SOX2

NT

log, difference in expression

— F3/Cd142
RN 3 -
e & e gl S

| e &~ .

Sox2eGFP selected

Il Sox2eGFP+/
SRB1-ICAM1-
relative to
Sox2eGFP+/
SRB1+ICAM1+
Sox2eGFP+/F3-/
ICAM1- relative
to Sox2eGFP+/

F3+/ICAM1+

Figure S1



Figure S1. Related to Figure 1

(A) Sox2eGFP co-labels with neuronal tubulin (NT); overexposure reveals
expression in the sub-mucosal axon fascicles (arrows). (B,C) Both Scarb7 and
F3 RNA (B) and protein (C) localize to sustentacular cells. (D) RT-gPCR of
FACS-purified Sox2-eGFP-positive cells demonstrates that cell depletion with
SCARB1 or F3 antibodies enriches for neural progenitors (Hes6, Rbm24, and the
cell cycle gene Top2a) and microvillous cells (Ascl3) (n=1 for each; table with
oligonucleotide sequences in Table S6). (E) Reg3g is expressed in the non-
sensory regions of the epithelium, with no detectable expression in the Krt5-
CreER; Trp63°"°*; Rosa26°"" lineage-traced tissue at any stage examined (96
hours post tamoxifen (HPT), 14 days post tamoxifen (DPT) or 48HPT (not
shown)); solid lines mark the boundary between sensory and non-sensory
epithelium. Dashed lines mark the boundary between the epithelium and
submucosa; scale bar = 50 microns. (F) All HBCs express p63, Icam1, and
Sox2: immunohistochemistry for the Sox2eGFP transgene, P63, and ICAM1
shows co-labeling. Scale bars, 50 microns.
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Figure S2. Related to Figure 2

(A) The heatmap shows expression of selected marker genes (rows) in cells
(columns) organized by cluster (indicated by colored coded bars across the top,
as in Figure S1). Experimental condition and batch are indicated by the middle
and bottom color bars. Experimental condition colors correspond to the time-
points indicated in panel (D). (B) At 24 hours post tamoxifen (hpt), some HBCs
still express Trp63 (P63) while others no longer express detectable levels
(arrow). By 48hpt, Trp63 is no longer detectable by immunohistochemistry.
There is asynchrony in the differentiation of HBCs upon conditional knockout
(cKO) of Trp63, as the three examples demonstrate. (C) Ascl3, Coch, Cftr,
Cd24a, Hepacam?2 label one type of microvillous cell. We also observe that Sox9
is expressed in a different class of microvillous cells (arrow) in addition to the
Bowman’s gland (arrowheads). Trom5 is also expressed in this MV cell sub-type
(arrow). (D) Differentiation is asynchronous, as evidenced by the partial overlap
of experimental condition and cell cluster identity. In the top plot, the
percentage of cells from each experimental condition that contribute to each
cluster is indicated by the size of the circle. Note that most experimental
conditions contribute to multiple clusters, while the Trp63** HBCs
predominantly populate the resting HBC cluster. In the bottom plot, the size of
the circles reflects the proportion of cells from each cluster derived from each
experimental condition. These plots reveal that clusters defined by more
differentiated cell types are populated by cells with later experimental time
points. HBCs from Trp63 wild type animals constitute most of the resting HBCs.
Sox2eGFP-positive cells comprise mostly mature sustentacular cells and
neuronal precursors. Persistence of GFP expression late in the neuronal lineage
is due to perdurance of GFP following its initial expression in GBCs. (E) The first
five principal components of the expression matrix of all detected genes
effectively separate the clusters and serve as input for Slingshot. (F) Expression
of Trp63, Krt5, and Krt14, established markers of resting HBCs (green), in the
neuronal lineage and organized by developmental order. (G) Pairwise
comparisons of Trp63, Krt5, and Krt14 gene expression in the resting (green)
and transitional HBCs (AHBC1, gold; AHBC2, light blue). All three are highly
correlated in resting HBCs, but their expression is no longer tightly coordinated
in the transition states.
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Figure S3. Related to Figure 3

(A) Expression (log2 normalized counts) of all 2327 differentially expressed
genes used in the gene clustering for the neuronal lineage, ordered by gene
cluster (vertical axis) and neuronal lineage developmental order (horizontal axis).
(B) Expression of all 1622 differentially expressed genes used in the gene
clustering for the sustentacular cell lineage, ordered by gene cluster (vertical
axis) and sustentacular cell lineage developmental order (horizontal axis). (C)
Expression of the genes used in the sustentacular cell lineage gene clustering,
as they are expressed in the neuronal lineage. (D) Expression of the genes used
in the neuronal lineage gene clustering, as they are expressed in the
sustentacular cell lineage. Note that the heatmap shows genes that are enriched
in both resting and transitional HBCs as well as immature and mature
sustentacular cells, highlighting the similarity of sustentacular cells and their
HBC precursors. (E, F) Expression of the cell cycle genes used in the cell cycle
gene set heatmap in Figure 3, in the neuronal (E) and sustentacular cell lineages
(F). (G) Volcano plots of —log10 adjusted p-value (adj. p-value) versus log2 fold
change (log2FC) between clusters. The plots are arranged to represent the
lineage trajectory map and display the number of differentially expressed genes
between the clusters at each transition in the lineage (genes with adj. p-value <
0.01 and log2FC > 1 are shown in black). Up-regulated genes are shown in red
text and down-regulated in blue. Limma was used for differential expression,
and the p-values were adjusted for multiplicity using the Benjamini-Hochberg
procedure (see Star Methods). See Table S2.
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Figure S4. Related to Figure 3

