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S.1. Decoupling of flow terms

The dynamics of many particles undergoing Brownian diffusion + flow motion in a two-dimensional
space is described by a diffusion coefficient D and a driving speed ~v. In general, the particles move
along different directions, since the flow speed can be distributed over a plane. This leads to an an-
gular spread of particle displacements from their starting positions (Fig. S.1). If the speed strength
v = |~v| is supposed to be the same for each particle, then the flow motion can be described in terms
of the following statistical moments:

~vφ = 〈~v〉 (S.1)

v2σ = 〈(~v − 〈~v〉)2〉 (S.2)

where the former is a vectorial average over the ensemble and the latter represents the corresponding
mean square displacement. Furthermore, v2σ can be expressed as

v2σ = 〈(~v − 〈~v〉)2〉 = 〈~v2 − 2~v〈~v〉+ 〈v〉2〉 = 〈~v2〉 − 2〈~v〉2 + 〈~v〉2 = 〈~v2〉 − 〈~v〉2 (S.3)

Finally, under the assumption of constant speed’s modulus, 〈~v2〉 = 〈v2〉 = v2 and the following
relationship is obtained:

v2 = v2φ + v2σ (S.4)

∗Corresponding author
Email address: giulio.caracciolo@uniroma1.it (Giulio Caracciolo)

Preprint submitted to Elsevier July 1, 2016



Figure S.1: Particle displacements from starting positions for dynamics driven by Brownian diffusion + uniformly
distributed flow motion and scheme of the adopted speed’s decomposition.

In other words, ~vφ defines the resulting average speed of the ensemble and v2σ quantifies a spread
along the orthogonal direction with respect to the particle flow. This decomposition is useful
to study the effect of the angular distribution of the velocities on the spatiotemporal correlation
function. Indeed, fluorescence correlation analysis should take into account the overall behaviour
arising from single-particle dynamics.

According to the iMSD theory the spatiotemporal correlation function can be written as (Di
Rienzo et al. Nature Communications 5, 2014)

g(ξ, η, τ) = g0 p(ξ, η, τ)⊗W (ξ, η) (S.5)

where g0 defines the contrast of fluctuation and is related to the average number of particles in the
observation volume, W (ξ, η) represents the instrument Point Spread Function (PSF) and p(ξ, η, τ)
is the probability function describing the dispersive dynamics. p is related to the single particle
transition probability, i.e. probability that a single particle originally at ~r, will be at ~r ′ after a time
period τ = t′ − t. For Brownian diffusion + directed motion, it can be expressed by the following
equation:

P (~r ′|~r, τ) =
1

4πDτ
exp

{
−|~r

′ − ~r − ~vτ |2

4Dτ

}
(S.6)

where D is the diffusion coefficient and ~v uniquely defines direction and strength of the directed
motion of that particle. As a consequence, when particles are driven along the same direction, the
spatiotemporal correlation function can be written as

g(~ρ, τ)

∣∣∣∣
ψ=0

= G∞ +G1(τ)exp

{
− (~ρ− ~vτ)2

ω2 + 4Dτ

}
(S.7)

where ~v = 〈~v〉 = ~vφ and 〈(~v − 〈~v〉)2〉 = 0. Under this assumption, g(~ρ, τ) can be fitted by a Gaussian
function, whose peak uniformly drifts and variance linearly increases with time. However, when the
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Figure S.2: (A) 3D view, (B) top view and contour plot of the analytic relationship S.11, as function of ρ and τ . (C)
Corresponding representation over the spatial lag domain at high time lag (rescaled color units).

particle speed is distributed over an angular range ψ, the resulting correlation function is obtained
by averaging Eq. S.7 over the ensemble, i.e.

g(~ρ, τ)

∣∣∣∣
ψ

= G∞ +G1(τ)

〈
exp

{
− (~ρ− ~vτ)2

ω2 + 4Dτ

}〉
(S.8)

Furthermore, since in polar coordinates ~ρ = (ρ cos θ; ρ sin θ) and ~v can be expressed as

~v =


(
v cos θ′

v sin θ′

)
−ψ2 < θ′ < ψ

2

0 otherwise

(S.9)

the ensemble average in Eq. S.8 can be carried out as angular average, as follows

g(ρ, θ, τ, ψ) = G∞ +
G1(τ)

