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ABSTRACT The response properties of a class of motion
detectors (Reichardt detectors) are investigated extensively
here. Since the outputs of the detectors, responding to an image
undergoing two-dimensional rigid translation, are dependent
on both the image velocity and the image intensity distribution,
they are nonuniform across the entire image, even though the
object is moving rigidly as a whole. To achieve perceptual
"oneness' in the rigid motion, we are led to contend that visual
perception must take place in a space that is non-Euclidean in
nature. We then derive the affme connection and the metric of
this perceptual space. The Riemann curvature tensor is iden-
tically zero, which means that the perceptual space is intrin-
sically flat. A geodesic in this space is composed of points of
constant image intensity gradient along a certain direction. The
deviation of geodesics (which are perceptually "straight")
from physically straight lines may offer an explanation to the
perceptual distortion of angular relationships such as the
Hering illusion.

To understand the perceptual organization of the primate
visual system has always been a challenging endeavor for the
inquiring human mind. Major advances have been made
since, among others, the pioneering work of Hubel and
Wiesel (1-3), which established that neurons in the primary
visual cortex (V1) of mammals respond selectively to bars
and edges of a restricted range of orientations. Recently,
convincing evidence began to accumulate, both from phys-
iological/anatomical probes and clinical/behavioral studies,
that supports the long-proclaimed hypothesis of segregation
of different subsystems in visual processing at various stages,
notably the parvocellular system, which might be related to
form processing, and the magnocellular system, which may
be involved with motion processing (for review, see refs.
4-8). Despite this functional subdividing, there are constant
interactions between the two systems, contributing to the
final percept of either form or motion. For example, one can
acquire the sense of motion simply by presenting a visual
stimulus at two different locations in succession with appro-
priate time delay, the phenomenon of apparent motion. On
the other hand, one can identify vividly the form of a textural
figure moving against a background of the same texture that
is otherwise unidentifiable, a clear indication that form per-
ception can be derived from pure motion information. In this
paper, the intrinsic structure of the motion system will be
extensively investigated and its intrusion to the form percep-
tion, briefly discussed from a theoretical point of view. We
will show that motion perception, or visual perception in
general, can be viewed as an interpretation of sensory data
based on an intrinsic geometry that in turn is determined by
rules of organizing the sensory data.

Motion Detectors and Their Properties

It is generally believed that the motion system incorporates
some structural elements, called motion detectors, to pre-
process an image. A prototypical detector, proposed by
Reichardt, Hassenstein, and their colleagues in the insect
visual system (9, 10), performs two-point correlations of a
visual image and was later proved to be the building block for
the general scheme of motion computation with n-point
inputs (11). It has since been shown that when the filters of
these so-called Reichardt detectors are elaborated with spa-
tial-temporal bandpass properties, they may extract the
Fourier power spectrum of the visual image based on their
filtering characteristics (12, 13). In this way, they resemble
motion energy detectors, which have more or less been
correlated to both the neurophysiological properties of cor-
tical neurons and human psychophysical performance (14-
18). On the other hand, it has been shown only recently that,
if the spatial separation and the temporal delay of the filters
can be regarded as infinitesimally small, Reichardt detectors
may actually extract the local velocity vectors based on the
spatial and temporal gradient of an image (19). It was dem-
onstrated that, for the simplest case of an image undergoing
two-dimensional rigid, translatory motion with velocity v =
[v1(t), v2(t)]T (here and throughout the paper [., -]T denotes
vector transpose), the response of Reichardt detectors V =
[V1(x, y, t), V2(X, y, t)]T is

[ :] qyx qyyx] [V21]
[1]

where f(x(t), y(t)) is the image intensity function, e is a
constant, q(x, y) = log f(x, y), and qxx = a2q/ax2, etc. This
form resembles the response of motion field detectors that
perform spatial (V) and temporal (a/at) differentiations in
successive stages (20, 21)

a
V=-Vf,

at

or, when explicitly written out,

V2 fyx fy][V21

[21

[3]

Discarding the overall scaling of the detector response and
the nonlinear (logarithmic) compression of the image inten-
sity in Eq. 1 which, by intuition, are less important, we shall
explore the consequences of the vectorial relationship as
expressed by Eq. 3 in the rest of the paper.
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We first convert Eq. 3 into a tensorial equation [i.e., an
equation that is invariant in form under coordinate transfor-
mations PA = QA(x0)] by restricting ourselves to the general
linear transformation (with constant Jacobian)

aiA
- = constants.
ax' [4]

In this case, Eq. 3 can be compactly expressed as$

Va =faLSVP [51

where faf3 denotes the second-order spatial derivatives,
known as the Hessian off(x, y), and a, 3 run over 1, 2 (i.e.,
x, y). With the condition of constant Jacobian, fp is indeed
a tensor of rank 2 under coordinate transformations; Va and
vie are covariant and contravariant vectors, respectively.
The response of motion detectors Va given by Eq. 3 or Eq.

