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Methods

Device

The physical device portion of Darwin X consists of a wheeled mobile base equipped
with a CCD camera for vision, odometry for self-movement cues, IR transceivers for
obstacle avoidance, and a front mounted, downward pointing IR transceiver to detect the
hidden platform. Light-emitting diodes (LEDs) on top of Darwin X, which were
detectable by two cameras placed over the enclosure, were used to track Darwin X’s
position.

Darwin X was equipped with a set of innate behavioral responses for exploration,
obstacle avoidance, and platform detection. Its default behavior was to proceed forward
for ≈10 seconds, rotate to its left, then to its right, and then choose a new heading. If
Darwin X detected a large obstacle, such as a wall with its IR sensors, it would initiate an
obstacle avoidance response. If it detected the hidden platform with the downward facing
IR sensor, Darwin X would stop and rotate to the left and then to the right.

Neural Simulation

Darwin X’s behavior is guided by a simulated nervous system modeled on the anatomy
and physiology of the mammalian nervous system but, obviously, with far fewer neurons
and a much less complex architecture. It consists of a number of areas labeled according
to the analogous neocortical, hippocampal and subcortical brain regions. Each area
contains neuronal units that can be either excitatory or inhibitory, each of which
represents a local population of neurons. To distinguish modeled areas from
corresponding regions in the mammalian nervous system, the simulated areas are
indicated in italics (e.g., IT).

During each simulation cycle of Darwin X, sensory input is processed, the states of all
neuronal units are computed, the connection strengths of all plastic connections are
determined, and motor output is generated. In our experiments, execution of each
simulation cycle required ≈200 ms of real time. The neural simulation was run on a
BEOWULF cluster containing 12 1.4-GHz Pentium IV computers running the Linux
operating system. All sensory input from the device and motor commands to the device
was communicated through wireless links between the device and one of cluster’s
workstations. During each simulation cycle, all neuronal activities were saved on a hard
disk, and Darwin X’s position was recorded.

In the present experiments, the simulated nervous system contained 50 neural areas,
90,000 neuronal units, and ≈1.4 million synaptic connections. It included a visual system,
a head direction system, a hippocampal formation, a basal forebrain, a value or reward
system, and an action selection system. Fig. 2 shows a high-level diagram of the
simulated nervous system including the various neural areas and the arrangement of



synaptic connections. Specific parameters relating to each area and to patterns of
connectivity are given in Tables 2 and 3.

Visual images from Darwin X’s charge-coupled device (CCD) camera were filtered for
color and edges and the filtered output directly affected neural activity in area V1, which
is composed of functionally segregated subareas for color and shape. The CCD camera
sends 320 × 240 pixel RGB video images, via an RF transmitter, to a frame grabber
attached to one of the workstations running the neural simulation. The image was
spatially averaged to produce an 80 × 60 pixel image. Different sized Gabor filters (8 × 8,
16 × 16, 32 × 32, and 64 × 64) were used to detect vertical edges of varying widths. The
output of the Gabor function mapped directly onto the neuronal units of the
corresponding V1 subarea (V1-width8, V1-width16, V1-width32, and V1-width64).
Color filters (red positive center with a green negative surround, red negative center with
a green positive surround, blue positive with red-green negative, and blue negative with
red-green positive) were applied to the image. The outputs of the color filters were
mapped directly onto the neuronal units of V1-red, V1-green, V1-blue, and V1-yellow.
V1 neuronal units projected retinotopically to neuronal units in V2/V4 (see Fig. 2 and
Table 3).

A head direction system was modeled after areas of the rodent nervous system (e.g.,
anterior thalamic nuclei) that respond selectively to the animal’s heading (1, 2). Neurons
in these areas are often called head direction cells. Odometer information obtained from
Darwin X’s wheels was used to estimate current heading. This information was input into
the head direction neural area (HD). Each of the 360 HD neuronal units had a cosine
tuning curve, which responded maximally to a preferred heading with a tuning width of π
radians:

( )5_cos headingcurrHDi − ; (1)

where HDi is a head direction cell with a preferred direction of ( π2
360

i ) and i ranges

from 0 to 359.

The head direction cells projected topographically to an area analogous to the anterior
thalamic nucleus (see HD→ ATN in Table 3 and Fig. 2) and to a motor area (see HD→
MHDG in Table 3 and Fig. 2) used for selecting a new heading (see below).

