
Supplementary Note 1

Secondary wavefronts of arap1 behind wavefronts of actin. Recently,4

it has been shown that Arap1 forms a secondary wavefront in the interior of5

the wavefront of polymerized actin in CDRs [1]. Supplementary Fig. 1 shows a6

kymograph that was sampled from a time-lapse sequence obtained by Hasegawa7

et al [33] (see specifically Figure 2A, therein). High concentrations of Arap1 are8

only found in the CDR interior. Note that this also holds for the phase of9

CDR contraction. The relative positions of the maxima of polymerized actin10

and Arap1 are therefore different between expanding and contracting CDRs;11

note that for the expanding wavefront there is a pronounced peak of Arap112

following that of actin, whereas for the reversing wave both peaks co-localize, as13

indicated by the yellowish colors in Supplementary Fig. 1B. We found the same14

phenomenon in the results of our simulations (compare Supplementary Fig. 1B15

to Figure 4B and C in the main text).16
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Supplementary Figure 1: Secondary wavefront of Arap1 in the interior of the
wavefront of actin in CDRs. (A) sketch of the cell exhibiting a CDR and
the relative positions of the wavefronts of actin (stained by lifeAct-mCherry)
and Arap1. The straight black line highlights the position along which the
kymograph was (B) taken.
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Supplementary Note 2

The physical model. The dimensionless Eq. (1)-(4) in the main text have18

been obtained from a physical model together with a change in variables and19

parameters.20

We consider the following four fields of protein densities21

1. branched actin in CDRs (cb)22

2. filamentous actin of stress fibers and the cell cortex (cf)23

3. monomeric actin subunits (cg)24

4. inhibitor of actin polymerization (ci)25

as introduced in the main text (section ”bistable actin organization within26

CDRs”) and Figure 2. The model equations read27

∂cb
∂t

= kp
c2bcg
ki + ci

− kdcb +Db∆cb (1a)

∂cf
∂t

= kf1
cg

ki + ci
− kf2cf (1b)

∂cg
∂t

= −kp
c2bcg
ki + ci

+ kdcb − kf1
cg

ki + ci
+ kf2cf +Dg∆cg (1c)

∂ci
∂t

= ki1cb − ki2ci +Di∆ci. (1d)

Here kp describes the kinetics of autocatalytic/cooperative actin polymerization28

inhibited by the inhibitory complex. The saturation parameter of the latter is29

given by ki. Polymerized actin is subject to spontaneous decay and severing,30

described by the kinetic constant kd. The diffusivity of branched actin at the31

membrane (including the corresponding promoting proteins of branching) is32

given by Db. The corresponding terms for the spontaneous polymerization of33

actin of stress fibers and the cell cortex have the kinetic constant of polymer-34

ization kf1 and depolymerization kf2. The dynamics of the globular actin is35

conserving the total actin concentration and further considers fast diffusion of36

actin monomers having a diffusivity of Dg. The inhibitory complex is activated37

at a rate ki1 proportional to the concentration of branched CDR actin and sub-38

ject to spontaneous decay described by the kinetic constant ki2. The diffusion39

constant of the inhibitory complex is given by Di.40

To obtain the dimensionless forms Eq. (1)-(4), we introduce

x′ = x/x0 with x0 =
√
Dg/kd

t′ = t/t0 with t0 = 1/kd
G = cg/g0 with g0 = b0
B = cb/b0 with b0 =

√
kdki/kp

F = cf/f0 with f0 = b0
I = ci/i0 with i0 = ki
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and respectively,44

D̃b = Db/Dg

k̃i1 = ki1/(kdki) and k̃f1 = kf1

kdki

k̃i2 = ki2/kd and k̃f2 = kf2/kd.

D̃i = Di/Dg

In the main text we dropped the tildes.47

Supplementary Note 3

Fixed points. At the spatially homogeneous fixed points of the system49

Eq. (1)-(4) the CDR incorporated actin B takes the following values50

B∗0 = 0 (2a)

B∗1± =
(A− a)

2
±

√
(A− a)2

4
− (1 + α). (2b)

Here A = G∗ +B∗ +F ∗ is the total actin density in the system, a = k̃i1/k̃i251

the ratio of the kinetic constants of the inhibitory complex I, and α = k̃f1/k̃f252

the ratio of the kinetic constants of the cortical and stress fiber actin F . The53

fixed point with B∗0 is always stable, whereas B∗1± undergoes the bifurcations54

that are described in the main text. The respective other components of the55

fixed point are:56

F ∗0,1± = α
A−B∗0,1±

α+ (1 + aB∗0,1±)
(3a)