5 has the following desirable properties: (i) It is covariant;
i.e., the response of any one of the detectors in a family at a
specific location represents the same vector regardless of the
choice of a coordinate axis. This is of fundamental impor-
tance for a biological system. Each motion detector in the
visual system is made up of a pair of receptors (subunits) with
appropriate separation in space and delay in time (both
parameters are regarded as infinitesimally small and related
to the constant E in Eq. 1). Because of the random nature of
the neuronal distribution, the direction of any one of the
many pairs of receptors and therefore the axis ("preferred"
direction) of each detector is essentially random, covering a
range of 360°. It is crucial that all detectors at a given location
give mutually compatible signals about the local image ve-
locity vP, regardless of the individual "label" of their pre-
ferred directions. This is possible only when Va, is covariant
under a rotational coordinate transformation (a special case
of the general linear transformations of Eq. 4). (ii) It is
complete; i.e., the local image velocity vi can be unambig-
uously determined by the detector response V,,a (by inverting
the matrix fa13). The only exception occurs when the deter-
minant offa13 is zero orfxfyy - f2y = 0. The corresponding
image intensity profiles would, either locally or at large,
assume the shape of developable surfaces. The situation here
is closely related to the so-called "aperture problem" (22-
24)-namely, it is impossible to specify the image velocity
along the direction corresponding to the ruling of the surface.
This is a restriction set by the physical nature of an image
instead of the biological processing of it. Any physically
extractable information about image motion is faithfully
preserved in the response of the detectors.

Fundamental Problem of Rigid Motion

The response of motion detectors V,, confounds image ve-
locity information with image intensity information. As given
by Eq. 5, Va is dependent on the image velocity vi as well as
the Hessian fan of the image intensity function for any
two-dimensional translatory motion. Even though an object
moves rigidly (i.e., vi is not a function of x and y), Va is still
a function of the spatial location x, y, since fa3 are generally
not constant over the space. In other words, the response of
motion detectors is not uniform even though each and every
point of the object moves with uniform velocity (rigid mo-
tion). Therefore one question naturally arises: how then
could we (as human beings) ever derive the percept that the
object is moving rigidly as a whole entity and in its entirety,

as opposed to some nonrigid, irregular deformations? How
could we perceive the "oneness" in a moving object? To
pose this question in mathematical language, we would like
to know how a nonuniform vector field Va could ever be
construed as a constant vector field.

Non-Euclidean Perceptual Space

At first glance, it may appear that it would never be possible
to identify a nonuniform vector field with a constant vector
field. However, if we introduce the notion of non-Euclidean
geometry, there is a natural solution to this problem. Recall
that in a general affine space, the constancy of a vector field
at different spatial locations is not defined by simply com-
paring each of their components. Instead, it is achieved by
"transplanting" the vector over the space and at the same
time changing the vector components according to rules
carefully designed so that the generalized notion of vector
parallelism is still preserved during this transplantation. By
transporting a vector parallel from one location to another,
the comparison of vectors remains meaningful and faithful.
This law of parallel transplantation involves a set of coeffi-
cients denoted by 1F1,9, the so-called coefficients of affine
connection or simply connection, which unequivocally char-
acterizes the affine structure of the space (an affine space is
a space that carries invariant structure under a linear trans-
formation of coordinates). Therefore in an affine space, two
vectors at different spatial locations are considered parallel
(or "equal") if one can be transported to the location of and
then coincide with the other following the prescribed trans-
plantation law. This piece ofknowledge led us to propose that
the perceptual space, a space that is a mapping from the
physical space and where "perception" takes place, is none-
theless a generalized affine space with its particular affine
connection. From this viewpoint, Va is constant over the
perceptual space with some Fra (yet to be specified), though
it is not uniform in the physical space, as we pointed out
earlier. In fact, the constancy of Va in the perceptual space
can be used in this way to define the coefficients of affine
connection Fr. I1

