growth	&	
metabolism	

pregnancy	
outcomes	

GUCY1A3	fetal	genotype	
involved	in	fetal	development	

[62]	

19	 CDKN2B-
AS1	

CDKN2B	Antisense	
RNA	1	

human	 fertility	 female	potential	
fertility	

CDKN2B-AS1	linked	
endometriosis	

[63]	

	 CDKN2B-
AS1	

	 human	 fetal	growth	
restriction	

pregnancy	
outcomes	

CDKN2B-AS1	variation	 [64]	

20	 ANKS1A	 Ankyrin	Repeat	And	
Sterile	Alpha	Motif	
Domain	Containing	1A	

cattle	 fertility	 female	potential	
fertility	

ANKS1A	significant	
expression	in	endometrium	
and	corpus	luteum	

[65]	

	 ANKS1A	 	 cattle	 fertility	 female	potential	
fertility	

ANKS1A	6.7-fold	significantly	
up-regulated	in	blastocysts	

[66]	

	 ANKS1A	 	 human/
mouse	

male	fertility	 male	potential	
fertility	

ANKS1A	expression	 [67]	

21	 PDGFD	 Platelet	Derived	
Growth	Factor	D	

human	 female	fertility	 female	potential	
fertility	

PDGFD	involved	in	ovarian	
hyperstimulation	

[68]	

	 PDGFD	 	 human	 female	reproduction	 female	potential	
fertility	

PDGFD	significantly	
expressed	in	oocytes	

[69]	

	 PDGFD	 	 mouse	 male/female	
reproduction	

female	potential	
fertility	

PDGFD	significantly	
expression	

[70]	

	 PDGFD	 	 	 female	reproductive	
function	

female	potential	
fertility	

PDGFD	significantly	down-
regulated	in	endometrium	

[71]	

	 PDGFD	 	 rat	 female	reproductive	
function	

female	potential	
fertility	

PDGFD	significantly	
expressed	

[72]	

	 PDGFD	 	 human	 pregnancy	
complication,	
preeclampsia	

pregnancy	
outcomes	

PDGFD	significantly	down-
regulated	in	placenta	

[73]	

22	 KSR2	 Kinase	Suppressor	Of	
Ras	2	

mouse	 male	fertility	 male	potential	
fertility	

KSR2	-/-	knockout	mouse	
model	for	spermatogenesis	

[74]	

	 KSR2	 	 cattle	 female	reproductive	 female	potential	KSR2	significantly	up- [75]	
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function	 fertility	 regulated	in	epithelial	cells	
	 KSR2	 	 mouse	 offspring	growth	 fetal/offspring	

mortality	
KSR2	-/-	knockout	mouse	
model	

[76]	

23	 FLT1	 Fms-Related	Tyrosine	
Kinase	1	

human	 fetal	development	 pregnancy	
outcomes	

FLT1	expression	effects	 [77]	

	 FLT1	 	 mouse	 offspring	viability,	
fetal	growth	

pregnancy	
outcomes	

FLT1	knockdown	effects	 [78]	

	 FLT1	 	 human	 pregnancy	loss	 fetal/offspring	
mortality	

FLT1	involved	in	immune	
responses	to	placental	
malaria	

[79]	

	 FLT1	 	 	 female	reproduction	 female	potential	
fertility	

FLT1	significantly	expression	
in	oocytes	

[80]	

	 FLT1	 	 human	 intrauterine	growth	
restriction	

pregnancy	
outcomes	

FLT1	significantly	up-
regulated	

[81]	

	 FLT1	 	 human	 fetal	growth	 pregnancy	
outcomes	

FLT1	significantly	expressed	
in	placenta	

[82]	

	 FLT1	 	 human	 female	reproduction	 female	potential	
fertility	

FLT1	significantly	expressed	
in	oocytes	

[83]	

	 FLT1	 	 human	 female	reproduction,	
implantation	

female	potential	
fertility	

FLT1	significantly	expressed	
in	uterus	

[84]	

	 FLT1	 	 human	 female	reproduction	 pregnancy	
outcomes	

FLT1	significantly	expressed	
in	placenta,	fetal	tissues	

[85]	

	 FLT1	 	 human	 intrauterine	growth	
restriction	

pregnancy	
outcomes	

FLT1	significantly	expressed	
during	pregnancy	

[86]	

24	 ABCG5	 ATP-Binding	Cassette,	
Sub-Family	G,	Member	
5	

rat	 intrauterine	growth	
restriction	

pregnancy	
outcomes	

rat	model	of	IUGR	 [87]	