ψ
exp

{
− ρ

2 + v2τ2

ω2 + 4Dτ

}
×

×
∫ ψ/2

−ψ/2
exp

{
2ρvτ

ω2 + 4Dτ
cos(θ′ − θ)

}
dθ′

(S.10)

Where θ and θ′ are counted from the mean direction of the flow. When particle speed is symmet-
rically distributed, i.e. for ψ = 2π, Eq. S.10 admits the following analytic solution:

g(ρ, τ)

∣∣∣∣
ψ=2π

= G∞ +G1(τ) exp

{
− ρ

2 + v2τ2

ω2 + 4Dτ

}
I0

(
2ρvτ

ω2 + 4Dτ

)
(S.11)

where I0 is the zero order modified Bessel function of the first kind, whose expression can be written
as (Abramowitz and Stegun 1972, p. 376):

I0(z) =
1

π

∫ π

0

ez cos(α)dα (S.12)
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Figure S.3: Time evolution of the spatiotemporal correlation function describing isotropically distributed flow motion.
The computation from numeric simulation has been carried out from τ = 0 to a maximum time lag τM . Black solid
lines represent the sections of the fitting function S.11 with the planes ξ = 0 and η = 0.

As expected, for ψ = 2π the system is isotropic and the correlation function does not depend on
θ. A graphic representation of Eq. S.11 is given in Fig. S.2 (panels A and B), for fixed values
of ω, D and v. Of note, for τ = 0, g(ρ, 0) monotonically decreases, however there exist infinitely
τ∗ values such that g(ρ, τ∗) increases with ρ until a maximum is reached and then asymptotically
decreases toward G∞. This trend is depicted in Fig. S.2C, in cartesian coordinates: for ψ = 2π the
correlation function is symmetric with respect to the origin, from which radial Gaussian profiles
move away, thus leading to a circular depression.

The aforementioned model has been validated by numeric simulations. Fig S.3 shows a represen-
tative example. The time evolution of the computed correlation function agrees with the expected
theoretical trend, subsequently D, v and ω can be obtained as fitting parameters from Eq. S.11. In
detail, at short timescale Eq. S.11 is not distinguishable from a Gaussian function. As an instance,
at zero time lag, I0(0) = 1 and g(ρ, 0) = G∞+G1 exp (−ρ2/ω2). At longer timescale, a circular de-
pression is formed at the origin and maxima of g are distributed along a circumference of radius vτ .
The maximum time lag, for which a Gaussian approximation is valid can be quantified as follows.
Any section of g on a plane orthogonal to (ξ, η) containing the origin can be viewed as a linear
combination of two Gaussian curves drifting toward opposite directions and linearly spreading with
τ (Fig. S.4). Indeed, each curve represents a single particle contribution, whose dynamic is driven
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Figure S.4: (A) Schematic representation of the correlation function arising from single particle contributions and
projection on the plane η = 0. (B) Fitting parameters as functions of τ and corresponding trends at short and long
timescale.

by the transition probability given in Eq. S.6. The largest time τ̄ , for which the spatial distance
between the two peaks is smaller than the spread at that time lag, defines the upper limit of the
short timescale, i.e.

2vτ̄ =
√
ω2 + 4Dτ̄ (S.13)

By adopting the usual definitions of the characteristic diffusion decay time and flow time (τd =
ω2/(4D) and τf = ω/v, respectively), the curves are not distinguishable when

τ < τ̄ =
τ2f
8τd

1 +

√
1 +

4τ2f
τ2d

 (S.14)

Incidentally, when the diffusion is negligible with respect to the flow, i.e. for τf/τd � 1, the
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Gaussian approximation is valid for

τ <
1

2
τf = lim

τf/τd→0
τ̄ (S.15)

On the other end, with similar arguments we can infer that particles contributions are fully distin-
guished for τ > τ̄ .