Affine Connection. Recall that in the affine space, an
arbitrary vector (a is transported along any curve x'(s) from
a point s to a neighboring point s + ds according to the
following law of vector transplantation:

dfa dxfl
ds - (ds

Eq. 6 defines a "constant" vector field along the curve xO(s).
Note that it is bilinear in (a and dxy. In the present case, we
require the response of all motion detectors Va to be constant
in the space over the region that the object occupies. The
change of Va along the curve xO(s) is

dVa dVa dxt _dfap\ dxA
ds -dxf ds axj ds [71

where we have used Eq. 5 and the fact that dvP/dxg = 0 (since
vP is constant in the physical space). We temporarily assume
that, at the points in consideration, the matrixfp is nonsin-
gular-namely, its determinant 9; is not zero (we call the
points with 9I = 0 degenerating points in this paper). Define
the inverse Of ap as fPG using the Kronecker 88; i.e.,

[8]fapfp" = 6ay

"The mathematical background of this section can be found in
standard textbooks on differential geometry or general relativity
(see, for example, ref. 25).

1Throughout this paper, the Einstein summation convention is
respected unless otherwise noted. This convention is as follows: if
an index appears twice in an expression, once as an upper index and
once as a lower index, then a summation is implied over that index.
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Then we may solve for vP from Eq. 5 and express it as

VP =fPA VA [9]

Inserting Eq. 9 into Eq. 7, we have

dVa dfap A dx!
= a fP VA . [10]ds dx13 ds

Comparing the forms of Eq. 6 and Eq. 10, we immediately
derive the affine connection of the perceptual space

rA dfapfPA [11]

or, equivalently,

fpArAs afi- [12]

Eq. 11 or 12 defines the connection of the non-Euclidean
perceptual space, and thus is of fundamental importance. rA3
is symmetric with respect to its lower indices: rap = ra.
Since any affine space should be characterized by its con-
nection rAp, we expect that the structure of visual perception
would be revealed as a consequence of our assertion of the
perceptual space as being a general affine space. In particu-
lar, since the visual space is a metric space, we expect that
the metrical properties would be derived from Eq. 11.
Riemann Curvature Tensor. Before discussing the metrical

properties of the perceptual space, let us first derive its
Riemann curvature tensor RaTOY. By definition,

R =
a A - d + raTr - ra rT [13]Ox"-Ya Ox1o ry 43ToYq

PROPOSITION 1. For the perceptual space whose connection
is given by Eq. 11, the Riemann curvature tensor is

R =0 [14]
Proof. First notice the fact thatfa1 is nothing but a2f/dx¶ax3.
This means that we can regard lower indices of f both as
tensor indices and as differentiation indices and thus inter-
change their orders at will, simply due to the commutativity
of differentiations with respect to coordinates x and y.
Substituting Eq. 11 into Eq. 13, differentiating, and collecting
terms, we have

a.= (fap + fayrpflf)f - (fap + faLfTpft)f [15]RMl "Y FLYP77 'I ,uYPT' [5

where we use ,y to denote coordinate differentiations such
thatfap = afaP/Oxy, etc., and of coursefrs = fi,, etc. Using
the following identity obtained by differentiating Eq. 8:

the Ricci tensor Rely (given by contracting a, /3 in R',py ) is
identically zero, and hence the Gaussian curvature is also
zero.

Proposition I has the following important consequence
that is perceptually justifiable. Normally, the transplantation
of a vector between any two end-points, according to the law
of parallel transplantation (Eq. 6), is dependent on the path
connecting the two points. Indeed, if an arbitrary vector 6, at
one point is parallel transported along segments of two
curves, dx1 and dYY, sequentially but in different order, to the
same end-point, then the difference of changes in the vector
component A4,, following these two paths of transportation is
given by

61 = -R1a3y a dx1dfy. [18]

Since in the present case Ae. = 0, this means that the parallel
transportation of vectors between any two points is path
independent and hence uniquely defined. In terms of motion
perception, this implies that the comparison of local veloci-
ties among all points in the space can be performed unam-
biguously even at large, that is, with finite separations.

Geodesic. We may study the geodesics of an affine space
without referring to its metrical properties, if we deliberately
choose not to. In this case, the geodesic equation defines a
curve that has zero geodesic curvature (the generalized
notion of a "straight" line in an affine space)

d2xA A dXadXp
ds2 af3 ds ds [19]

where s is some parameter (not necessarily arc length since
we have not defined length yet).
PROPOSITION 2. The geodesics ofthe perceptual space can be
explicitly expressed as

fir= bls + Car, [20]

where f, = af/ax' and the two sets of constants b.r9c.
determine the direction and the initial position ofa particular
geodesic.
Proof. By the definition of Fra in Eq. 11, the geodesic equa-
tion (Eq. 19) becomes

d X A af1p A dxadx_=
+ -fP - 0.

