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The aim of this document is to prove that one- and two-stage approaches
for fixed-effects dose–response meta-analysis are equivalent.

1 Two-stage dose–response-meta analysis

In the first stage, the i-th study-specific model (i = 1, . . . ,K) is defined as

yi = Xiβi + εi (1)

where:

• yi is the (ni × 1) vector of non-referent log relative risks;

• Xi is the (ni × p) design matrix containing the non-referent values of
the dose and/or some nonlinear transformations;

• βi is the (p× 1) vector of the i-th study-specific dose–response coeffi-
cients;

• εi is the (ni × 1) vector of the error term, such that εi ∼ N (0, Si) and
Si is considered to be known.

The study-specific vector βi and matrix V (βi) are estimated using the Gen-
eralized Least Squares (GLS) estimator
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β̂i =
(
X>i S

−1
i Xi

)−1
X>i S

−1
i yi (2)

V
(
β̂i

)
=
(
X>i S

−1
i Xi

)−1
(3)

In the second stage, β̂i are pooled using a multivariate fixed-effects meta-
analysis

β̂i ∼ Np

(
θ, V

(
β̂i

))
(4)

The pooled estimate θ̂ and the corresponding (co)variance matrix V (θ) are
estimated using the GLS estimator

θ̂ =

(
K∑
i=1

V̂
(
β̂i

)−1)−1 K∑
i=1

V̂
(
β̂i

)−1
β̂i (5)

V̂
(
θ̂
)

=

(
K∑
i=1

V̂
(
β̂i

)−1)−1
(6)

Substituting V̂
(
β̂i

)
and β̂i in Equations 5 and 6 with the expressions in

Equations 2 and 3 gives the following estimates for θ̂ and V (θ)

θ̂ =

(
K∑
i=1

X>i S
−1
i Xi

)−1 K∑
i=1

X>i S
−1
i yi (7)

V̂
(
θ̂
)

=

(
K∑
i=1

X>i S
−1
i Xi

)−1
(8)

2 One-stage dose–response meta-analysis

The one-stage model is defined as

y = Xγ + ε (9)

where:
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• y =
(
y>1 , . . . , y

>
K

)>
is the (

∑K
i=1 ni = n × 1) vector of concatenated

study-specific non-referent log relative risks;

• X =
(
X>1 , . . . , X

>
K

)>
is the (

∑K
i=1 ni = n× p) matrix of concatenated

study-specific design matrixes;

• ε =
(
ε>1 , . . . , ε

>
K

)>
is the (

∑K
i=1 ni = n × 1) vector of concatenated

study-specific error terms, such that ε ∼ N (0, S) and

S = diag(Si) =


S1 0 . . . 0
0 S2 . . . 0
...

...
. . .

...
0 0 . . . SK

 (10)

The vector γ and the matrix V (γ) are estimated using the GLS estimator

γ̂ =
(
X>S−1X

)−1
X>S−1y (11)

V̂ (γ̂) =
(
X>S−1X

)−1
(12)

Given the block-diagonal structure of S we can rewrite Equations 11 and 12
as follows

γ̂ =
(
X>S−1X

)−1
X>S−1y = (13)

=

(
K∑
i=1

X>i S
−1
i Xi

)−1 K∑
i=1

X>i S
−1
i yi

V̂ (γ̂) =
(
X>S−1X

)−1
=

(
K∑
i=1

X>i S
−1
i Xi

)−1
(14)

3 Conclusion

Equations 7 and 8 are equal to Equations 13 and 14, respectively. This
proves that θ̂ = γ̂ and V̂ (θ̂) = V̂ (γ̂), and therefore the equivalence of one-
and two-stage dose–response meta-analytical approaches.
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