Fig S.4B shows the main outcomes of the above discussion. As prescripted by Eq. S.11, the
spatiotemporal correlation function has been fitted by the following function:

g(ρ, τ)

∣∣∣∣
ψ=2π

= χ∞ + χ1 exp

{
−
ρ2 + χ2

φ

χ2
σ

}
I0

(
2ρχφ
χ2
σ

)
(S.16)

where χ∞, χ1, χφ and χ2
σ represent the fitting parameters. As expected, at long timescale linear

trends of χφ and χ2
σ have been found, with{

χφ = vτ

χ2
σ = ω2 + 4Dτ

τ > 2τ̄ (S.17)

Therefore, in this regime Eq. S.21 is equal to the general form given in Eq. S.11. On the other
side, at short timescale, the fitting procedure returns negligible values of χφ and a parabolic trend
of χ2

σ. Specifically, it has been found that{
χφ ' 0

χ2
σ = ω2 + 4Dτ + v2τ2

τ < τ̄ (S.18)

Thus, in this regime the correlation function can be viewed as a Gaussian function of variance

σ2(τ) = ω2 + 4Dτ + v2τ2 (S.19)

This trend can be predicted by a Taylor expansion of the general theoretical relationship S.11
at (0, 0). Indeed, by imposing

G2(τ) = G1(τ) exp

{
− v2τ2

ω2 + 4Dτ

}
(S.20)

Eq. S.11 reads

g(ρ, τ)

∣∣∣∣
ψ=2π

= G∞ +G2 exp

{
− ρ2

ω2 + 4Dτ

}
I0

(
2ρvτ

ω2 + 4Dτ

)
(S.21)

Thus, the exponential term in Eq. S.21 can be approximated as follows:

exp

{
− ρ2

ω2 + 4Dτ

}
= 1− ρ2

ω2 + 4Dτ
+

ρ4

2(ω2 + 4Dτ)2
+ o(ρ6 + τ6) (S.22)

and the series expansion of the Bessel function reads

I0

(
2ρvτ

ω2 + 4Dτ

)
= 1 +

v2τ2ρ2

(ω2 + 4Dτ)2
+

v4τ4ρ4

4(ω2 + 4Dτ)4
+ o(ρ6 + τ6) (S.23)

S.6



Hence, by inserting Eq. S.22, S.23 in Eq. S.21,

g(ρ, τ)

∣∣∣∣
ψ=2π

= G∞ +G2

[
1− ρ2

q1(τ)
+

ρ4

2q22(τ)
+ o(ρ6 + τ6)

]
(S.24)

where 
q1(τ) =

(ω2 + 4Dτ)2

ω2 + 4Dτ − v2τ2

q2(τ) =

√
2(ω2 + 4Dτ)2√

v4τ4 − 4v2τ2(ω2 + 4Dτ) + 2(ω2 + 4Dτ)2

(S.25)

Finally, the MacLaurin expansions of q1 and q2 lead to the following identities:

q1(τ) = ω2 + 4Dτ + v2τ2 + o(τ4) = q2(τ) (S.26)

Thus, q1 ' q2 ' σ2 and Eq. S.24 can be viewed as the series expansion of a Gaussian function of
variance σ2 = ω2+4Dτ+v2τ2. In conclusion, the spatial mean square displacement 〈(~v − 〈~v〉)2〉τ2 =
v2τ2 contributes to the Gaussian variance with an additive term, which take into account that single
particles isotropically move from their starting positions. Furthermore, at short timescale no peak’s
shift is revealed, since each single particle’s drift along a direction is balanced by the opposite one:
for ψ = 2π, 〈~v〉 = 0.

Finally, when the particle speed is distributed within an angular range ψ < 2π, a peak’s shift
is revealed at short timescale, corresponding to the net resulting motion along the flow’s direction.
In turn, the mean square displacement decreases dependently on ψ (Eq. S.1, S.2, S.4). Thus, we
can infer that under the Gaussian approximation, flow motion is responsible both for a drift term
~vφτ and a complementary spread contribution v2στ

2, such that g(~ρ, τ) can be approximated as

g(~ρ, τ) = G∞ +G1(τ) exp

{
− (~ρ− ~vφτ)2

ω2 + 4Dτ + v2στ
2

}
(S.27)

At longer timescale an angular spread become manifest. However, under the usual experimental
conditions, the features of the investigated dynamics (i.e. the values of τd and τf ) allow us to work
within the Gaussian approximation’s range and fully evaluate the flow terms in this regime.

