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Supplementary Figures and Legends

Figure S1

We examined the relationship between two conceivable methods of filtering the data:
1. Using a p-value stricter than 0.001 on the binding predictions of the location data
2. Using TF-gene assignments which have the support of at least three filtration
methods described in the paper

We show here that our methods save many assignments which have supporting evidence,
which would be discarded by using a stricter p-value.

The figure shows the ratio between the number of TF-gene assignments filtered out by both
methods and those filtered out of the data by using a stricter p-value alone.
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The histogram shows the following, as a function of changing the p-value threshold from
0.001 to the value shown on the x-axis:
« Inred, the number of specific assignments which are filtered out by both methods; using
a p-value stricter than 0.001 on the location data predictions, and also by the requirement
of support of at least three of the four filtration methods described.
« In blue, the number of assignments lost when filtering only according to p-value.

The plot shows the ratio between these two (red/blue).
It is clear that at all of the p-values thresholds, there is a large number of hypotheses that we

rediscover, that filtration using the p-values assigned in the location data would discard. The
fraction of such hypotheses grows larger as the p-value selected is more stringent.



Figure S2:

The figure describes an FDR analysis of the original location data.

(A) fdr g-value vs. pval (B) # of accepted hypothesis vs. fdr g-value
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(A) shows the relationship between the expected false discovery rate (g-value) and the p-
value. It can be seen that at a p-value of 0.001, the g-value (FDR) is ~18%.

(B & C) show how the relationship between the number of accepted hypotheses as a function
of the g-value and p-value respectively. It can be seen that in order to achieve a false discovery
rate of 10%, the number of hypotheses drops significantly to ~3400, significantly lower than
the ~4200 hypotheses that were accepted at a p-value threshold of 0.001.

(D) shows the relationship between the number of expected true hypotheses and the number of
expected false hypotheses at various p-value thresholds. This graph displays the tradeoff which
occurs at the different p-value thresholds. As the p-value threshold is raised (moving from left
to right on the x-axis, and from lower to higher values on the y-axis), in the region where the
slope of the graph is less than 1, more false hypotheses are added than true hypotheses. On the
contrary, when the p-value is strict, in the region where the slope is greater than 1, mostly true
hypotheses are gained by relaxing the p-value.



Figure S3:

The figure shows the relationship between the clustering of multiple conditions that
correspond to the same TF, compared to that expected from random data.

For each TF, we calculated the number of common genes in the largest cluster, in all pairs of
conditions in which the EC score of that TF was significant.

The plot shows the distribution of these pairwise overlaps (blue), compared to that expected by
random (red).

The random data was formed as follows: for each pair of conditions, the percent of expected
common genes was obtained by randomly choosing two sets of genes (the sizes of the major
cluster of each of the two conditions), out of the genes assigned to the TF, and calculating the
percent of their overlap.
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Figure S4:
The fraction (A) and absolute numbers (B) of genes discarded by the various filtration

methods, per TF.

S4A:

The image shows in each of the 4 filtration methods, and in their union and intersection, per
TF, the fraction of genes discarded by the filtration, relative to the total number of genes
assigned to the TF in the location data.

Fraction of genes discarded by rethod relative to tol number of genes assigned to TF
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Figure S4B

The bar diagrams below show in each of the 4 filtration methods, and in their union and
intersection, per TF, the number of genes discarded by the filtration, and number of genes
saved; for each TF the sum of these two numbers is the total number of genes assigned to the
TF in the location data.
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Figure S5

Comparison of our work with that of Gao et al. and Bar-Joseph et al.:

We calculated the Meet/Min and Jaccard coefficients (1), two measures of overlap
between sets, between the lists of genes assigned to each TF by Gao et al. (2), Bar-Joseph
et al. (3), and by the intersection of our four methods (intersection matrix). These
coefficients are respectively defined as the size of the intersection of two sets divided by
the size of the smaller of the two sets, and the size of the intersection of the two sets

divided by the size of their union.

We have only analyzed TFs for which there exists at least one gene assignment by all
three works (Gao, Bar-Joseph, and our own). The figures color-code the Meet/Min and

Jaccard coefficients between each pair of studies.

Average Average
Meet/Min Jaccard
Gao vs Bar-Joseph 0.6181 0.2795
Gao vs Ours 0.7082 0. 3848
Bar-Joseph vs Ours 0.4575 0.2106

Meet/Min matrix:

It is clear from the figure that the work of Gao and ourselves are highly congruent and the
average Meet/Min coefficient across 28 TFs is 0.7082. On the other hand, the Bar-Joseph
assignments show somewhat lower congruence with Gao’s study and an even lower

similarity with the present work.

Note that the Meet/Min coefficient minimizes the differences between the sets of genes
assigned to a TF by each pair of studies, which stem directly from the addition by Bar-
Joseph et al. of gene targets assigned p-values greater than 0.001 in the location data.




MeetMlin = size of intersection / minimal setsize
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Figure S6
The figure shows the most populated cluster obtained by clustering the genes assigned to the

TF Bas1, when using the QT _clust algorithm and the adaptive clustering algorithm by De Smet
et al. The size of the most populated cluster obtained with the adaptive algorithm is constant
across the entire range [0-1] of the significance parameter S. In contrast using QT_clust with a
range of input diameter values yields a wider dynamic range of cluster sizes, corresponding to
significantly coherent gene sets, as seen in the figure.

The figure shows the largest cluster obtained with various values of input parameters as input
to both algorithms. The first three plots, A-C, are the result of the QT_clust algorithm, with
diameters calculated directly from the expression data (obtained with 5th, 20th and 50th
distance percentiles for A-C respectively, see Material and Methods). The fourth plot, D,
shows results obtained with the adaptive algorithm that were obtained with any of 20
significance values that evenly span the range [0-1]. We report here that regardless of the
significance level the adaptive algorithm generates a largest cluster of constant size of 16
genes. On the other hand, QT _clust obtains this size (with same set of genes), yet in addition it
also obtains other sizes that correspond to alternative thresholds. Thus, use of the QT_clust
algorithm allows additional results to be obtained which cannot be obtained by the adaptive
algorithm, namely a larger major cluster of coherent genes.

Qualitatively similar results were obtained with other transcription factors (not shown).
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Figure S7
For the 61 TFs for which significant motifs were found, the figure shows the percent of genes

assigned to a TF which contain at least one significant motif in their promoter.
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