Supporting Information for

DEVELOPING TARGETED HYBRID IMAGING PROBES BY CHELATOR SCAFFOLDING

Dominik Summer,[†] Leo Grossrubatscher,[†] Milos Petrik,[‡] Tereza Michalcikova,[‡] Zbynek Novy,[‡] Christine Rangger,[†] Maximilian Klingler, [†] Hubertus Haas,[§] Piriya Kaeopookum, [†]_I Elisabeth von Guggenberg,[†] Roland Haubner,[†] and Clemens Decristoforo^{*,†}

[†]Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria

⁺Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 5, 779 00, Olomouc, Czech Republic

[§]Division of Molecular Biology / Biocenter, Medical University Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria

"Ministry of Science and Technology (MOST), Thailand Institute of Nuclear Technology (TINT), Nakhonnayok 26120, Thailand

* Corresponding author:

Clemens Decristoforo; Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria; email: <u>Clemens.Decristoforo@i-med.ac.at</u>; Te:+4351250480951; Fax:+435125046780951

TABLE OF CONTENTS

Supporting Materials and Methods

Radioiodination general information	. 3
Radiosynthesis of [¹²⁵ I]-[Leu ¹⁵]-Gastrin I <i>via</i> Chloramine T method	. 3
Radiosynthesis of [¹²⁵ I]-c(RGDyV) <i>via</i> lodogen method	. 3
Supporting Reference	. 3

Supporting Figures

Figure S1: Chromatograms of [¹²⁵ I]-[Leu ¹⁵]-Gastrin I	4
Figure S2: Chromatograms of [¹²⁵ I]-c(RGDyV)	5
Figure S3: Chromatograms of [3-MP ⁰ -D-Glu ¹ ,desGlu ²⁻⁶]-minigastrin11	6
Figure S4: Chromatograms of c(RGDfK)-(PEG) ₄ -SH	7
Figure S5: Chromatograms of [Fe]FSC-(N-(3-maleinimidopropionyl)) ₂	8
Figure S6: Chromatograms of Sulfo-Cyanine7-FSC-(mal) ₂	9
Figure S7: Chromatograms of Sulfo-Cy7-FSC-MG	10
Figure S8: Chromatograms of Sulfo-Cy7-FSC-RGD	11
Figure S9: Analysis of [68Ga]Sulfo-Cy7-FSC-MG and [68Ga]Sulfo-Cy7-FSC-RGD	12
Figure S10: Stability of [⁶⁸ Ga]Sulfo-Cy7-FSC-MG and [⁶⁸ Ga]Sulfo-Cy7-FSC-RGD	13

Radioiodination general information. The cyclic pentapeptide c(RGDyV) was synthesized according to Haubner et al.¹ and [Leu¹⁵]-Gastrin I was purchased from Bachem (Bubendorf, Switzerland). Iodine-125 (5 mCi) was obtained from Perkin Elmer (Waltham, MA, USA) as Na¹²⁵I in 0.01 mM NaOH solution (pH 8-11). Iodine-125 labelling was performed at ambient temperature and labelled peptides were purified by analytical radio-RP-HPLC and fractions were collected manually. RP-HPLC analysis was carried out on an UltiMate 3000 RS UHPLC pump, Ultimate 3000 column compartment (25 °C oven temperature), UltiMate 3000 Variable Wavelength Detector (Thermo Fisher Scientific, Vienna, Austria, UV detection at 220 nm), GabiStar radio detector (Raytest; Straubenhardt, Germany) and a Jupiter 5 μ m C₁₈ 300 Å 150 × 4.6 mm (Phenomenex Ltd. Aschaffenburg, Germany) column with following acetonitrile (ACN)/H₂O/ 0.1 % trifluoroacetic acid (TFA) multistep gradients was used: Gradient A: flow rate of 1.0 mL/min; 0.0–2.0 min 20% ACN, 2.0–32.0 min 20–50 % ACN, 32.0–33.0 min 50–80 % ACN, 33.0–35.0 min 80 % ACN, 35.0–40.0 min 20 % ACN. Gradient B: flow rate of 1.5 mL/min; 0.0–2.0 min 0% ACN, 18.0–20.0 min 0 % ACN.