S.2. Characterization of low-speed flow motion

The proposed approach aims to characterize Brownian diffusion + flow motion, by decoupling
the speed contributions and by measuring diffusion coefficient and velocity. Although the drift
contribution ~vφ is easily detected from the Gaussian peak’s shift, measurements of vσ can be tricky
when the speed is low if compared with the diffusive term: i.e. when τf � τd. Under this condition,
it may not be easy to recognize the parabolic term of the Gaussian’s variance σ2(τ). However it
has been found that the iMSD procedure is in general more effective than the STICS one, which
instead is focused on the trend of g(0, 0, τ). Here we present two examples of fitting profiles,
evaluated on numeric simulations mimicking the conditions τd/τf = 0.12 and τd/τf = 0.06. In the
former situation, both the techniques correctly characterize the dynamics. Diffusive and flow fitting
curves are distinguishable (residual plots), leading to different fitting determination coefficients and
resulting in good determinations of the dynamic parameters. In the latter case, STICS does not
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reveal a speed contribution, indeed the diffusive fitting curve is equal to the flow one and the relative
indetermination of the obtained velocity is very high (about 1200%). This points out that the flow
term is redundant and the motion is thus characterized as diffusive. Conversely, iMSD detects a
small quadratic contribution, distinguishes the curves and subsequently it correctly discriminate
the kind of motion.

Figure S.5: Fitting profiles and residuals of (A) g(0, 0, τ) and (B) σ2(τ), adopted by STICS and iMSD techniques,
respectively. Analyses were carried out on simulations, under the condition: τd/τf = 0.12. Both methods recognize
a flow contribution to the investigated dynamics.
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Figure S.6: Fitting profiles and residuals of (A) g(0, 0, τ) and (B) σ2(τ), adopted by STICS and iMSD techniques,
respectively. Analyses were carried out on simulations, under the condition: τd/τf = 0.06. STICS does not distin-
guish a flow contribution to the investigated dynamics (no differences between diffusive and flow fitting curves are
detected).

S.3. Slowly changing background

When images are affected by a background, which varies in time with periodicity Tb, the correla-
tion function at zero spatial lag is affected by those oscillation. The amplitude of oscillation depends
on the background intensity and may introduce artifacts on the correlation analysis. Indeed, at low
Signal to Noise Ratio (SNR), STICS reveals a faster dynamic, due to a shorter decay time of g(0, 0, τ)
(Fig. S.7A). Background removal corrects this effect (Fig. S.7B), but it is threshold-dependent and
its effectiveness strongly depends on the SNR of the investigated time series (Table S1). On the
other side, since no spatial correlation of the background intensity is supposed, temporal oscillations
are not detected in the Gaussian variance. Thus iMSD results are more stable, less sensitive to
background and their slight underestimation is due to the adopted Gaussian approximation.
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Figure S.7: STICS fitting profiles evaluated on (A) not filtered and (B) filtered movies with a slowly changing
background (SNR=6.4). The effect of a slowly changing background is the presence of oscillations in g(0, 0τ), with
strength proportional to the background intensity and same periodicity of the background (in the proposed example
Tb = 30s).

no filtering
STICS iMSD

SNR ∆D (%) ∆v (%) ∆D (%) ∆v (%)
6.40 378 81.8 -10.2 -13.3
12.8 280 41.4 -10.8 -8.95
25.6 106 24.2 -10.3 -8.25
51.2 41.1 18.9 -9.91 -8.05
100 16.1 6.75 -8.93 -7.96

background removal
STICS iMSD

SNR ∆D (%) ∆v (%) ∆D (%) ∆v (%)
6.40 86.4 21.3 -7.00 -8.12
12.8 33.5 5.73 -6.08 -6.13
25.6 24.1 4.41 -5.52 -5.83
51.2 11.3 3.76 -5.84 -5.69
100 11.0 3.47 -4.38 -5.64

Table S.1: STICS and iMSD output values of dynamic parameters before and after the background removal. Results
are shown as percentage differences from the input data.
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