	 ABCG5	 	 	 trophoblast,	
blastocyst	
development	

female	potential	
fertility	

ABCG5	gene	expression	
effects	

[88]	

25	 ZC3HC1	 Zinc	Finger,	C3HC-
Type	Containing	1	

	 male	fertility	 male	potential	
fertility	

meiosis	disruptors	 [89]	

	 ZC3HC1	 	 mouse	 pregnancy	
establishment,	
maintenance,	
conceptus	survival	

female	potential	
fertility	

ZC3HC1	expression,	1.57-fold	
significantly	changed	

[90]	

26	 SMAD3	 SMAD	Family	Member	
3	

	 folliculogenesis	 female	potential	
fertility	

SMAD3	expression	effects	 [91]	

	 SMAD3	 	 mouse/r
at	

oocyte	function	 female	potential	
fertility	

SMAD3	expression	effects	 [92]	

	 SMAD3	 	 	 estrogen	receptor	
interactions	

female	potential	
fertility	

SMAD3	expression	effects	 [93]	

	 SMAD3	 	 rat	 testis	function	 male	potential	
fertility	

SMAD3	expression	effects	 [94]	

	 SMAD3	 	 human	 age	at	natural	
menopause	

reproductive	
outcomes	

SMAD3	interaction	effects	 [95]	

	 SMAD3	 	 human	 twinning	capacity	 reproductive	
outcomes	

SMAD3	genotype	
(rs17293443-C)	effects	

[96]	

	 SMAD3	 	 human	 female	fertility	and	
fecundity	

female	potential	
fertility	

SMAD3	promotes	
proliferation	and	
steroidogenesis	of	human	
ovarian	lutenized	granulosa	
cells	

[97]	

	 SMAD3	 	 mouse	 embryo	viability	 female	potential	
fertility	

SMAD3	signalling	effects	 [98]	

Table S4

S15



	 SMAD3	 	 human	 spermatogenesis,	
male	reproduction	

male	potential	
fertility	

SMAD3	expression	effects	 [99]	

27	 SLC22A3	 Solute	carrier	family	
22,	extra	neuronal	
monoamine	
transporter	

human	 placental	functioning	pregnancy	
outcomes	

SLC22A3	expression	effects	 [100]	

	 SLC22A3	 	 human	 fetal	development,	
fetal-placental	
resource	
provisioning	

pregnancy	
outcomes	

SLC22A3	expression	effects	 [101]	

	 SLC22A3	 	 human	 fetal-placental	
functioning	

pregnancy	
outcomes	

SLC22A3	expression	changes	
during	pregnancy	

[102]	

	 SLC22A3	 	 human	 fetal-placental	
functioning	

pregnancy	
outcomes	

SLC22A3	significantly	
expressed	by	trimester	

[102]	

28	 REST	 RE1-Silencing	
Transcription	Factor	

mouse	 embryo	functioning	 female	potential	
fertility	

REST	regulatory	network	
effects	

[103]	

29	 PPAP2B	 Phospholipid	
Phosphatase	3	

human	 endometriosis,	
female	fertility	

female	potential	
fertility	

PPAP2B	-1.69-fold	
significantly	changed	

[104]	

	 PPAP2B	 	 human/r
odent	

gametogenesis	 male	potential	
fertility	

PPAP2B	expression	effects	 [105]	

	 PPAP2B	 	 sheep	 breeding	capacity	 reproductive	
outcomes	

PPAP2B	association	effects	 [106]	

	 PPAP2B	 	 human	 pregnancy	
complications	

pregnancy	
outcomes	

PPAP2B	1.36	-fold	
significantly	up-regulated	in	
placental	tissues	of	
preeclamptic	mothers	

[107]	

	 PPAP2B	 	 human	 embryo	viability	 female	potential	
fertility	

PPAP2B	involved	in	
spontaneous	abortion	due	to	
parthenogenesis	

[108]	

	 PPAP2B	 	 human	 embryo	implantation	female	potential	
fertility	

PPAP2B	differential	
expression	effects	

[57]	

	 PPAP2B	 	 	 female	reproductive	
function	

female	potential	
fertility	

PPAP2B	up-regulated	in	
endometrium	

[71]	

30	 MIA3	 Melanoma	Inhibitory	
Activity	Family,	
Member	3	

cattle	 ovarian	functioning	 female	potential	
fertility	

MIA3	4.6-fold	significantly	
up-regulated	

[109]	

	 MIA3	 	 mouse	 placental	
(dys)function	

female	potential	
fertility	

MIA3	expresed	in	early	
trophoblast	differentiation	

[110]	