d~s2
+

x13 ds ds

Multiplying by ftA, we have

d x" fa, dxP dxa
faA ds2 +Oax1 ds ds

[21]

[22]

The left-hand side turns out to be an exact differentiation
f apf = _fapf [16]

the terms within the first parentheses of Eq. 15 become

`fP+fOLfrPf ='P + faL(_f fP) =f -P f.TP= [17]

Similarly the terms within the second parentheses yield zero
as well. This proves that the Riemann tensor R,,3' is identi-
cally zero. q.e.d.
The fact that the Riemann curvature tensor is everywhere

zero (except for those degenerating points wherefaP does not
exist) means that the perceptual space is, after all, flat or
pseudo-Euclidean-there is no intrinsic curveness. Since all
components of R'137 are zero (although in the two-
dimensional case, there is only one independent component),

d( dXa
d-tfsa d = °'

ds ds/
which can be simplified to

d2f=

ds2=

[23]

[24]

Therefore the solution to the geodesic equation is given by
Eq. 20. q.e.d.
There always exists a direction (with direction numbers I')

orthogonal to the vector b, so that

lfa = 1U(bas + c,) = ac, = constant. [25]

Biophysics: Zhang and Wu
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Eq. 25 shows that a geodesic is composed of points that have
constant image intensity gradient along direction 1". Drawn in
the two-dimensional visual space, geodesics are almost al-
ways different from straight lines of the physical space.

Metric Tensor. Finally, we come to the discussion of the
metric tensor gv of the perceptual space. Note that gv,, is
related to F' by the following identity:

AU (ager ag agAv
3W 2 3axv daX ax' /

where the summation over a is enforced.
Proof. Clearly, the inverse of gop obeying Eq. 34 would be

gAO = E fAtffcr,
13

[35]

so that the following orthogonality condition is satisfied:

AguA= (
A

)( aav) = ffav(ffAfAa)
[26]

It is common knowledge that our visual space is a metric
space, in that we can make estimations and judgments about
length and separation. Yet the exact relationship ofthis visual
metric and the metric of the perceptual space is still under
investigation; they are certainly not identical. Some prelim-
inary results show that they might be crucial in the coordi-
nation of the perceptual space, which is out of the scope of
this paper. Nevertheless, it would be interesting to see
whether, if Eqs. 11 and 26 are combined to solve for g,jp, one
can obtain a closed solution in terms Offag.

Contracting a and A in Eq. 11, we have

[36]aEl A
a,p a

From Eq. 26

lfAv2 E fIt ( f favfao + 2 fuaafaov + E fva,, faoa2 is a a a

+ Ef vafaa, - E fua.crfav - > fta faveo)
a a a

1
=- > fAIf"'(f4a,vfaor +fvaqiLfacr)

rA = aPfPAA#axe [27]

Using the calculation of the matrix inverse by its cofactors in
the determinant i, i.e.,

1 da;
fPA- -, [28]J;afAP

we find the right-hand side of Eq. 27 to be

afAkp .afp (1_a \ 1 ad alogMIj
ax \aX 9#afp 9 axp axp [29

On the other hand, the left-hand side of Eq. 27 is the
well-known result

rA 1alog=Ia [30]
k"2ax13

where 'S is the determinant of the metric tensor g,,,v. Com-
bining Eqs. 29 and 30, we have

alogl9; 1 alogila
axe3 2 axe

or

-(logjyj - logg;2) = 0. [32]ax3
Hence

~g = (Eq;)2, [33]
with constant E relating the measuring unit of the perceptual
space to that of the physical space. For convenience, we set
E = 1. To express the matrix element g,,v in terms offaer, an
educated guess based on Eq. 33 and its proof would be the
following.
PROPOSITION 3. The metric tensor that satisfies Eq. 11 is
given by

[31]

1 1
= JEfA/3fo~+ fAllfmp =fl~f;3
2 o 4, 2 o 43L

[37]

This proves that g, given by Eq. 34 indeed satisfies Eq. 11,
our original definition of the connection of the perceptual
space. q.e.d.
The g,3W thus obtained is symmetric with respect to its

indices (note that their subscripts are, unlike the subscripts of
fair solely tensor indices). Moreover, since gl1 = fx + fy 2
0, % = >22.0 g,4, is semipositive definite. Therefore it has
all the desired properties of being a metric tensor. The only
points where 'S = 0 is where 9i = 0 orf., fyy - f2y = 0, the
degenerating points, as we shall discuss below.

