Supporting Information TABLE S1. Comparison of base proton chemical shifts predicted by SHIFTS 4.1. for the

Proton	Predicted order		Predicted shift (ppm)	Observed order	Observed Shift (ppm)
CH3	THY	5	1.21	THY 5	1.218
	THY	11	1.26	THY 11	1.314
	THY	26	1.52	THY 26	1.533
	THY	6	1.55	THY 6	1.606
	THY	22	1.57	THY 22	1.633
	THY	17	1.58	THY 17	1.675
AHZ		22	6.06		6.045
		23	0.20	ADE ZO	0.940
		10	0.40		7.29
		12	0.07		7.43
		18	7.39	ADE 18	7.43
	ADE	3	7.42	ADE 24	7.545
H6/H8	ADE	24	7.94	ADE 3	1.124
	THY	5	7.22	THY 5	7.143
	THY	11	7.24	THY 11	7.221
	THY	22	7.29	THY 22	7.341
	THY	6	7.33	THY 6	7.341
	THY	26	7.33	THY 17	7.4
	THY	17	7.36	THY 26	7.448
	GUA	8	7.58	GU 10	7.472
	GUA	9	7.6	GU 9	7.507
	GUA	4	7.64	GU 4	7.545
	GUA	10	7.65	GU 8	7.55
	GUA	13	7.7	GU 13	7.679
	GUA	28	7.87	GU 2	7.938
	GUA	2	7.88	GU 28	7.957
	GUA	15	7.94	GU 15	7.986
	CYT	25	7.51	CYT 25	7.24
	CYT	19	7.52	CYT 19	7.29
	CYT	14	7.58	CYT 20	7.454
	CYT	20	7.6	CYT 27	7.472
	CYT	16	7.63	CYT 21	7.496
	СҮТ	21	7.63	CYT 16	7.529
	СҮТ	1	7.72	CYT 14	7.54
	СҮТ	27	7.72	CYT 1	7.6
	ADE	24	8.19	ADE 24	8.117
	ADE	3	8.3	ADE 3	8.147
	ADE	7	8.38	ADE 7	8.171
	ADE	23	8.38	ADE 12	8.187
	ADE	18	8.43	ADE 23	8.243
	ADE	12	8 44	ADE 18	8.302

AGGG duplex with the observed proton shifts.

FIGURE S1. Fe^{2+} -dependent shifting of aromatic proton resonances within the AGGGcontaining duplex. The duplexed sample (0.65 mM) was in 90% H₂O/10% D₂O, 130 mM NaCl. Arrows indicate resonances that undergo significant chemical shift changes.

Figure S2. Magnitude and direction of chemical shift changes for the aromatic H6/H8 protons of the various duplexes with 0.5 equivalents of Fe^{2^+} per duplex.

FIGURE S3. Solvent exchangeability of imino protons in the AGGG-containing duplex as a function of Fe^{2+} concentration. Imino proton exchangeability was measured on a 1 mM sample in 90% H₂O/10% D₂O, 130 mM NaCl, using the solvent saturation transfer experiment described in Materials and Methods. Peak intensities of imino protons were measured using the cursor in FELIX 97.0 after each addition of Fe²⁺.

FIGURE S4. Estimation of the dissociation constant K_d for Fe²⁺-binding at the AGGG sequence. The K_d was calculated from Fe²⁺-dependent changes in the G9 NH resonance. The data were fitted to the K_d equation using Kaleidagraph 3.0. The observed changes in chemical shift ($\Delta \delta_{obs}$) during the course of an Fe²⁺ titration were measured by subtracting the peak position (in ppm) of the G9 imino proton resonance from its position in the absence of Fe²⁺ (δ_{free}). These changes were then plotted as a function of total added Fe²⁺ concentration, [Fe²⁺]. $\Delta \delta_{obs}$ can be defined as:

 $\Delta \delta_{obs} = 1/DNA_{total} [\Delta \delta_{bound} (Fe^{2+} bound) + \Delta \delta_{free} (DNA_{total} - Fe^{2+} bound)],$ where:

Fe²⁺ bound/ DNAtotal is the fractional occupancy, Fbound,

 $\Delta \delta_{\text{bound}}$ is the chemical shift change when $F_{\text{bound}} = 1$,

 $\Delta \delta_{\text{free}}$ is the chemical shift change when $F_{\text{bound}} = 0$ (by definition, $\Delta \delta_{\text{free}} = 0$), and 1- (Fe²⁺bound/DNAtotal) = 1 - Fbound.

Using the standard equations involving K_d and F_{bound} , $\Delta \delta_{obs}$ can be expressed as a function of $[Fe^{2^+}]$ as follows:

 $\Delta \delta_{obs} = \Delta \delta / (2DNA_{total}) [(DNA_{total} + [Fe^{2+}] + K_d) - \{(DNA_{total} + [Fe^{2+}] + K_d)^2 - 4(DNA_{total}) [Fe^{2+}]\}^{1/2}]$ where $\Delta \delta$ is the magnitude of $\Delta \delta_{bound}$. The data were fitted to the above equation with $[Fe^{2+}]$ and $\Delta \delta_{obs}$ as variables to obtain values for K_d and limiting shift, $\Delta \delta$.