31	 IL6R	 Interleukin	6	Receptor	pig	 endometrium	
functioning	

pregnancy	
outcomes	

IL6R	significantly	
differentially	expressed	in	
endometrium	

[111]	

	 IL6R	 	 cattle	 endometrium	
functioning	

pregnancy	
outcomes	

IL6R	3.38-fold	significantly	
up-regulated	during	
pregnancy	

[112]	

	 IL6R	 	 human	 endometrium	
functioning	in	PCOS	
women	

female	potential	
fertility	

IL6R	significantly	up-
regulated	

[113]	

	 IL6R	 	 human	 pre-term	birth	SNP	
variation	

pregnancy	
outcomes	

IL6R	significantly	associated	
with	pre-term	birth	

[114]	

32	 HDAC9	 Histone	Deacetylase	9	 human	 oocyte	function	 female	potential	
fertility	

HDAC9	expression	effects	 [115]	

	 HDAC9	 	 cattle	 male	fertility	 male	potential	
fertility	

HDAC9	involved	in	germ	cell	
production	

[116]	

	 HDAC9	 	 pig	 birth	weight	 pregnancy	
outcomes	

HDAC9	expression	effects	 [117]	
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	 HDAC9	 	 human/
mouse	

oocyte	function	 female	potential	
fertility	

HDAC9	expression	effects	 [118]	

	 HDAC9	 	 human	 birth-related	
myometrial	gene	
expression	

pregnancy	
outcomes	

HDAC9	expression	effects	 [119]	

33	 COL4A1	 Collagen,	Type	IV,	
Alpha	1	

pig	 neonate	survival	 pregnancy	
outcomes	

COL4A1	expression	effects	 [120]	

	 COL4A1	 	 human	 testis	function	 male	potential	
fertility	

COL4A1	expression	effects	 [121]	

	 COL4A1	 	 mouse	 folliculogenesis	 female	potential	
fertility	

COL4A1	expression	effects	 [122]	

	 COL4A1	 	 human	 fetal	survival	 fetal/offspring	
mortality	

COL4A1	mutation	effects	 [123]	

	 COL4A1	 	 	 fetal/placenta	
growth	and	
development	

pregnancy	
outcomes	

COL4A1	expression	effects	 [124]	

34	 ABHD2	 Abhydrolase	Domain	
Containing	2	

	 male	fertility	 male	potential	
fertility	

ABHD2	expression	effects	 [125]	

35	 SORT1	 Sortilin	1	 human	 endometrium	
functioning	

pregnancy	
outcomes	

SORT1	significantly	
expressed	during	labour	

[54]	

	 SORT1	 	 	 ovarian	functioning	 female	potential	
fertility	

SORT1	significantly	up-
regulated	

[126]	

	 SORT1	 	 rat	 ovarian	functioning	 female	potential	
fertility	

SORT1	expression	effects	 [127]	

	 SORT1	 	 human	 embryo	implantation	female	potential	
fertility	

SORT1	differential	expression	
effects	

[128]	

36	 SLC22A5	 Solute	Carrier	Family	
22	(Organic	
Cation/Carnitine	
Transporter),	Member	
5	

mouse	 male	infertility	 male	potential	
fertility	

SLC22A5	mutation	related	to	
male	infertility	

[129]	

	 SLC22A5	 	 pig	 reproductive	
variation,	offspring	
born	alive	and	total	
born	

reproductive	
outcomes	

SLC22A5	genotype	effects	on	
reproductive	capacity	

[130]	

	 SLC22A5	 	 pig	 age	at	puberty	 reproductive	
outcomes	

SLC22A5	genotype	effects	 [131]	

37	 NOA1	 Nitric	Oxide	
Associated	1	

human	 male	fertility,	
testicular	
functioning	

male	potential	
fertility	

NOA1	expression	effects	 [132]	

	 NOA1	 	 mouse	 embryo/trophoblast	
viability	

female	potential	
fertility	

NOA1-deficient	mouse	model	 [133]	

38	 LPL	 Lipoprotein	Lipase	 human	 pregnancy	
complications	

pregnancy	
outcomes	

LPL	expression	effects	 [134]	

	 LPL	 	 human	 male	infertility	 male	potential	
fertility	

sperm	DNA	fragmentation	
related	to	LPL	expression	

[135]	

	 LPL	 	 human	 reproductive	timing	 reproductive	
outcomes	

LPL	expression	effects	 [7]	

	 LPL	 	 human	 intrauterine	growth	
restriction	

pregnancy	
outcomes	

LPL-mediated	fetal-placental	
nutrient	transfer	

[136]	

	 LPL	 	 human/
mouse	

placental	functioning	pregnancy	
outcomes	

LPL	expression	effects	 [137]	