Degenerating Points. At the degenerating points where i =
0, fP is not defined. However, the metric g,L, given by Eq.
34 is still determined. Since fap = fMa, one can always
diagonalize fag and hence the metric tensor g,,,. The eigen-
values offa are given by solving

fxx-A fry

fy fyy -A
[38]

or

[39]

The two eigenvalues are therefore expressed as

Al,2 = [(fx +fyy) -± (frXXfyy)2 + 4fxy]/2. [40]

The directions of corresponding eigenvectors, which are
always orthogonal to each other sincef,,a1 is symmetric, are
(apart from a factor) [f A - f=]T and [f,, A2 - fxJT,
respectively. Note that the eigenvalues of g, , are Al and A2,
and the corresponding directions of eigenvectors are the
same as those of fa1 given above. At degenerating points
either Al or A2 is zero. The corresponding direction (hereby
called the degenerating direction tD) becomes

tD = fE [41]

[34] The collection of degenerating points forms a curve, which is
called the degenerating curve. Notice, however, that thegzP = fpuafav,

a
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degenerating direction is not necessarily related to the direc-
tion, either tangent or normal, of the degenerating curve.

PROPOSITION 4. The directions of all geodesics passing
through a degenerating point given by fy -ff =

coincide with the degenerating direction.
Proof. The geodesics obeying Eq. 20 may be written explic-
itly as

f, = b1s + c1,

fy = b2s + c2. [42]

Substituting s yields a curve in its implicit functional form

b2fx - b1fy = c, [43]

where c = c1b2 - c2b1 is another constant. Note that the
normal direction ofany curve F(x, y) = c is given by [Fx, Fy]T,
and therefore the normal direction of the geodesic nG is

Eb2fxx - bifyx1

b2fxy - b fyy [4]

The Euclidean inner product of nG with tG is

nGftD = fxy(b2 fxx - b1 fyx) - f~x(b2 fxy - b1 fyy)
= b1(f~xfyy -fyxfy) = 0 [45]

at degenerating points for any parameters bl, b2 that specify
the family of geodesics passing through a particular point.
This is equivalent to saying that the tangent direction of any
geodesics is along the degenerating direction. q.e.d.
The above proposition indicates that all geodesics ap-

proaching the degenerating point must "converge" at the
degenerating direction and all geodesics leaving the degen-
erating point must be confined to the degenerating direction.
Here the two-dimensional perceptual space appeared some-
how degenerated or "collapsed" into only one direction,
since the metric has zero component along the other (orthog-
onal) direction.

Discussion

Starting from the basic argument about perceptual oneness in
rigid motions, we have deduced, without other assumptions,
the basic objects of the non-Euclidean perceptual space-the
affine connection rFp, the Riemann curvature tensor R'
the geodesics, and the metric tensor gaff. The response of
motion detectors resulting from a rigid moving object is
construed in this perceptual space (by "homunculus") as an

intrinsically constant vector field representing the perceptual
entity of a single, rigid object. The intrinsic constancy of the
detector response may be most easily recognized under the
"good" coordinates of the perceptual space-geodesics of
any family. The inner product ofthe detector response Va and
the tangent direction of a geodesic dxa/ds is constant:

dXa dXa
Va d-=fa Va = bevy = constant. [46]

ds ~ds ds

In particular, the family of geodesics [bl, b2IT cX [-v2, vi]T is
everywhere orthogonal to the detector output.

Geodesics represent "straight" lines in the perceptual
space. The local difference between a geodesic and a phys-
ically straight line is an infinitesimal quantity on the order of
o(ds). However, at the degenerating points, since all geode-
sics converge to one direction (the degenerating direction),
the local difference between the two may become discernible.
Recall the well-known Hering illusion where a pair of phys-
ically parallel lines are perceived as being "bent" toward

each other in the presence of the background figure of
radiating lines or "spokes." This perceptual distortion of
angular relationships may be due to the noncoincidence
between a "perceptually" straight line and a "physically"
straight line at the degenerating curves (the background
spokes, presumably). Such visual illusions, according to this
explanation, are occasional "artifacts" of the visual system
designed for the more important cause offorming the percept
ofan object defined, in this case, by pure motion information.
The general idea of relating perceptual oneness to the

concept of intrinsic constancy under a non-Euclidean geom-
etry may be extended to other visual modalities such as color,
depth, etc. The perceptual structure of vision can then be
described as a fiber bundle, with visual space as the base
manifold, the aforementioned affine connection as the base
connection, motion system as the tangent fiber, and all other
relevant visual modalities as general fibers. The cross section
of the fiber bundle is nothing but a visual scene, an intrinsi-
cally constant (parallel) portion of which represents a visual
object.
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