The architecture of the simulated hippocampal formation was based on rodent
neuroanatomy. The input streams into the hippocampus are from the associative cortical
areas in the simulation (see ATN→ ECIN, IT→ ECIN, PR→ ECIN in Table 3 and Fig. 2).
Parameter values for the neuronal units and connections in these areas were tuned such
that each cortical area (ATN, PR, and IT) had an equivalent synaptic influence on ECIN
(see Tables 2 and 3). The relative numbers of neuronal units in each area, and the
intrinsic and extrinsic of connectivity of the hippocampus were implemented based on
known anatomical measurements (3-5). The perforant path projects mainly from
entorhinal cortex to the dentate gyrus but also to the CA3 and CA1 subfields (see ECIN→



DG ECIN→ CA3, ECIN→ CA3 in Table 3 and Fig. 2). The mossy fibers (see DG→ CA3 in
Table 3 and Fig. 2), Schaffer collaterals (see CA3→ CA1 in Table 3 and Fig. 2), and
divergent projections from the hippocampus back to cortex (see CA1→ ECOUT→
ATN,IT,PR) in Table 3 and Fig. 2) were also reflected in the neural simulation.
Moreover, the prevalent recurrent connectivity found in the hippocampal formation was
included in the model (see ECINβ → ECOUT, DG→ DG, and CA3→ CA3 in Table 3 and
Fig. 2).

There are distinct patterns of intrinsic and extrinsic, feedback and feed-forward inhibitory
connections in the hippocampal circuitry (5, 6). Feedback inhibitory connections (see
EC→ ECFB→ EC, DG→ DGFB→ DG, CA3→ CA3FB→ CA3, CA1→ CA1FB→ CA1 in
Table 3 and Fig. 2) and feed-forward inhibitory connections (see EC→ DGFF→ DG,
DG→ CA3FF→ CA3, CA3→ CA1FF→ CA1 in Table 3 and Fig. 2) were included in the
model. These connections were important for separating inputs and maintaining network
stability.

A simplified model of the basal forebrain provided an extrinsic theta rhythm for the
neural simulation. The function of the simulated basal forebrain area was to gate input
into the hippocampus and keep activity levels stable. The BF area had a rhythmic activity
over 13 simulation cycles:

( ) ( )13modtthetatBF = ; (2)

where theta = {0.01, 0.165, 0.33, 0.495, 0.66, 0.825, 1.00, 0.825, 0.66, 0.495, 0.33, 0.165,
0.01}. BF projected to all hippocampal areas with inhibitory connections (see BF→
ECIN,ECOUT,DG,CA3,CA1 in Table 3 and Fig. 2). The level of inhibition, which was
adaptive, kept the activity in hippocampal regions within specific ranges:
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where r denotes the region (i.e., ECIN, ECOUT, DG, CA3, CA1), sfr(t) is the scale factor at
time t, sr(t) is the percentage of active neuronal units in region r at time t, tgtr is the
desired percentage of active units in area r (ECIN = 10%, ECOUT = 10%, DG = 20%, CA3
= 5%, and CA1 = 10%), and BFr(t) is the presynaptic neuronal unit activity for a BF to
hippocampus region r connection.

Activity in the simulated value system (S in Fig. 2) signals the occurrence of salient
sensory events and this activity contributes to the modulation of value-dependent
connection strengths in synaptic pathways (CA1→ S and CA1→ MHDG). The projection
from our simulated CA1 to the value and goal decision areas is consistent with the
connectivity between CA1 and nucleus accumbens and frontal areas (7, 8). Initially, S is
activated by the hidden platform IR detector (see R+→ S in Table 3 and Fig. 2), causing
potentiation of value dependent connections, or by obstacle avoidance IR detectors (see
R-→ S in Table 3 and Fig. 2), causing depression of value dependent connections. After



experience, the value system could be activated by CA1. The magnitude of potentiation
or depression is based on a neural implementation of temporal difference learning rule (9,
10).
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where )(tS  is the average activity of the value system at time t, τ is one theta cycle (13
simulation cycles), R+ is positive reward and equal to 1 if the brain-based device (BBD)
is over the hidden platform, and R- is negative reward and equal to 1 if the BBD is too
close to a wall. The basic idea of the temporal difference rule is that learning is based on
the difference between temporally successive predictions of rewards. The goal of learning
is to make the learner’s current prediction of expected reward match more closely the
actual expected reward at the next time interval (τ). If the expected reward value
increases over τ, TD is positive and affected synaptic connections are potentiated, and if
the change in value decreases, TD is negative and affected synaptic connections are
depressed. Further details on how the temporal difference is applied to individual
synaptic connections are given in Neuronal Dynamics and Synaptic Plasticity below.