	 LPL	 	 	 fetal/placental	
resource	transfer,	
pregnancy	

pregnancy	
outcomes	

LPL	expression	effects	 [138]	
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complications	
	 LPL	 	 human	 testis/spermatogene

sis	
male	potential	
fertility	

LPL	expression	effects	 [139]	

	 LPL	 	 mouse	 placental	regulation	
of	cholesterol	

pregnancy	
outcomes	

LPL	involved	in	maternal-
fetal	transfer	of	lipids	

[23]	

39	 COL4A2	 Collagen,	Type	IV,	
Alpha	2	

mouse	 fetal	viability	 fetal/offspring	
mortality	

mouse	knockout	model	for	
COL4A2	

[140]	

	 COL4A2	 	 human	 testis	function	 male	potential	
fertility	

COL4A2	expression	effects	 [121]	

	 COL4A2	 	 human	 offspring	viability	 fetal/offspring	
mortality	

COL4A2	expression	effects	 [141]	

40	 ADAMST7	 ADAM	
Metallopeptidase	With	
Thrombospondin	
Type	1	Motif,	7	

mouse	 embryogenesis	 female	potential	
fertility	

COL4A2	expression	effects	 [142]	

	 ADAMST7	 	 dog	 mammary	tissue	
functioning	

reproductive	
outcomes	

ADAMST7	significantly	up-
regulated	in	mammary	
tissues	

[143]	

	 ADAMST7	 	 human	 breastfeeding	
capacity	

reproductive	
outcomes	

ADAMST7	expression	effects	 [52]	

	
Table	footnotes:	
	
*'fitness	class'	column	defined	further:	
male	potential	fertility	 -		 includes	processes	affecting	spermatogenesis,	sperm	motility,	volume	or		
	 	 function	that	ultimately	affect	probability	of	successful	egg	fertilization.	
female	potential	fertility	 -		 includes	processes	affecting	embryogenesis	(i.e.	oocyte	viability,	survival),		
	 	 functioning	of	uterus	(i.e.	implantation	receptivity,	endometrium	functioning),		
	 	 placentation	(trophoblast	cell	motility)	that	ultimately	affects	initial	successful		
	 	 establishment	of	pregnancy.	
pregnancy	outcomes	 -	 includes	processes	affecting	regulation	of	blood	pressure,	nutrient	and	oxygen		
	 	 transfer	between	fetal	and	placental	tissues	during	pregnancy	that	ultimately		
	 	 influences	fetal	growth,	development	and	survival.	
fetal/offspring	mortality	 -	 includes	processes	linked	to	pregnancy	defects,	resistance	to	pathogens,		
	 	 affecting	survival	of	fetus	during	pregnancy	or	perinatal	mortality.	
reproductive	outcomes	 -	 includes	effects	on	age	at	maturity,	reproductive	timing,	potential	number	of		
	 	 offspring,	breastfeeding	capacity.	
	
Search	criteria:	

• For	each	CAD	gene,	Google	scholar	was	used	to	search	for	studies	using	the	'Search	terms'	(below)	and	the	
gene	name	(BCAS3	is	used	as	an	example)	

• For	each	search,	only	the	first	page	of	results	was	considered.	Search	results	most	consistent	with	all	search	
terms	are	ranked	by	page,	thus	the	most	relevant	results	were	always	on	the	first	page.	This	approach	was	
also	employed	to	keep	this	literature	search	tractable	in	terms	of	time	(i.e.	a	search	for	each	of	the	terms	
below	for	one	gene	usually	took	~1	hour).	

• We	also	used	the	GWAS	Catalog	(https://www.ebi.ac.uk/gwas/)	using	the	gene	name	to	search	for	further	
potential	links	to	fitness	related	traits	

	
Search	terms	(example	using	gene	BCAS3):	

• "BCAS3"	and	"reproduction"	and	gene	and	-"noncommercial	use,	distribution,	and	reproduction	in	any"	
• "BCAS3"	and	"fitness"	and	gene	
• "BCAS3"	and	"fertility"	and	gene	
• "BCAS3"	and	"menarche"	and	gene	
• "BCAS3"	and	"menopause"	and	gene	
• "BCAS3"	and	"birth"	or	"birth	weight"	
• "BCAS3"	and	"pregnancy"	and	gene	
• "BCAS3"	and	"placenta"	and	gene	
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• "BCAS3"	and	"implantation"	and	gene	
• "BCAS3"	and	"oocyte"	and	gene	
• "BCAS3"	and	"sperm"	and	gene	
• "BCAS3"	and	"testis"	
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