Radiosynthesis of $[^{125}I]$ -[Leu¹⁵]-Gastrin I via Chloramine T method. An aliquot of 10 µL of peptide stock solution (0.48 mM in H₂O) was mixed with 25 µL 0.5 M phosphate buffer, 5 µL Na¹²⁵I (10 MBq) solution and after adding 20 µL of freshly water-dissolved *N*-Chloro-*p*-toluenesulfonamide sodium salt in a concentration of 7.1 mM the resulting mixture was reacted for 1 min. Thereafter 25 µL 10 % (m/v) bovine serum albumin (BSA) dissolved in 0.05 M phosphate buffer was added and after 2 minutes reaction time followed by addition of 10 µL potassium iodide solution (10 % in H2O, m/v) [¹²⁵I]-[Leu¹⁵]-Gastrin I was purified using analytical RP-HPLC (gradient A).

Radiosynthesis of $[1^{25}I]$ -c(RGDyV) via lodogen method. PierceTM Iodination Reagent (ThermoFisher Scientific, Vienna, Austria) was dissolved in dichloromethane to a final concentration of 2.3 mM and after transferring 150 µL to an Eppendorf tube the organic solvent was removed under argon stream. Hereafter 150 µL 0.5 M phosphate buffer (pH 7.4), 10 µL of peptide stock solution (1.7 mM in H₂O) and 5 µL Na¹²⁵I (10 MBq) solution was added to the 1,3,4,6-tetrachloro-3 α ,6 α -diphenyl-glycoluril coated tube and the mixture was maintained under gentle shaking. After 10 min the reaction solution was immediately transferred to a fresh Eppendorf tube and [¹²⁵I]-c(RGDyV) was purified via analytical RP-HPLC (gradient B).

Supporting Reference

(1) Haubner, R., Wester, H. J., Reuning, U., Senekowitsch-Schmidtke, R., Diefenbach, B., Kessler, H., Stocklin, G., and Schwaiger, M. (1999) Radiolabeled $\alpha_v\beta_3$ integrin antagonists: A new class of tracers for tumor targeting. *J. Nucl. Med.* 40, 1061–1071.

Figure S1: analytical RP-HPLC chromatogram of [Leu¹⁵]-Gastrin I (**A**) and [¹²⁵I]-[Leu¹⁵]-Gastrin I (**B**)

Figure S2: analytical RP-HPLC chromatogram of c(RGDyV) (A) and [¹²⁵I]-c(RGDyV) (B)

Figure S3: preparative RP-HPLC (A) and analytical RP-HPLC (B) of [3-MP⁰-D-Glu¹,desGlu²⁻⁶]-minigastrin11 [MG11-SH]

Figure S4: preparative RP-HPLC (**A**) and analytical RP-HPLC (**B**) of c(RGDfK)-(PEG)₄-SH [**RGD-SH**]

7

Figure S5: preparative RP-HPLC (**A**) and analytical RP-HPLC (**B**) of mono- and multiple (N-(3-maleinimidopropionyl)) conjugated [Fe]FSC derivatives; analytical RP-HPLC (**C**) of [Fe]FSC-(N-(3-maleinimidopropionyl))₂ (**[Fe]FSC-(mal)**₂)

Figure S6: preparative RP-HPLC (A) and analytical RP-HPLC (B) of Sulfo-Cyanine7-FSC-(mal)₂

Figure S7: preparative RP-HPLC (A) and analytical RP-HPLC (B) of Sulfo-Cy7-FSC-MG

Time (min)

Figure S8: preparative RP-HPLC (A) and analytical RP-HPLC (B) of Sulfo-Cy7-FSC-RGD

Figure S9: analytical radio-RP-HPLC (A) and radio-ITLC (B) of [⁶⁸Ga]Sulfo-Cy7-FSC-MG and [⁶⁸Ga]Sulfo-Cy7-FSC-RGD

Figure S10: analytical radio-RP-HPLC to assess stability of [⁶⁸Ga]Sulfo-Cy7-FSC-MG (**A**) and [⁶⁸Ga]Sulfo-Cy7-FSC-RGD (**B**)