Darwin X selected a new heading every three theta cycles (39 simulation cycles), based
on activity in its motor area (MHDG). From its original heading, Darwin X would first turn
counterclockwise 60° and wait for 3 seconds, then turn clockwise for 60° and wait 3 s,
then another 60° clockwise turn and wait 3 s, and finally turn counterclockwise returning
to its original heading. The average activity of MHDG was calculated during the wait
periods. A softmax algorithm was used to create a probability distribution for choosing a
new heading:
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where newhdg is a possible new heading for Darwin X, ( )newhdgM HDG  is the average
activity of MHDG at a possible new heading, hdg is the current heading, and h has three
positions (current heading, current heading less 60°, current plus 60°).

Neuronal Dynamics and Synaptic Plasticity

A neuronal unit in Darwin X is simulated by a mean firing rate model, in which the mean
firing rate variable of each unit corresponds to the average activity of a group of roughly
100 real neurons during a time period of ≈200 milliseconds. Synaptic connections
between neural units, both within and between neuronal areas, are set to be either
voltage-independent or voltage-dependent, and either plastic or non-plastic (see Table 3



and Fig. 2). Voltage-independent connections provide synaptic input regardless of
postsynaptic state. Voltage-dependent connections represent the contribution of receptor
types (e.g., NMDA receptors) that require postsynaptic depolarization to be activated (11,
12).

The mean firing rate (s) of each neuronal unit ranges continuously from 0 (quiescent) to 1
(maximal firing). The state of a neuronal unit is updated as a function of its current state
and contributions from voltage-independent and voltage-dependent inputs (see Fig. 2).
The voltage-independent input to unit i from unit j is:

( ) ( )tsctA jij
VI
ij = , (6)

where sj(t) is the activity of unit j, and cij is the connection strength from unit j to unit i.
The voltage-independent postsynaptic influence, POSTVI

i , on unit i is calculated by
summing over all of the inputs onto unit i:
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where M is the number of different anatomically defined connection types (see Table 3),
Nl is the number of connections of type M projecting to unit i, and ϕ is the persistence of
synaptic input.

The voltage-dependent input to unit i from unit j is:
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where σ vdep
i  is a threshold for the postsynaptic activity below which voltage-dependent

connections have no effect (see Table 2).

The voltage-dependent postsynaptic influence on unit i, POSTVD
i , is given by:
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The total postsynaptic influence on neuronal unit i is given by:
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The new activity is determined by the following activation function:



( ) ( )( )( )( )tsPOSTgts iiii ωφ +=+ tanh1 , where ( )


 <

=
otherwisex
x

x
fire
i

;
;0 σφ ; (11)

where ω determines the persistence of unit activity from one cycle to the next, gi  is a
scaling factor, and σ fire

i is a unit specific firing threshold. Specific parameter values for
neuronal units are given in Table 2, and synaptic connections are specified in Table 3

Synaptic strengths are subject to modification according to a synaptic rule that depends
on the preand postsynaptic neuronal unit activities. Plastic synaptic connections are either
value-independent (see ECIN→ DG,CA3,CA1; DG→ CA3; CA3→ CA1; CA1→ ECOUT

in Table 3 and Fig. 2) or value-dependent (see CA1→ S, CA1→ MHDG in Table 3 and
Fig. 2). Both of these rules are based on a modified BCM learning rule (13). Synapses
between neuronal units with strongly correlated firing rates are potentiated and synapses
between neuronal units with weakly correlated rates are depressed; the magnitude of
change is determined as well by pre- and postsynaptic activities. The specific parameter
settings for fine-scale synaptic connections are given in the equations below and Table 3.

Value-independent synaptic changes in cij are given by:

( ) ( ) ( ) ( )siBCMtststc jiij η=+∆ 1 ; (12)

where si(t) and sj(t) are activities of post- and presynaptic units, respectively, and η is a
fixed learning rate. The function BCM is implemented as a piecewise linear function,
taking postsynaptic activity as input, which is defined by a sliding threshold, θ, two
inclinations (k1, k2) and a saturation parameter ρ (ρ = 6 throughout):
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The threshold is adjusted based on the postsynaptic activity:

( )θθ −=∆ s225.0  (14)

Value-independent plasticity was subject to weight normalization to prevent unbounded
potentiation:
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where cij is a particular connection, and K is the total number of connections onto unit j.

The rule for value-dependent plasticity differs from the value-independent rule in that
synaptic change is governed by the presynaptic activity, postsynaptic activity, and
temporal difference from the value system. The synaptic change for value-dependent
synaptic plasticity is given by:

( ) ( ) ( ) ( )tTDtststc jiij η=+∆ 1 ; (16)

where TD(t) is the temporal difference value at time t (see Eq. 4).
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