G∗0,1± = A−B∗0,1± − F ∗0,1± (3b)

I∗0,1± = aB∗0,1±. (3c)

Supplementary Note 4

Bistability of counter propagating front solutions. To demonstrate58

the counter-propagation of wavefronts, we initiate half of the domain (-60, 0)59

at the stable fixed point P∗0 and the other half (0, 60) at the fixed point P∗1+60

. Supplementary Fig. 2A shows a close up of the profile around the origin of61

the domain. With this initial condition, the system evolves as P∗1+ invades the62
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state P∗0 (Supplementary Fig. 2B). This situation corresponds to the expansion63

phase of CDRs.64

Next, we make a small, localized perturbation in the field G (in form of a65

Gauss curve of negative amplitude, Supplementary Fig. 2D), all other fields are66

unchanged. From this initial condition the front propagates into the reverse67

direction (Supplementary Fig. 2E ), with P∗0 invading P∗1+ .68

In the bistable regime the robust mechanism of wave reversal at boundaries69

persists and waves will continue to collapse back to points, regardless of the70

domain geometry. Supplementary Fig. 3 shows a time-lapse of wave dynamics71

on an asymmetric domain.72

Experimentally, CDRs colliding head on are observed to mutually annihilate73

locally forming fused CDRs [2]. The bistability in our model naturally gives rise74

to this dynamics upon wavefront collisions as shown in Supplementary Fig. 4.75
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Supplementary Figure 2: Counter-propagating front solutions. (A-C ) Front
solutions in which the state P∗1+ invades P∗0 . (A) Initial profiles of the fields
around the origin of the domain (-60, 60). (B) kymograph. (C ) profiles of the
fields at t = 50. (D-F ) The respective plots for a front solution in which the state
P∗0 invades P∗1+ . Note that the only difference between the two simulations is
the slight deviation of the G field in the initial profile (compare (A) and (D)).
Parameters: Db = 0.12, ki1 = 2.09, ki2 = 0.53, kf1 = 2.05, kf2 = 1.19, A = 8.5,
domain length: 60, grid size: 0.05.
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Supplementary Figure 3: Dynamics of the system in the bistable regime on an
asymmetric domain. Time stamps are with respect to the start of the simulation
at t = 0. Parameters: Db = 0.12, ki1 = 2.09, ki2 = 0.53, kf1 = 2.05, kf2 = 1.19,
A = 9.67, maximal domain diameter: ca. 50, maximal mesh size: 0.5.
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Supplementary Figure 4: Numerical results exhibiting wavefront collision of
initially two expanding ring-shaped wavefronts. Upon collision the wavefronts
mutually locally annihilate giving rise to one fused structure. Parameters: Db =
0.12, ki1 = 2.09, ki2 = 0.53, kf1 = 2.05, kf2 = 1.19, A = 9.67, domain radius:
50, maximal mesh size: 0.5.
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Supplementary Note 5

Simulation of growth factor stimulated CDRs. It is a common strategy77

in the research on CDRs to stimulate their formation via growth factors such as78

PDGF [3, 4]. Cells utilize receptor tyrosine kinsases to transmit specific binding79

events between growth factors and the respective receptors into the cell inte-80

rior where signaling cascades are triggered that lead to CDR formation. Since81

growth factors are not spatially confined to specific regions of the cell membrane82

stimulation results in a spatially extended region of excitation. Correspondingly,83

upon growth factor stimulation CDRs are usually not observed to initiate from84

points but spatially extended excited regions (see, e.g., Supplementary Fig. 5A).85

We simulate the respective behavior by excitation of system (Eq. (1)-(4))
by a field of normally distributed random values. Similar to the behavior of87

CDRs upon growth factor stimulation, the system initially forms small short-88

living wave structures and eventually one ring-shaped front surrounding the89

excited domain (Supplementary Fig. 5B). The front contracts and collapses to90

one point, which is in accord with the dynamics of CDRs after growth factor91

simulation.92
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Supplementary Figure 5: Simulating growth factor-induced CDR formation. (A)
Growth factor-induced CDR formation. Time points with respect to growth
factor addition (PDGF). (B) Dynamics of the system upon stimulation with
a field of random numbers. Parameters: Db = 0.12, ki1 = 2.09, ki2 = 0.53,
kf1 = 2.05, kf2 = 1.19, A = 9.67, domain radius: 50, maximal mesh size: 0.5.
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