(A) Double fluorescent RNA in situ hybridizations for the indicated genes in each
panel. The plots are best-fit curves to the single-cell RNA-seq data from cells in
the neuronal lineage, sorted by their developmental order in the lineage. Cells
labeled with both probes appear white in these pseudo-colored images. The
expression patterns of these selected genes demonstrate the progression of
cells through multiple immediate neuronal precursor stages that were inferred by
our single-cell RNA-seq analysis. (B) Colorimetric RNA in situ hybridizations for
known and novel genes of the different olfactory cell types. We identified and
validated many novel genes along the neuronal lineage (Ezh2, Hmgb2, Hmga1,
Tead2, Elavi4, Scg2, Baz1a, Cdyl2, Tex15, Crabp1, Arghdig, EII3, Nrn1l) and
sustentacular cell lineage (Pon1, Sec14I3, EIf5, 1l133). Scale bars = 50 microns.
(C) Expression of odorant receptors (ORs) in the neuronal lineage, sorted by
their developmental order in the lineage. The top panel reveals significant up-
regulation of OR expression in mature olfactory sensory neurons (MOSN;
orange). The second and third panels show the number of OR genes expressed
per cell at different thresholds of expression. Multiple ORs are detected at the
INP3 stage (purple); as cells mature, the pattern shifts to high level expression of
one OR per cell, starting in the immature olfactory sensory neuron (iOSN) stage
(yellow). (D) The remaining panels display selected transcription factors,
chromatin modifiers and other signaling molecules relevant to OR gene
expression.
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Figure S5. Related to Figure 4

(A-D) Krt5-CreER; Trp63°"**: Rosa26°°™" clonal lineage tracing analysis at 7-
days post tamoxifen (DPT) induction. A summary of the types of clones obtained
is presented in (A). Neuron-containing clones usually contain more than one
neuron (mean = 8.8 +/- 1.0 standard error of the mean), whereas sustentacular
cells (C) and microvillous cells (D) are almost always limited to one cell of that
type per clone (1.2 +/- 0.1 and 1.2 +/- 0.2, respectively). Note that the GBC
category in (A) represents all GBC-containing clones that had any type of cell
from the neuronal lineage, such as a neuron or microvillous cell. (E-H) Plots
relating to the 14DPT (E, F) or 7DPT (G, H) clonal lineage tracing. (E, G) The
number of clones of each type from each animal in the analysis. (F, H) The
proportion of clones that were labeled by membrane CFP or cytosolic YFP for
each animal. These data demonstrate the consistency of our observations
across multiple animals; no single animal skewed the results. G = GBC; GMV =
GBC, microvillous cell; GN = GBC, neuron; MV = microvillous cell; N = neuron;
NBG = neuron, Bowman’s gland; NMV = neuron, microvillous cell; NS = neuron,
sustentacular cell; S = sustentacular cell; BNMV = Bowman’s gland, neuron,
microvillous cell; Gl = GBC, neural precursor; GIN = GBC, neural precursor,
neuron; GMVS = GBC, microvillous cell, sustentacular cell; GS = GBC,
sustentacular cell; HN = HBC, neuron. (I) Immunohistochemistry for YFP and
IL33 in a Krt5-CreER; Trp63°"*; Rosa26°°™" clone demonstrates co-labeling of
a sustentacular cell with nuclear IL33 (arrow), consistent with our classification.
Scale bar, 25 microns. (J) Table of the quantification of the
immunohistochemistry of the Krt5-CreER; Trp63°"*; Rosa26°"" samples
presented in the main Figure 4. The table displays the animals/samples at each
time-point (24-hours, 48-hours, 96-hours, and 7-days) post tamoxifen injection,
the length of OE counted in microns, the number of YFP+ lineage traced cells,
the number of activated CASPASE3+ cells, and the number of co-labeled cells
in each sample (K) This micrograph shows a rare Bowman’s gland labeled by
Ascl1-CreER; Rosa26°"" lineage tracing at 21 DPT. Scale bar, 50 microns.
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Figure S6. Related to Figure 5

(A, B) Correlation heatmap of the most highly differentially expressed (DE)
transcription factors of the neuronal (A) and sustentacular cell (B) lineages. (C)
Gene Set Enrichment Analysis (GSEA) for the resting HBC cluster, sorted by the
—log10 p-value; the top 100 gene sets are displayed. The Wnt signaling pathway
and the P63 (Trp63) pathway are highlighted in magenta. See also Table S4. (D)
Gene expression plots for the secreted Wnt signaling antagonists (Sfrp 1, Dkk3)
and key transcription factors involved in Wnt signaling (Tcf712, Sp8). (E)
Consistent with our contention that HBCs form more sustentacular support cells
relative to neurons in the p63°”*; Beta-catenin’* double knockout, many of
the HBC derived cells in the middle and apical regions of the epithelium express
IL33, a gene we validated as being expressed in sustentacular cells and
Bowman’s gland, and not neurons (see Figure S4).



